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Thermal dispersion potential of a diamagnetic atom
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We study the diamagnetic interaction between a ground-state atom, which is located at a distance z from a
planar body, e.g., a perfect mirror or a nondispersive and nonabsorbing dielectric substrate, and the body-assisted
electromagnetic fields from vacuum, equilibrium, and out of equilibrium thermal fluctuations. We find that the
diamagnetic potential at zero temperature is always proportional to z−4 in both the retarded and the nonretarded
zones, and the Casimir-Polder (CP) force is attractive. The CP potential due to the thermal fluctuations at
equilibrium dominates over that due to the zero-point fluctuations in the long-distance or high-temperature limit
and behaves like T/z3, and the corresponding force is attractive. However, in the case of out of thermal equilibrium,
the CP potential exhibits a different behavior with slower dependence on the distance and stronger dependence
on temperature in the same limit, and it decays like (T 2

e − T 2
s )/z2, where Te is the temperature of the environment

and Ts is that of the substrate, yielding a CP force that can either be attractive or repulsive. Meanwhile, in the
short-distance or low-temperature limit the CP potential is always dominated by the contribution due to the
vacuum fluctuations.
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I. INTRODUCTION

Casimir and Polder [1] first found that an electrically
polarizable neutral atom near a perfectly conducting plane
feels a net attractive force due to the vacuum fluctuations of
electromagnetic fields. So, this force is called the Casimir-
Polder (CP) force. The CP force behaves like 1/z4 (z being
the atom-wall separation) in the nonretarded region (short
distance), which is like the van der Waals–London interatomic
force, while at large distances it exhibits a different behavior
and depends on 1/z5. Later, Casimir and Polder’s work was
extended to include the thermal fluctuations by Lifshitz [2].
Assuming the atom and the body in a thermal bath at a
temperature T , Lifshitz found that the thermal fluctuation
effect also leads to an attractive atom-wall force and the leading
term of this force is proportional to T/z4. In addition, the
effects of a medium have been accounted for in [3–7]. Recently,
the CP force between an electrically polarizable atom and a
dielectric substrate in a stationary configuration out of thermal
equilibrium, where the atom and the substrate are assumed to
be kept at different local temperatures, has been studied [8–10],
and it has been demonstrated that the CP force now shows
new asymptotic behaviors, i.e., its leading term has a �T 2/z3

dependence in the retarded limit. Here, �T 2 ≡ T 2
s − T 2

e with
Te and Ts being the temperatures of the thermal bath in the
right and the substrate in the left half spaces, respectively.
Apparently, the force can be attractive or repulsive depending
on the difference of two temperatures.

The Casimir-Polder force has recently been extended to
magnetic atoms, including paramagnetic atoms and diamag-
netic ones, and different results have been found. For a
paramagnetic atom placed in front of a planar body, such as
a perfect mirror, the CP force has the same z dependence as
that in the case of an electric atom but it has an opposite
force character, i.e., the CP force of paramagnetic atoms is
repulsive rather than attractive as opposed to the electric atom
[11–13], while for a diamagnetic atom, because the diamag-
netic magnetizability is negative and frequency independent,
the CP force behaves like 1/z5 in both the retarded and the

nonretarded limits, and as a result of the Lenz rule its sign is
opposite to that of the paramagnetic counterpart [14]. Thus, an
attractive force is obtained for a diamagnetic atom.

As mentioned above, for an electric atom, the thermal fluc-
tuations, especially the out of equilibrium thermal fluctuations,
can give rise to different characters of the CP force. However,
what happens to a magnetic atom remains unclear. In this
paper, we plan to investigate this issue using the macroscopic
quantum electrodynamics approach [15,16]. At this point, it
is worth pointing out that the contribution from diamagnetic
coupling is very important when computing highly accurate
potentials for alkali-metal atom dimers [17], where it has
been found that the diamagnetic-electric contributions are
larger than the electric-paramagnetic contributions, and the
diamagnetic-paramagnetic interactions are larger than the
paramagnetic-paramagnetic contributions.

II. QUANTIZATION

We consider the system with an atom interacting with the
electromagnetic field in the presence of the magnetodielectric
bodies described by a Kramers-Kronig consistent permittivity
ε(r,ω) and permeability μ(r,ω). Thus, the total Hamiltonian
has the form

Ĥ = ĤA + ĤF + ĤAF . (1)

Here ĤA is the Hamiltonian of an atom located at position rA:

ĤA =
∑

n

En
A|n〉〈n|. (2)

ĤF is the Hamiltonian of the body-assisted electromagnetic
field. Its electric- and magnetic-field operators can be ex-
pressed as

Ê(r) =
∑

λ=e,m

∫
d3r ′

∫ ∞

0
dω Gλ(r,r ′,ω)· f̂ λ(r ′,ω) + H. c. ,

(3)
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B̂(r) =
∑

λ=e,m

∫
d3r ′

∫ ∞

0

dω

iω
∇× Gλ(r,r ′,ω)· f̂ λ(r ′,ω)

+ H. c. , (4)

where f̂
†
λ(r,ω) and f̂ λ(r,ω) are the creation and annihilation

operators of the elementary electric (λ = e) and magnetic
(λ = m) excitations, respectively. They obey the bosonic
commutation relations

[ f̂ λ(r,ω), f̂
†
λ′(r ′,ω′)] = δ(r − r ′)δλλ′δ(ω − ω′) (5)

and

[ f̂ λ(r,ω), f̂ λ′(r ′,ω′)] = [ f̂
†
λ(r,ω), f̂

†
λ′(r ′,ω′)] = 0, (6)

where δ(r − r ′) is a diagonal matrix with the diagonal element
given by δ(r − r ′), and 0 represents a zero matrix. In Eqs. (3)
and (4), the quantities Gλ are related to the classical Green’s
tensor G by

Ge(r,r ′,ω) = i
ω2

c2

√
�

πε0
Im ε(r ′,ω) G(r,r ′,ω), (7)

Gm(r,r ′,ω) = i
ω

c

√
�

πε0

Im μ(r ′,ω)

|μ(r ′,ω)|2 [∇′× G(r ′,r,ω)]T.

(8)

Here, ε0 and c represent the vacuum permittivity and the
light speed, respectively. The Green’s function G satisfies
the differential equation[

∇ × 1

μ(r,ω)
∇ × − ω2

c2
ε(r,ω)

]
G(r,r ′,ω) = δ(r − r ′)

(9)
and the boundary condition

G(r,r ′,ω) → 0 for |r − r ′| → ∞. (10)

It also fulfills the Schwarz reflection principle and obeys the
Onsager-Lorentz reciprocity:

G(r,r ′,−ω∗) = G∗(r,r ′,ω),
(11)

G(r ′,r,ω) = GT(r,r ′,ω).

In addition, there is a useful integral relation for the Green’s
function: ∑

λ=e,m

∫
d3s Gλ(r,s,ω)· G∗T

λ (r ′,s,ω)

= �μ0

π
ω2 Im G(r,r ′,ω), (12)

where μ0 is the vacuum permeability. Thus, using Eqs. (3) and
(4), we write ĤF into the form

ĤF =
∑

λ=e,m

∫
d3r

∫ ∞

0
dω�ω f̂

†
λ(r,ω) · f̂ λ(r,ω). (13)

It is easy to see that the ground state of ĤF can be defined as

f̂ λ(r,ω)|{0}〉 = 0 ∀λ,r,ω. (14)

Hereafter, we use |{ }〉 to represent the state of electromagnetic
fields, while, for a thermal state, one has

〈{β}| f̂ λ(r,ω) f̂
†
λ′(r ′,ω′)|{β}〉 = (1 + N (β))δ(r − r ′)

× δλλ′δ(ω − ω′), (15)

〈{β}| f̂
†
λ(r,ω) f̂ λ′(r ′,ω′)|{β}〉 = N (β)δ(r − r ′)δλλ′δ(ω − ω′),

(16)

with β = �c/kT , k being the Boltzmann constant and

N (β) = 1

eβω/c − 1
. (17)

In Eq. (1), ĤAF describes the interaction between the
atom and the body-assisted electromagnetic field. Within the
multipolar coupling scheme, ĤAF contains three different
terms [18]:

ĤAF = −d̂A · Ê(rA) − m̂A · B̂(rA) +
∑
α∈A

q2
α

8mα

[ˆ̄rα× B̂(rA)]2,

(18)
where the first, second, and third terms in the right-hand
side represent the electric, paramagnetic, and diamagnetic
interactions, respectively. d̂A and m̂A are the respective atomic
electric and magnetic dipole operators, and qα , mα , and ˆ̄rα

denote the charges, masses, and positions relative to the center
of mass of the particles contained in the atom, respectively.

III. DIAMAGNETIC INTERACTION

The electric interaction between an atom and the fields
in the presence of a body, such as a perfect mirror or a
dielectric substrate, has been studied extensively including
the contributions from the zero-point fluctuations, the equi-
librium thermal fluctuations (see [19] for recent reviews),
and the out of equilibrium thermal fluctuations [8,10]. In
addition, the magnetic interactions, including paramagnetic
and diamagnetic ones, arising from the vacuum fluctuations
have been investigated in [12,14]. Here, we focus on the
diamagnetic interaction between a ground-state atom and
the body-assisted electromagnetic fields from the thermal
fluctuations. The contributions from the equilibrium and out
of equilibrium thermal fluctuations are both considered. We
assume that the left half space (z < 0) is filled with a
nonabsorbing and nondispersive dielectric substrate whose
permittivity is real and frequency independent (which we call
a real dielectric substrate for short hereafter) at temperature Ts

and the right half space (z > 0) is filled with a thermal bath at
temperature Te. Apparently, Te = Ts corresponds to the case of
thermal equilibrium. For convenience, we introduce the atomic
diamagnetizability operator:

m̂d
A = −

∑
α∈A

q2
α

4mα

(
ˆ̄r2
α I − ˆ̄rα ˆ̄rα

)
. (19)

Here, ˆ̄r2
α ≡ ˆ̄rα · ˆ̄rα and I is a unit matrix. In terms of

Lagrange’s identity [a×b]2 = b · (a2 I − aa) · b, we can re-
express the diamagnetic interaction Hamiltonian as∑

α∈A

q2
α

8mα

[ˆ̄rα× B̂(rA)]2 = −1

2
B̂(rA)·m̂d

A · B̂(rA). (20)
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The ground-state diamagnetizability of an atom is given by the
expectation value:

md
A ≡ 〈

m̂d
A

〉 = −
∑
α∈A

q2
α

4mα

〈0A| ˆ̄r2
α I − ˆ̄rα ˆ̄rα|0A〉. (21)

For an isotropic atom, md
A can be simplified as

md
A = −

∑
α∈A

q2
α

6mα

〈
ˆ̄r2
α

〉
I ≡ md

A I. (22)

Apparently, different from the paramagnetic magnetizability
and electric polarizability, the diamagnetic magnetizability is
negative and frequency independent.

From the diamagnetic interaction Hamiltonian, one can
obtain the CP potential of a purely diamagnetic atom in an
out of thermal equilibrium system described by 〈{βe,βs}|:
U (rA) = 〈{βe,βs}|〈0A| − 1

2 B̂(rA)·m̂d
A · B̂(rA)|0A〉|{βs,βe}〉

= − 1
2md

A tr[〈{βe,βs}|B̂(rA)· B̂(rA)|{βs,βe}〉]
≡ − 1

2md
Af (rA). (23)

Using Eq. (4), one can obtain

f (rA) = −
∑

λ=e,m

∫
d3r ′

∫
dω

ω2
[1 + 2N (r ′)] tr

[∇r1

× Gλ(r1,r ′,ω) · G∗T
λ (r2,r ′,ω)×←−∇ r2

]∣∣
r1=r2=rA

.

(24)

Since the left and right half spaces have different temperatures,
it is useful to reexpress f (rA) as a summation of three different
terms:

f (rA) = fvac(rA) + feq(rA) + fneq(rA) (25)

with

fvac(rA) = −�μ0

π

∫
dω tr

[
Im

[∇r1 × G(r1,r2,ω)

×←−∇ r2

]]∣∣
r1=r2=rA

, (26)

feq(rA) = −2�μ0

π

∫
dωN (βe) tr

[
Im

[∇r1 × G(r1,r2,ω)

×←−∇ r2

]]∣∣
r1=r2=rA

, (27)

fneq(rA) = −2
∑

λ=e,m

∫
z′<0

d3r ′
∫

dω

ω2
[N (βs) − N (βe)]

· tr
[∇r1 × Gλ(r1,r ′,ω) · G∗T

λ (r2,r ′,ω)

×←−∇ r2

]∣∣
r1=r2=rA

, (28)

where fvac(rA), feq(rA), and fneq(rA) correspond to the con-
tributions from zero-point fluctuations, equilibrium, and out
of equilibrium thermal fluctuations, respectively. In Eqs. (26)
and (27), Eq. (12) has been used. As expected, when Te = Ts

the out of thermal equilibrium term disappears.
Using the Green’s functions in the medium configuration

given in [20] and assuming that an isotropic atom is located at
a distance z from the substrate, we find that, in the case of a
real dielectric substrate with a relative permittivity ε, fvac(rA),

feq(rA), and fneq(rA) are functions only of z and have the
following forms:

fvac(z) = �μ0

2π2

∫
dω

∫ 1

0
dt

w3

c3
[cos(2ωzt/c)T (t)

+ e−2ω
√

ε−1zt/cA(t)], (29)

feq(z) = �μ0

π2

∫
dω

∫ 1

0
dt

w3

c3

1

eβeω/c − 1
[cos(2ωzt/c)T (t)

+ e−2ω
√

ε−1zt/cA(t)], (30)

fneq(z) = �μ0

π2

∫
dω

∫ 1

0
dt

w3

c3

(
1

eβsω/c − 1
− 1

eβeω/c − 1

)

× e−2ω
√

ε−1zt/cA(t), (31)

where

T (t) ≡ 1

2

εt − √
ε − 1 + t2

εt + √
ε − 1 + t2

+
(

1

2
− t2

)
t − √

ε − 1 + t2

t + √
ε − 1 + t2

,

(32)

A(t) ≡ t
√

ε − 1
√

1 − t2

[
ε

(ε2 − 1)t2 + 1
+ 1 + 2(ε − 1)t2

]
.

(33)

Notice that here the T and A functions give the contributions
from the traveling waves and the evanescent waves, respec-
tively.

Substituting Eqs. (29)–(31) into Eq. (23), one can get the
expression of the CP potential U (z) and then the CP force,
which is given by differentiating the CP potential with respect
to z. For convenience, we divide our discussion into two special
cases: a perfectly reflecting planar mirror, which corresponds
to ε → ∞, and a real dielectric substrate. Notice that, when
the perfect mirror case is considered, we must take first the
limit of ε → ∞ before analyzing the retarded or nonretarded
limit, otherwise a wrong result may result.

IV. PERFECTLY REFLECTING PLANAR MIRROR

A perfect mirror is characterized by ε → ∞. After taking
this limit, we find that fneq(z) disappears, which means that
there is no contribution coming from out of equilibrium
thermal fluctuations in this case. For fvac(z) and feq(z), only
the term containing the cosine function exists and A(t) → t2.

A. Zero-point fluctuations

The vacuum fluctuation corresponds to the case of zero
temperature. Thus, only Eq. (29) needs to be considered, and
it is simplified as

fvac(z) = �μ0

2π2

∫
dω

ω3

c3

∫ 1

0
t2 cos(2ωzt/c)

= − 3

16π2

�μ0c

z4
, (34)
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which leads to a CP potential:

U (z) = −1

2
md

Afvac(z) = 3

32π2

�μ0c

z4
md

A

= − 3

32π2

�μ0c

z4

∑
α∈A

q2
α

6mα

〈
ˆ̄r2
α

〉
. (35)

This result is the same as the one found in [14]. It is easy to
see that the contribution of zero-point fluctuations depends on

z−4, which means that the CP force is attractive and decays
like z−5 in both the retarded region and the nonretarded one.

B. Equilibrium thermal fluctuations

Here, we assume that the total system is in a thermal
equilibrium at temperature Te. From Eq. (30), one has

feq(z) = �μ0

π2

∫
dω

ω3

c3

1

eβeω/c − 1

∫ 1

0
t2 cos(2ωzt/c)

= �μ0cT
4

π2
× 3 + bπ{− coth(bπ ) − bπ [1 + bπ coth(bπ )] sinh−2(bπ )}

b4
(36)

with b ≡ 2z/βe. For the case of b 
 1, which corresponds to
the high-temperature or long-distance limit, we have

feq(z) � �μ0c

16π2

(
3

z4
− 2π

z3β

)
. (37)

Since in this case the CP potential is determined by the zero-
point fluctuations and the thermal ones, it has the form

U (z) = −1

2
md

A[fvac(z) + feq(z)]

� −�μ0c

16π

1

z3βe

∑
α∈A

q2
α

6mα

〈
ˆ̄r2
α

〉
. (38)

Apparently, in the b 
 1 limit the thermal fluctuation is
the main source of the CP potential and this potential is
proportional to z−3β−1

e and gives an attractive force on the
atom. These properties are the same as in the case of an electric
atom.

Taking the short-distance or low-temperature limit (b � 1),
one has

feq(z) � −�μ0c

4π2

(
64π6z2

315β6
e

)
, (39)

and the CP potential

U (z) = −1

2
md

A[fvac(z) + feq(z)]

� −�μ0c

8π2

(
3

4z4
+ 64π6z2

315β6
e

) ∑
α∈A

q2
α

6mα

〈
ˆ̄r2
α

〉
. (40)

The thermal fluctuation contribution is proportional to z2β−6
e ,

which is the same as in the case of an electric atom, but it is
smaller than the one from zero-point fluctuations. Therefore,
in this limit the CP potential is dominated by the z−4 term.

V. REAL DIELECTRIC SUBSTRATE

In this section, we calculate the CP potential for the case of
a real dielectric substrate.

A. Zero-point fluctuations

Since the result will be divergent when one calculates
directly the integrations of Eq. (29), we use the method
proposed in [4] to eliminate this divergence. After some tedious
calculations, we obtain

fvac(z) = − 3

16π2

�μ0c

z4
g1(ε) (41)

with

g1(ε) = 1

6

(
2T (0) + 3T ′(0) + 3T ′′(1) + 3

A′(0)

(ε − 1)2
+ 1

2
T ′′′(0) ln(ε − 1)

− 6
∫ 1

0

dt

t4

(
T (t) − T (0) − T ′(0)t − 1

2
T ′′(0)t2 + A(t) − A′(0)t

(ε − 1)2

))

= 1

6

(
−2 − 6ε + 3(ε + 1)√

ε − 1
− 12

ε − 1
+ 3(ε + 1)

(ε − 1)3/2
+ 3(5 − 5ε + 2ε3)

2(ε − 1)3/2
ln(ε − 1)

− 6
∫ 1

0

dt

t4

(
T (t) − T (0) − T ′(0)t − 1

2
T ′′(0)t2 + A(t) − A′(0)t

(ε − 1)2

))
. (42)

Here, a prime denotes the derivative of functions with respect to their arguments, e.g., T ′(0) = dT (t)/dt |t→0. When ε → ∞,
g1(ε) → 1, and we recover the result of a perfect mirror. As expected, g1(ε) → 0 for ε → 1. Thus, the CP potential is still
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proportional to z−4 and has the form

U (z) = − 3

32π2

�μ0c

z4
g1(ε)

∑
α∈A

q2
α

6mα

〈
ˆ̄r2
α

〉
. (43)

We find that 0 � g1(ε) � 1, which means that, compared with
the perfect mirror, a finite ε for the real dielectric decreases
the magnitude of the CP force.

B. Thermal equilibrium

Assuming that the system is in a thermal bath at temperature
Te, we find that, when min[2z/βe,2z(ε − 1)/βe] 
 1,

feq(z) � �μ0c

π2

[
3

16z4
g1(ε) − 1

4z3βe

ε + 1

ε − 1

]
. (44)

Using Eqs. (41) and (44), one obtains the CP potential

U (z) = −1

2
md

A[fvac(z) + feq(z)]

� −�μ0c

8π2

1

z3βe

ε + 1

ε − 1

∑
α∈A

q2
α

6mα

〈
ˆ̄r2
α

〉
. (45)

As in the case of a perfect mirror, the CP potential depends on
z−3β−1

e . When ε → ∞, the result reduces to the one obtained
in the perfect mirror. Different from the case of zero-point
fluctuations, the real dielectric increases rather than decreases
the CP potential due to the thermal fluctuations since ε+1

ε−1 � 1.
Notice that, when ε → 1, U (z) diverges, but this limit is not
allowed since we have already assumed that min[2z/βe,2z(ε −
1)/βe] 
 1.

For max[2z/βe,2z(ε − 1)/βe] � 1, one can obtain

feq(z) � �μ0c

2π2

[
−96 ξ (5) z

β5
e

g2(ε) − 32π6z2

63β6
e

g3(ε)

]
, (46)

where ξ (x) is the Riemann zeta function:

g2(ε) = (5 + 2ε + ε2)(ε2 − ε)π

16(ε + 1)2
, (47)

g3(ε) =
∫ 1

0
dtt2[T (t) − (ε − 1)A(t)]. (48)

Comparing Eqs. (39) and (46), one can see that feq(z) in the
real dielectric case has a different character. From Eqs. (41)
and (46), the CP potential is

U (r) � −�μ0c

4π2

[
3

8z4
g1(ε) + 96 ξ (5) z

β5
e

g2(ε) + 32π6z2

63β6
e

g3(ε)

]

×
∑
α∈A

q2
α

6mα

〈
ˆ̄r2
α

〉
. (49)

In the limit of max[2z/βe,2z(ε − 1)/βe] � 1, the contribution
of zero-point fluctuations is dominated over that of thermal
fluctuations.

C. Out of thermal equilibrium

Now we study the contribution of out of equilibrium thermal
fluctuations. We first consider the limit of min[2z,2z(ε − 1) 


max[βe,βs] and obtain

fneq(z) � �μ0c

24z2

ε + 1√
ε − 1

(
1

β2
e

− 1

β2
s

)
. (50)

Combining Eqs. (41), (44), and (50) gives the CP potential of
total contributions including zero-point and thermal fluctua-
tions:

U (z) = −1

2
md

A[fvac(z) + feq(z) + fneq(z)]

� −�μ0c

8π2

[
π2

6z2

ε + 1√
ε − 1

(
1

β2
e

− 1

β2
s

)
+ 1

z3βe

ε + 1

ε − 1

]

×
∑
α∈A

q2
α

6mα

〈
ˆ̄r2
α

〉
. (51)

If the temperature difference is not too small, one can see
that the contribution of out of equilibrium thermal fluctuation
plays a dominant role and the CP force can be attractive or
repulsive, depending on this difference. This character is the
same as what was obtained in the electric atom case [8,10].

When the limit max[2z,2z(ε − 1)] � min[βe,βs] is taken,
one can obtain

fneq(z) � �μ0c

π

48 ξ (5) z

π
g2(ε)

(
1

β5
e

− 1

β5
s

)
, (52)

and the total CP potential

U (r) � −�μ0c

4π2

[
3

8z4
g1(ε) + 96 ξ (5) z

β5
s

g2(ε) + 32π6z2

63β6
e

g3(ε)

]

×
∑
α∈A

q2
α

6mα

〈
ˆ̄r2
α

〉
. (53)

In this limit, the CP potential is still dominated by the zero-
point fluctuations.

VI. CONCLUSION

It has been found that the thermal fluctuations, especially
out of equilibrium thermal fluctuations, play a very important
role in the retarded CP force of an electric atom. In this
paper we extend the study to the case of a magnetic atom.
We consider the diamagnetic interaction between a ground-
state atom and the body-assisted electromagnetic field from
the thermal fluctuations. The contributions from both the
equilibrium and the out of equilibrium thermal fluctuations are
analyzed. We examine two special cases: a perfectly reflecting
planar mirror and a real dielectric substrate. For the case of a
perfect mirror, we find that the diamagnetic CP potential due
to the zero-point fluctuations carries the same sign as the well-
known electric potential but different from the paramagnetic
one. The diamagnetic potential at zero temperature is always
proportional to z−4 in both the retarded and the nonretarded
zones. When the atom-mirror system is in a thermal bath, the
CP potential is dominated by the contribution of the thermal
fluctuations and behaves like Te/z

3 in the long-distance or
high-temperature limit and the corresponding CP force is
attractive, while in the short-distance or low-temperature limit
the main contribution of the CP potential is from the vacuum
fluctuations.
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When a real dielectric substrate is considered, we find that
the CP potential has the same sign as in the case of a perfect
mirror for both cases of zero temperature and a thermal bath at
finite temperature. However, the dielectric substrate decreases
the CP force due to the vacuum fluctuations while it increases
that due to the thermal fluctuations at equilibrium in the long-
distance or high-temperature limit. For the CP potential in the
case of out of thermal equilibrium, we find in the long-distance
or high-temperature limit the CP force is proportional to (T 2

e −
T 2

s )/z2. So, the force can be attractive or repulsive, depending
on the difference of two temperatures. In the short-distance
or low-temperature limit, the CP potential is still dominated
by the vacuum fluctuations. These properties are the same as
those of an electric atom [8,10].
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