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We study the energy shift and the Casimir-Polder force of an atom out of thermal equilibrium near the surface
of a dielectric substrate. We first generalize, adopting the local source hypothesis, the formalism proposed by
Dalibard, Dupont-Roc, and Cohen-Tannoudji [J. Phys. (Paris) 43, 1617 (1982); 45, 637 (1984)], which separates
the contributions of thermal fluctuations and radiation reaction to the energy shift and allows a distinct treatment
of atoms in the ground and excited states, to the case out of thermal equilibrium, and then we use the generalized
formalism to calculate the energy shift and the Casimir-Polder force of an isotropically polarizable neutral atom.
We identify the effects of the thermal fluctuations that originate from the substrate and the environment and discuss
in detail how the Casimir-Polder force out of thermal equilibrium behaves in three different distance regions
in both the low-temperature limit and the high-temperature limit for both the ground-state and excited-state
atoms, with special attention devoted to the distinctive features as opposed to thermal equilibrium. In particular,
we recover the distinctive behavior of the atom-wall force out of thermal equilibrium at large distances in the
low-temperature limit recently found in a different theoretical framework, and furthermore we give a concrete
region where this behavior holds.
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I. INTRODUCTION

The effect of interaction between an atom and quantum
electromagnetic fields has been a long-standing subject of
research. It is well known that even in vacuum, the energy
levels of an atom are slightly shifted as a result of the
interaction between the atom and the fluctuating vacuum
electromagnetic fields [1], and these shifts are further modified
when boundaries which confine the fields appear. In fact,
when the fluctuations of quantum fields are altered by the
presence of boundaries, many novel effects may arise, such
as the Casimir effect [2], the light-cone fluctuations when
gravity is quantized [3–6], and the Brownian (random) motion
of test particles in an electromagnetic vacuum [7–10] (also
see [11–13]), just to name a few.

In 1948, Casimir and Polder discovered that a neutral atom
near a perfectly conducting wall feels a net force as a result of
the interaction between the atom and vacuum electromagnetic
fluctuations [2]. At short distances, the force behaves like the
van der Waals–London interatomic force, which decays as
1/z4, where z is the distance from the wall, while at large
distances, the inclusion of relativistic retardation effects yields
a different 1/z5 dependence, and this region is called the
Casimir-Polder regime. Subsequently, by employing the the-
ory of electromagnetic fluctuations developed by Rytov [14],
Lifshitz showed that besides the zero-point fluctuations, the
thermal fluctuations also give rise to a revision of the atom-wall
force [15,16] which actually becomes the leading contribution
to the total force at distances much larger than the wavelength
of thermal photons and decays as T/z4. Later, it was shown
that the thermal fluctuations also alter the energy shifts of an
atom [17]. In recent years, the research on the Casimir-Polder
force has been extended to various circumstances, such as in
the presence of partly or perfectly reflecting boundaries in the
vicinity of an atom which is static or in noninertial motion in
vacuum [18–22] or immersed in a thermal bath [23–26].

The effect of the thermal fluctuations on the Casimir-
Polder force referred to above is about an atom-wall system
in thermal equilibrium. Recently, there has been growing
interest in the Casimir-Polder force of an atom out of thermal
equilibrium both theoretically and experimentally [27–37]. In
Refs. [28,29], Antezza et al. calculate, using the fluctuational
electrodynamics developed by Rytov et al. [14] and the linear
response theory by Wiley and Sipe [38], the Casimir-Polder
force felt by an atom near the surface of a half-space dielectric
substrate whose temperature is different from that of the
thermal bath in the other half-space (environment) under the
assumption that the whole system is a stationary configuration,
and they find that the force exhibits a different behavior at very
large distances when the temperature is low, which decays
more slowly with the distance than at the thermal equilibrium.
The force is also distinctive from that in the case of thermal
equilibrium as it displays a sizable temperature dependence
which could be attractive or repulsive depending on whether
the temperature of the substrate is higher or lower than that of
the environment. It is interesting to note that this new behavior
has already been demonstrated in experiment [31].

In this paper, we study the energy shift and the Casimir-
Polder force of an atom near a dielectric substrate out of
thermal equilibrium using a QED treatment of the atom-field
coupling. In such a framework, on the one hand, the fluctuating
field which is modified by the appearance of the substrate
disturbs the atom, and on the other hand, the disturbed atom
induces a radiative field in reaction to the disturbance, and
both these fields affect the dynamics of the atom. It has been
found in QED that to what extent each mechanism plays a
part is determined by the ordering between the operators of
the atom and the field in the interaction Hamiltonian [39–42].
In other words, there exists an indetermination in the con-
tribution of vacuum fluctuations and radiation reaction. The
ambiguity was resolved when Dalibard, Dupont-Roc, and
Cohen-Tannoudji (DDC) showed that there exists a preferred
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symmetric operator ordering which ensures that the distinct
contributions of vacuum fluctuations and the radiation reaction
of the atom to the rate of change of the atomic observables
are separately Hermitian [43,44]. Recently, this formalism has
been employed to study the radiative properties of atoms in
various cases, including noninertial motion of the atom and
a thermal bath at equilibrium [18–22,24,25,45–49]. In the
present paper, we will first generalize the DDC formalism
originally established for thermal equilibrium to the case
out of thermal equilibrium in a stationary regime and then
perform a systematic analysis of the atom-wall force for an
atom near a dielectric substrate which was examined before
by other authors only for atoms in the ground state in the
low-temperature limit at very large distances [28,29]. The
DDC formalism based upon the atom-field coupling separates
the contributions of thermal fluctuations (including vacuum
fluctuations) and the radiation reaction and allows a distinct
microscopic treatment of atoms in the ground and excited
states, and it differs from the macroscopic approach using
Lifshitz theory, in which atoms are treated as a limiting case
of a dielectric [30,32] and the linear response description
of the atom [28,29]. With the DDC formalism generalized
to the atom-wall system out of thermal equilibrium, we are
able to derive the Casimir-Polder force for an atom out of
thermal equilibrium at all distance regimes in both the high-
and low-temperature limits for both the ground and excited
states. In particular, we quantify the region of “very large
distances” which was taken as mathematical infinity (z → ∞)
in Refs. [28,29], where the behavior of the force with a weaker
distance dependence characterized by 1/z3 appears. In other
words, we give a concrete region where this behavior holds.

This paper is organized as follows. In Sec. II, we briefly
review the quantum electromagnetic fields concerned with
a general dielectric substrate. In Sec. III, we generalize the
DDC formalism to the case out of thermal equilibrium. In
Sec. IV, we calculate the energy shift of a two-level atom near a
dielectric substrate, separating the contributions of the thermal
fluctuations and radiation reaction using the generalized DDC
formalism. In Sec. V, we discuss the atomic energy shift and
the Casimir-Polder force near a nondispersive real dielectric
substrate, and we summarize in Sec. VI.

II. THE QUANTUM ELECTROMAGNETIC FIELD

In the presence of magnetoelectric background media
where no external sources and currents appear, the classical
electromagnetic fields satisfy the Maxwell equations

∇ · B(t,r) = 0,

∇ × E(t,r) = −∂B(t,r)

∂t
,

(1)∇ · D(t,r) = 0,

∇ × H(t,r) = ∂D(t,r)

∂t
.

By performing the Fourier transformation which is defined for
an arbitrary operator O(t,r) as

O(t,r) =
∫ ∞

−∞
dω e−iωtO(r,ω), (2)

the Maxwell equations can be transformed to

∇ · B(r,ω) = 0,

∇ × E(r,ω) = iωB(r,ω),
(3)∇ · D(r,ω) = 0,

∇ × H(r,ω) = −iωD(r,ω).

Assuming that the medium under consideration is not bian-
isotropic, we can express the electric displacement vector
D(r,ω) and the magnetic field strength H(r,ω) as

D(t,r) = ε0E(t,r) + P(t,r), (4)

H(t,r) = B(t,r)

μ0
− M(t,r), (5)

where ε0 and μ0 are the permittivity and permeability of
a vacuum and P(t,r) and M(t,r) are the polarization and
magnetization fields, respectively. Particularly, for the medium
which responds linearly and locally to externally applied fields,
the most general relations between the fields that are consistent
with causality and the linear fluctuation-dissipation theorem
can be written as

P(t,r) = ε0

∫ ∞

0
dτχe(τ,r)E(t − τ,r) + PN (t,r), (6)

M(t,r) = 1

μ0

∫ ∞

0
dτχm(τ,r)B(t − τ,r) + MN (t,r), (7)

where PN (t,r) and MN (t,r) are, respectively, the noise
polarization and magnetization associated with the absorption
of the medium with electric and magnetic susceptibilities,
χe(τ,r) and χm(τ,r). Plugging the above two equations into
Eqs. (4) and (5) and then performing the Fourier transform (2)
for the operators concerned, we obtain

D(r,ω) = ε0ε(r,ω)E(r,ω) + PN (r,ω), (8)

H(r,ω) = κ0κ(r,ω)B(r,ω) − MN (r,ω), (9)

with κ0 = μ0
−1 and

ε(r,ω) = 1 +
∫ ∞

0
dτ χe(τ,r) eiωτ , (10)

κ(r,ω) = 1 −
∫ ∞

0
dτ χm(τ,r) eiωτ , (11)

which are called the relative permittivity and permeability,
respectively. The insertion of Eqs. (8) and (9) into Eqs. (3)
yields

∇ · B(r,ω) = 0,

∇ × E(r,ω) = iωB(r,ω),
(12)

ε0∇ · [ε(r,ω)E(r,ω)] = ρN (r,ω),

∇ × [κ(r,ω)B(r,ω)] + i
ω

c2
ε(r,ω)E(r,ω) = μ0jN (r,ω),

where

ρN (r,ω) = −∇ · PN (r,ω), (13)

jN (r,ω) = −iωPN (r,ω) + ∇ × MN (r,ω). (14)
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For a nonmagnetic medium, κ(r,ω) = 1, jN (r,ω) =
−iωPN (r,ω). Combining these relations with the second and
the fourth equations in Eqs. (12), we arrive at the differential
equation satisfied by the electric field,

∇ × ∇ × E(r,ω) − ω2

c2
ε(r,ω)E(r,ω) = iμ0ωjN (r,ω). (15)

The solution of this equation can be expressed in terms of the
dyadic Green’s function G(r,r′,ω) as

E(r,ω) = iμ0ω

∫
d3r′ G(r,r′,ω) · jN (r′,ω). (16)

Substitution of the above equation into Eq. (15) leads to the
differential equation for the Green’s function,{

∂r
i ∂

r
m − δim

[
�r + ε(r,ω)

ω2

c2

]}
Gmj (r,r′,ω) = δij δ(r − r′),

(17)

where �r = ∂r
i ∂

r
i . Hereafter, the Einstein summation conven-

tion is assumed for repeated indices.
So far, all the discussions regard the classical electrodynam-

ics. However, we need a theory of quantized electromagnetic
fields in a dielectric medium for our purpose. In this regard,
let us note that the quantization of the electromagnetic field
in an absorbing dielectric has been widely discussed [50–52].
In this paper, we are concerned with a type of nonmagnetic
medium with

ε(r,ω) = εR(r,ω) + iεI (r,ω), κ(r,ω) = 1. (18)

Following Refs. [50,51], jN (r,ω) can be related to a bosonic
vector field a(r,ω) as

jN (r,ω) = ω

μ0c2

√
�

πε0
εI (r,ω) a(r,ω), (19)

with the vector operator a(r,ω) and its Hermitian conjugates
satisfying the following commutation relations:

[ai(r,ω),a†
j (r′,ω′)] = δij δ(r − r′)δ(ω − ω′), (20)

[ai(r,ω),aj (r′,ω′)] = 0 = [a†
i (r,ω),a†

j (r′,ω′)]. (21)

Putting Eq. (19) into Eq. (16), the field operator can be
reexpressed as

E(r,ω) = i

√
�

πε0

ω2

c2

∫
d3r′√εI (r′,ω) G(r,r′,ω) · a(r′,ω).

(22)

It is explicit that the spatial distribution of the electric field is
determined by the dyadic Green’s function G(r,r′,ω), which is
determined by the spatial distribution of the medium.

For a configuration with one half-space (z < 0) occupied
by a dielectric substrate and the other half-space (z > 0) being
an empty space, which is of particular interest in the present
paper, the components of the dyadic Green’s function are [52]

Gij (r,r′,ω) =
{

G0
ij (r,r′,ω) + Rij (r,r′,ω), z > 0, z′ > 0,

Tij (k‖,ω,z,z′), z > 0, z′ < 0.

(23)

where G0
ij (r,r′,ω) corresponds to the Green’s function of a

vacuum that is Fourier transformed; Rij (r,ω) and Tij (r,ω)
describe the reflection and transmission at the interface, and
they can be expanded as follows:

Rij (r,r′,ω) =
∫

d2k‖
4π2

Rij (k‖,ω,z,z′)eik‖·(r‖−r′
‖), (24)

Tij (r,r′,ω) =
∫

d2k‖
4π2

Tij (k‖,ω,z,z′)eik‖·(r‖−r′
‖), (25)

where k‖ = (kx,ky,0) and r‖ = (x,y,0) are two-dimensional
vectors in the (x,y) plane,

Rxx = i

2β2
eiβ2(z+z′)

[
r

p

21

q2
2

(
−β2

2
k2
x

k2
‖

)
+ rs

21

k2
y

k2
‖

]
,

Rxy = i

2β2
eiβ2(z+z′)

[
r

p

21

q2
2

(
−β2

2
kxky

k2
‖

)
− rs

21
kxky

k2
‖

]
,

Rxz = i

2β2
eiβ2(z+z′) r

p

21

q2
2

[−β2kx],

Ryx = Rxy, (26)

Ryy = Rxx(kx ↔ ky),

Ryz = Rxz(kx ↔ ky),

Rzx = −Rxz,

Rzy = −Ryz,

Rzz = i

2β2
eiβ2(z+z′) r

p

21

q2
2

k2
‖,

and

Txx = i

2β2
ei(β2z−β1z1)

(
t
p

21

q2q1
β2β1

k2
x

k2
‖

+ t s21

k2
y

k2
‖

)
,

Txy = i

2β2
ei(β2z−β1z1)

(
t
p

21

q2q1
β2β1

kxky

k2
‖

− t s21
kxky

k2
‖

)
,

Txz = i

2β2
ei(β2z−β1z1) t

p

21

q2q1
(−β2kx),

Tyx = Txy,

Tyy = Txx(kx ↔ ky), (27)

Tyz = Txz(kx ↔ ky),

Tzx = i

2β2
ei(β2z−β1z1) t

p

21

q2q1
(−β1kx),

Tzy = Tzx(kx ↔ ky),

Tzz = i

2β2
ei(β2z−β1z1) t

p

21

q2q1
k2
‖,

with

q1(ω) = ω

c

√
ε, q2(ω) = ω

c
, (28)

βα ≡ βα(ω) =
√

q2
α(ω) − k2

‖,
(29)

α = (1,2), Re[βα] � 0, Im[βα] � 0,
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r
p

21 = εβ2 − β1

εβ2 + β1
, rs

21 = β2 − β1

β2 + β1
, (30)

t
p

21 = 2
√

εβ2

εβ2 + β1
, t s21 = 2β2

β2 + β1
. (31)

Here we have denoted Rij (k‖,ω,z,z′) and Tij (k‖,ω,z,z′) by
Rij and Tij for simplicity.

In the following, we calculate the energy shift and the
Casimir-Polder force of an atom near a half-space dielectric
substrate which is locally at thermal equilibrium at a tempera-
ture that is different from the temperature of the environment
(empty space with thermal radiation) where the atom is located.
To do so, we should first generalize the DDC formalism to the
case out of thermal equilibrium.

III. THE GENERALIZED DDC FORMALISM

Consider an atom interacting with quantum electromagnetic
fields. Let τ denote the atomic proper time and x(τ ) =
(t(τ ),r(τ )) represent the stationary atomic trajectory. The
stationarity of the trajectory guarantees the existence of
stationary states of the atom. The Hamiltonian that governs
the evolution of the atom is

HA(τ ) = �

∑
n

ωnσnn(τ ), (32)

where σnn = |n〉〈n|. The Hamiltonian of the free electromag-
netic field with respect to τ is

HF (τ ) =
∫

d3r
∫ ∞

0
dω �ω a

†
i (t,r,ω)ai(t,r,ω)

dt

dτ
. (33)

In the multipolar coupling scheme [52,53], the Hamiltonian
that describes the interaction between the atom and the field is
given by

HI (τ ) = −μ(τ ) · E(x(τ )) = −
∑
mn

μmn · E(x(τ ))σmn(τ ),

(34)

where μ is the electric dipole moment of the atom. The total
Hamiltonian of the system (atom plus field) is composed of
the above three parts [Eqs. (32)–(34)]:

H (τ ) = HA(τ ) + HF (τ ) + HI (τ ). (35)

Starting from the above Hamiltonian, we can write out the
Heisenberg equations of motion for the dynamical variables
of the atom and the field, and up to the first order of the
coupling constant μ, the solutions of each equation can then
be divided into two parts: a free part that exists even when there
is no coupling between the atom and the field and corresponds
to the effect of the thermal fluctuations (including vacuum
fluctuations) and a source part that is induced by the interaction
between the atom and the field and corresponds to the effect of
the radiation reaction of the atom. As a result, the field operator
can be written into a sum of the free part and the source part
as

E(x(τ )) = Ef (x(τ )) + Es(x(τ )), (36)

with

Ef (x(τ )) = i

2πc2

√
�

πε0

∫ ∞

0
dω ω2

∫
d3r′√εI (r′,ω)

× G(r(τ ),r′,ω) · a(t(τ ),r′,ω) + H.c., (37)

Es(x(τ )) = − i

�

∫ τ

τ0

dτ ′ [μ(τ ′) · E(x(τ ′)),E(x(τ ))], (38)

where H.c. denotes the Hermitian conjugate term. On the
right-hand side of the above two equations, we have replaced
operators af and Ef with a and E, which is correct for the
first-order approximation.

Assume that the system is composed of two half-spaces,
one at a temperature Ts and the other at a temperature Te.
Generally, Ts does not coincide with Te, and we assume that
each part is in local thermal equilibrium. For the system
composed of the substrate and the environment, we denote
the state of the quantum electromagnetic field with |βs,βe〉
in which βs = �c

kBTs
, βe = �c

kBTe
, and kB is the Boltzmann

constant. The density operator of the state is ρ = ρs

⊗
ρe, with

ρs = e−HF /kBTs and ρe = e−HF /kBTe being the density operators
of the two subsystems (the substrate and the environment),
respectively. Now with the free part and the source part given
in Eqs. (37) and (38), we can analyze the rate of change of
an arbitrary observable of the atom O(τ ) in terms of Ef

(corresponding to the effect of the thermal fluctuations) and Es

(corresponding to the effect of radiation reaction of the atom).
Following DDC [43,44], we choose the symmetric ordering
between the operators of the atom and the field to identify the
contributions of the thermal fluctuations and radiation reaction
to the rate of change of O(τ ), and we obtain(

dO(τ )

dτ

)
tf

= − i

2�
{Ef (x(τ )) · [μ(τ ),O(τ )]

+ [μ(τ ),O(τ )] · Ef (x(τ ))}, (39)(
dO(τ )

dτ

)
rr

= − i

2�
{Es(x(τ )) · [μ(τ ),O(τ )]

+ [μ(τ ),O(τ )] · Es(x(τ ))}. (40)

Taking the average value of the above two equations over
the state of the field |βs,βe〉 and proceeding in a manner
similar to that in Refs. [44,46], we can identify, in the resulting
expressions, the part that acts as an effective Hamiltonian for
the atomic observable, which is

〈βs,βe|
(

dO(τ )

dτ

)
tf,rr

|βs,βe〉

= i
[
H eff

tf,rr ,O(τ )
] + non-Hamiltonian terms, (41)

with

H eff
tf (τ ) = − i

2�

∫ τ

τ0

dτ ′(CF
ij

)
βs ,βe

(x(τ ),x(τ ′))[μi(τ ),μj (τ ′)],

(42)

H eff
rr (τ ) = − i

2�

∫ τ

τ0

dτ ′(χF
ij

)
βs ,βe

(x(τ ),x(τ ′)){μi(τ ),μj (τ ′)},

(43)
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where (CF
ij )βs ,βe

(x(τ ),x(τ ′)) and (χF
ij )βs ,βe

(x(τ ),x(τ ′)) are,
respectively, the symmetric correlation function and linear
susceptibility function of the field, defined as(
CF

ij

)
βs ,βe

(x(τ ),x(τ ′)) = 1
2 〈βs,βe|{Ei(x(τ )),Ej (x(τ ′))}|βs,βe〉,

(44)(
χF

ij

)
βs ,βe

(x(τ ),x(τ ′)) = 1
2 〈βs,βe|[Ei(x(τ )),Ej (x(τ ′))]|βs,βe〉.

(45)

Assuming that the atom is initially in state |a〉 and taking the
average value of Eqs. (42) and (43) over the state, we obtain the
contributions of the thermal fluctuations and radiation reaction
to the energy shift of the atom as

(δEa)tf = − i

�

∫ τ

τ0

dτ ′(CF
ij

)
βs ,βe

(x(τ ),x(τ ′))
(
χA

ij

)
a
(τ,τ ′),

(46)

(δEa)rr = − i

�

∫ τ

τ0

dτ ′(χF
ij

)
βs ,βe

(x(τ ),x(τ ′))
(
CA

ij

)
a
(τ,τ ′), (47)

respectively. In the above two equations, (χA
ij )a(τ,τ ′) and

(CA
ij )a(τ,τ ′) are two statistical functions of the atom in state

|a〉, which are defined as(
χA

ij

)
a
(τ,τ ′) = 1

2 〈a|[μi(τ ),μj (τ ′)]|a〉, (48)

(
CA

ij

)
a
(τ,τ ′) = 1

2 〈a|{μi(τ ),μj (τ ′)}|a〉, (49)

and they can be further explicitly written as(
χA

ij

)
a
(τ,τ ′) = 1

2

∑
b

[〈a|μi(0)|b〉〈b|μj (0)|a〉eiωab(τ−τ ′)

+〈a|μj (0)|b〉〈b|μi(0)|a〉e−iωab(τ−τ ′)], (50)(
CA

ij

)
a
(τ,τ ′) = 1

2

∑
b

[〈a|μi(0)|b〉〈b|μj (0)|a〉eiωab(τ−τ ′)

−〈a|μj (0)|b〉〈b|μi(0)|a〉e−iωab(τ−τ ′)], (51)

where ωab = ωa − ωb and the summation extends over the
complete set of the atomic states.

To evaluate the contributions of the thermal fluctuations
and radiation reaction to the energy shift of the atom, we need
the correlation functions of the field, i.e., Eqs. (44) and (45).
Our next task is to find these functions. For this purpose, let
us further assume that the right half-space with z > 0 is filled
with a thermal bath at a temperature Te, the left half-space
is filled with a dielectric substrate at a temperature Ts , each
half-space is in local thermal equilibrium, and the surface of
the substrate coincides with the plane z = 0. By using the
fluctuation-dissipation theorem together with the local source
hypothesis [54], the two correlation functions of the field can
be expressed as (see Appendix A)

(
CF

ij

)bnd
βs ,βe

(x(τ ),x(τ ′)) = �δij

πε0c2

∫ ∞

0
dω ω2

(
1

2
+ 1

eβeω/c − 1

)
(e−iω(t−t ′) + eiω(t−t ′))Im[Gij (z,ω)]

+ �δij

πε0c2

∫ ∞

0
dω ω2

(
1

eβsω/c − 1
− 1

eβeω/c − 1

)
(eiω(t−t ′) + e−iω(t−t ′))gij (z,ω), (52)

where

gij (r,r′,ω) = ω2

c2

∫
z1<0

d3r1εI (r1,ω)Gik(r,r1,ω)G�
jk(r′,r1,ω) (53)

and (
χF

ij

)bnd
βs ,βe

(x(τ ),x(τ ′)) = �δij

2πε0c2

∫ ∞

0
dω ω2(e−iω(t−t ′) − eiω(t−t ′))Im[Gij (z,ω)]. (54)

IV. ENERGY SHIFT OF AN ATOM NEAR THE SURFACE OF A GENERAL DIELECTRIC SUBSTRATE

With the field correlation functions found, now we are able to calculate the energy shift of an atom out of thermal equilibrium
near the surface of a general dielectric substrate. Inserting the statistical function of the atom, Eq. (50), and the symmetric
correlation function of the field, Eq. (52), into Eq. (46), we find the contribution of the thermal fluctuations to the energy shift of
the atom:

(δEa)bnd
tf = 1

πε0c2

∑
b

|〈a|μi(0)|b〉|2
∫ ∞

0
dω

(
ω2

ω + ωab

− ω2

ω − ωab

)(
1

2
+ 1

eβeω/c − 1

)
Im[Gii(z,ω)]

+ 1

πε0c2

∑
b

|〈a|μi(0)|b〉|2
∫ ∞

0
dω

(
ω2

ω + ωab

− ω2

ω − ωab

)(
1

eβsω/c − 1
− 1

eβeω/c − 1

)
gii(z,ω). (55)

Similarly, the insertion of Eqs. (51) and (54) into Eq. (47) gives rise to the contribution of radiation reaction to the energy shift
of the atom:

(δEa)bnd
rr = − 1

2πε0c2

∑
b

|〈a|μi(0)|b〉|2
∫ ∞

0
dω

(
ω2

ω + ωab

+ ω2

ω − ωab

)
Im[Gii(z,ω)]. (56)
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Adding the above two equations, we arrive at the total energy
shift of the atom in state |a〉. For simplicity, we now consider an
isotropically polarizable two-level atom with its levels being
± 1

2 �ω0, and we define the polarizability of the atom in state
|a〉 as

α =
∑

i

αi =
∑
i,b

2|〈a|μi(0)|b〉|2
3�ω0

. (57)

Now we can write the total boundary-dependent energy shift
into a sum of three parts as

(δEa)bnd
tot = (δEa)bnd

vac (z) + (δEa)bnd
eq (z,βe)

+ (δEa)bnd
neq(z,βs,βe), (58)

with

(δEa)bnd
vac (z) = − �ω0α

2πε0c2

∫ ∞

0
dω

ω2

ω − ωab

g1(z,ω), (59)

(δEa)bnd
eq (z,βe) = �ω0α

2πε0c2

∫ ∞

0
dω

(
ω2

ω + ωab

− ω2

ω − ωab

)
g1(z,ω)

eβeω/c − 1
, (60)

(δEa)bnd
neq(z,βs,βe) = �ω0α

2πε0c2

∫ ∞

0
dω

(
ω2

ω + ωab

− ω2

ω − ωab

)
g2(z,ω)

eβsω/c − 1
− �ω0α

2πε0c2

∫ ∞

0
dω

(
ω2

ω + ωab

− ω2

ω − ωab

)
g2(z,ω)

eβeω/c − 1
,

(61)

where

g1(z,ω) = Im[Gxx(z,ω) + Gyy(z,ω) + Gzz(z,ω)], (62)

g2(z,ω) = gxx(z,ω) + gyy(z,ω) + gzz(z,ω). (63)

Here it is obvious that the first term, (δEa)bnd
vac (z), corresponds to the energy shift of the atom caused by zero-point fluctuations;

the second term, (δEa)bnd
eq (z,βe), corresponds to the contribution of the thermal fluctuations for the system in thermal equilibrium

at a temperature Te; and the third term, (δEa)bnd
neq(z,βs,βe), arises from the out-of-thermal-equilibrium nature of the system. When

the temperature of the substrate and the environment coincides, i.e., Ts = Te, the third term, which reflects the revision generated
by the effect out of thermal equilibrium, vanishes, and the result of thermal equilibrium is recovered.

Combining Eqs. (62) and (63) with Eqs. (23)–(31), g1(z,ω) and g2(z,ω) can be expressed, after lengthy simplifications, as

g1(z,ω) = g11(z,ω) + g12(z,ω), (64)

with

g11(z,ω) = ω

4πc

∫ 1

0
dt

[
t2 − |ε − 1 + t2|

|t + √
ε − 1 + t2|2 + (|ε|2t2 − |ε − 1 + t2|)(1 − 2t2)

|εt + √
ε − 1 + t2|2

]
cos(2ωzt/c) + ω

2
√

2πc

×
∫ 1

0
dt t

√
|ε − 1 + t2| − (εR − 1 + t2)

[
1

|t + √
ε − 1 + t2|2 − (|ε − 1 + t2| + t2 − 1)(1 − 2t2)

|εt + √
ε − 1 + t2|2

]
sin(2ωzt/c),

(65)

g12(z,ω) = ω

2
√

2πc

∫ ∞

0
dt t e− 2ωz

c
t
√

|ε − 1 − t2| + (εR − 1 − t2)

[
(t2 + 1 + |ε − 1 − t2|)(2t2 + 1)

|itε + √
ε − 1 − t2|2 + 1

|it + √
ε − 1 − t2|2

]
,

(66)

and

g2(z,ω) = g21(ω) + g12(z,ω), (67)

with

g21(ω) = ω

4
√

2πc

∫ 1

0
dt

√
|ε − t | + (εR − t)

×
(

t + |ε − t |
|ε√1 − t + √

ε − t |2 + 1

|√1 − t + √
ε − t |2

)
.

(68)

It is worth noting here that functions g11(z,ω) and g21(ω)
give the contributions of the traveling modes of the quantum

electromagnetic field and g12(z,ω) describes those of the
evanescent modes. Obviously, function g21(ω) is independent
of z; thus we leave it out in the following discussions as we
are concerned with the boundary-dependent energy shift of
the atom.

V. ENERGY SHIFT AND THE CASIMIR-POLDER FORCE
OF AN ATOM NEAR A NONDISPERSIVE DIELECTRIC

SUBSTRATE

Since an analytical computation of the integrals (58)–(61)
looks to be impossible, we now apply the general results we de-
rived in the preceding section to the atom near a nondispersive
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dielectric substrate with real constant relative permittivity. First, we will look at a special case, i.e., the case of a perfect conductor,
which corresponds to an infinitely large real relative permittivity (ε → ∞), and in this case, we can deduce from Eqs. (64)–(68)
that

g1(z,ω) = f (z,ω) − c

4πωz2
cos(2ωz/c) − 1

4πz
sin(2ωz/c) + c2

8πz3ω2
sin(2ωz/c), (69)

g2(z,ω) = 0. (70)

Combining Eq. (70) with Eq. (61), we find that (δEa)bnd
neq(z,βs,βe) = 0. This means that the effects of being out of thermal

equilibrium vanish for a perfect conductor, and as a result the total energy shift of the atom in state |a〉 can be simplified to

(δEa)bnd
tot = − �ω0α

2πε0c2

∫ ∞

0
dω

ω2

ω − ωab

f (z,ω) + �ω0α

2πε0c2

∫ ∞

0
dω

(
ω2

ω + ωab

− ω2

ω − ωab

)
1

eβeω/c − 1
f (z,ω). (71)

This expression is in a form different from and a bit simpler than that in Ref. [24] for an atom in a thermal bath near a
conducting plane obtained using the field correlation functions found by the method of images, which involves both integration
and summation over an infinite series. We do not plan to prove mathematically that they are equivalent. However, we will
demonstrate that they do agree in the special circumstances which are examined in Ref. [24]. Using Eq. (71), we can show that
in the low-temperature limit, when the wavelength of the thermal photons is much larger than the transition wavelength of the
atom, i.e., βe

λ0
� 1, where λ0 = c

ω0
, we have, for the ground-state atom,

(δE−)bnd
tot ≈

⎧⎪⎪⎨
⎪⎪⎩

− �

4πε0

[
αω0
8z3 + 32π5αcz2

315β6
e

]
, z � λ0 � βe,

− �

4πε0

[
3αc

8πz4 + 32π5αcz2

315β6
e

]
, λ0 � z � βe,

− �

4πε0

αc
4z3βe

, λ0 � βe � z,

(72)

and for the excited atom,

(δE+)bnd
tot ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− �

4πε0

[
αω0
8z3 − 32π5αcz2

315β6
e

]
, z � λ0 � βe,

�

4πε0

[( αω3
0

2zc2 − αω0
4z3

)
cos

( 2zω0
c

) − αω2
0

2z2c
sin

( 2zω0
c

) + 3αc
8πz4 + 32π5αcz2

315β6
e

]
, λ0 � z � βe,

�

4πε0

[( αω3
0

2zc2 − αω0
4z3

)
cos

( 2zω0
c

) − αω2
0

2z2c
sin

( 2zω0
c

) + αc
4z3βe

]
, λ0 � βe � z.

(73)

Note that in both the short- and intermediate-distance regions (z � λ0 � βe and λ0 � z � βe), the revision induced by thermal
fluctuations to the energy shift for the atom in both the ground and excited states is proportional to z2T 6

e . This seems to differ
from the result in Ref. [23], in which the contribution of thermal fluctuations in the leading order is found to be proportional
to T 4 [see Eqs. (6.3) and (6.6) in Ref. [23]]. However, these two results are actually not contradictory to each other as here we
are concerned with the distance-dependent energy shift of the atom and the T 4 term is distance independent. Similarly, in the
high-temperature limit, when the wavelength of the thermal photons is much smaller than the transition wavelength of the atom,
i.e., βe

λ0
� 1, we find, for the ground-state atom,

(δE−)bnd
tot ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− �

4πε0

[
αω0
8z3 − 4π3αω2

0z
2

75cβ4
e

]
, z � βe � λ0,

− �

4πε0

[
αω0
8z3 − αω4

0z

2βec3

]
, βe � z � λ0,

− �

4πε0

[ αω2
0

2zβec
cos

( 2zω0
c

) − αω0
2βez2 sin

( 2zω0
c

) + αc
4βez3

]
, βe � λ0 � z,

(74)

and for the excited atom,

(δE+)bnd
tot ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− �

4πε0

[
αω0
8z3 + 4π3αω2

0z
2

75cβ4
e

]
, z � βe � λ0,

− �

4πε0

[
αω0
8z3 + αω4

0z

2βec3

]
, βe � z � λ0,

�

4πε0

[ αω2
0

2zβec
cos

( 2zω0
c

) − αω0
2βez2 sin

( 2zω0
c

) + αc
4βez3

]
, βe � λ0 � z.

(75)

These results agree with those obtained in Ref. [24] for a
two-level atom near a perfect conducting plane interacting with
quantum electromagnetic fields in a thermal bath at thermal
equilibrium.

Now let us turn to the main focus of the paper, which
is the atom-wall force for a two-level atom out of thermal
equilibrium near a dielectric substrate with a real constant
permittivity. In this case, the functions g1(z,ω) and g2(z,ω)

can be simplified to

g1(z,ω) = ω

2πc

∫ 1

0
dt [2T‖(t) + T⊥(t)] cos(2zωt/c)

+ g12(z,ω), (76)

g2(z,ω) = g12(z,ω), (77)
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where

A‖(t) = 1

2

√
ε − 1

(2ε + 1)(ε − 1)t2 + 1

(ε2 − 1)t2 + 1
t
√

1 − t2, (78)

A⊥(t) = ε
√

ε − 1
(ε − 1)t2 + 1

(ε2 − 1)t2 + 1
t
√

1 − t2, (79)

T‖(t) = 1

4

(
t − √

ε − 1 + t2

t + √
ε − 1 + t2

− t2 εt − √
ε − 1 + t2

εt + √
ε − 1 + t2

)
, (80)

T⊥(t) = 1

2
(1 − t2)

εt − √
ε − 1 + t2

εt + √
ε − 1 + t2

, (81)

and

g12(z,ω) = ω

2πc

∫ 1

0
dt [2A‖(t) + A⊥(t)]e−2z

√
ε−1ωt/c. (82)

Then by inserting Eqs. (76) and (77) into Eqs. (58)–(61), the
three parts of the energy shift of the atom in state |a〉 can now
be reexpressed as

(δEa)bnd
vac (z) = − �ω0α

4π2ε0c3

∫ ∞

0
dω

ω3

ω − ωab

×
∑

σ

Wσfσ (z,ω), (83)

(δEa)bnd
eq (z,βe) = �ω0α

4π2ε0c3

∫ ∞

0
dω

(
ω3

ω + ωab

− ω3

ω − ωab

)

× 1

eβeω/c − 1

∑
σ

Wσfσ (z,ω), (84)

(δEa)bnd
neq(z,βs,βe) = �ω0α

4π2ε0c3

∫ ∞

0
dω

(
ω3

ω + ωab

− ω3

ω − ωab

)

×
(

1

eβsω/c − 1
− 1

eβeω/c − 1

)

×
∑

σ

∫ 1

0
dt WσAσ (t)e−2z

√
ε−1ωt/c, (85)

where

fσ (z,ω) =
∫ 1

0
dt [Aσ (t)e−2z

√
ε−1ωt/c + Tσ (t) cos(2zωt/c)],

(86)

with σ = ‖,⊥ and W‖ = 2, W⊥ = 1. The above three parts
[Eqs. (83)–(85)] sum to the total boundary-dependent energy
shift of the atom.

Noticing the relation

ω3

ω − ωab

= ω2 + ωωab + ωω2
ab

ω − ωab

, (87)

we can divide the first part, (δEa)bnd
vac (z), which corresponds to

the contribution of zero-point fluctuations, into a sum of three
parts as

(δEa)bnd
vac (z) = (δEa)bnd

vac-1(z) + (δEa)bnd
vac-2(z)

+ (δEa)bnd
vac-3(z), (88)

with

(δEa)bnd
vac-1(z) = − �ω0α

4π2ε0c3

∫ ∞

0
dω ω2[2f‖(z,ω) + f⊥(z,ω)],

(89)

(δEa)bnd
vac-2(z) = −�ω0αωab

4π2ε0c3

∫ ∞

0
dω ω[2f‖(z,ω) + f⊥(z,ω)],

(90)

(δEa)bnd
vac-3(z) = −�ω0αω2

ab

4π2ε0c3

∫ ∞

0
dω

ω

ω − ωab

× [2f‖(z,ω) + f⊥(z,ω)], (91)

and then we can calculate them one by one. For the double
integral in (δEa)bnd

vac-1(z), we find, using the method proposed
in Refs. [55,56] (see Appendix B),

I1σ =
∫ ∞

0
dω ω2fσ (z,ω)

= − c3

8z3

[
π

2
T ′′

σ (0) + 2

(ε − 1)3/2

×
(

A′
σ (0) −

∫ 1

0
dt

Aσ (t) − A′
σ (0)t

t3

)]
. (92)

Combining the above result with the concrete forms of Tσ (t)
and Aσ (t) [see Eqs. (78)–(81)] yields

(δEa)bnd
vac-1(z) = −ε − 1

ε + 1

�

4πε0

αω0

8z3
. (93)

This term is proportional to z−3 at an arbitrary position.
Actually, it corresponds to the contribution of the electrostatic
interaction in the minimal coupling scheme [see Eq. (3.26) in
Ref. [55]]. The double integral in Eq. (90) has been calculated
in Ref. [55], so here we just list it without giving the details:

I2σ =
∫ ∞

0
dω ωfσ (ω,z)

= c2

4z2

[
Tσ (0) −

∫ 1

0
dt

Tσ (t) − Tσ (0) − Aσ (t)
ε−1

t2

+ A′
σ (0)

ε − 1
ln

√
ε − 1

]
. (94)

Putting this result into Eq. (90), we find that (δEa)bnd
vac-2(z) is

proportional to z−2 for the atom at an arbitrary distance from
the surface of the dielectric substrate. This term corresponds
to the average value of e2A2

2m
(where A represents the vector

potential operator of the electromagnetic field) in the minimal
coupling scheme, and it is actually the self-energy of an
electron at a distance z from the surface of the dielectric
substrate. For (δEa)bnd

vac-3(z), the double integral in Eq. (90) is
also discussed in Ref. [55]. It corresponds to the contribution
of the term − e

m
A · p in the minimal-coupling scheme, i.e.,

the coupling between the momentum of the electron and the
vector potential of the quantum field. An exact analytical
result for an arbitrary position is, however, difficult to get,
but in two limiting cases, the approximate analytical results
are obtainable.
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In the short-distance region where {2z,2z
√

ε − 1} � λ0,
the leading term of the double integral in (δEa)bnd

vac-3(z) is

I3σ =
∫ ∞

0
dω

ω

ω − ωab

fσ (ω,z)

≈ πc

4z
Tσ (0) + c

4z
√

ε − 1

∫ 1

0
dt

Aσ (t)

t
, (95)

yielding (δEa)bnd
vac-3(z) proportional to z−1.1 As a result,

(δEa)bnd
vac-1(z) prevails over the other terms, and we have

(δEa)bnd
vac (z) ≈ (δEa)bnd

vac-1(z) = − �

4πε0

ε − 1

ε + 1

αω0

8z3
. (96)

This shows that in the short-distance region, {2z,2z
√

ε − 1} �
λ0, whether the atom is in its excited state or the ground
state, the boundary-dependent energy shift due to zero-point
fluctuations is proportional to z−3, and the resulting atom-wall
force obeys the van der Waals law.

In the long-distance region, i.e., when {2z,2z
√

ε − 1} �
λ0, after complicated simplifications, we find that

I3σ ≈ − I2σ

ωab

− I1σ

ω2
ab

+ ωabc
4

16z4
∣∣ω4

ab

∣∣gσ (ε) + πθ (ωab)

×
[
cTσ (1)

2z
cos(2zωab/c) − c2T ′

σ (1)

4z2ωab

sin(2zωab/c)

− c3T ′′
σ (1)

8z3ω2
ab

cos(2zωab/c) + c4T (3)
σ (1)

16z4ω3
ab

sin(2zωab/c)

]
,

(97)

where

gσ (ε) = 2Tσ (0) + 3T ′
σ (0) + 3T ′′

σ (0)

+ 3A′
σ (0) − A(3)

σ (0) ln
√

ε − 1

(ε − 1)2
− 6

∫ 1

0
dt

×
Tσ (t) − Tσ (0) − T ′

σ (0)t − T ′′
σ (0)
2 t2 + Aσ (t)−A′

σ (0)t
(ε−1)2

t4

(98)

and θ (ωab) is the step function defined as

θ (ωab) =
{

1, ωab > 0,

0, ωab < 0.
(99)

For the details on how to get Eq. (97), see Ref. [55]. Here
we point out that in the expression of Eq. (B31) in Ref. [55],
there is a typo for the sign of the fourth term in the coefficient
of the term ς−4 [concerning the expression of g(ε) here], and
we have corrected it. A substitution of Eq. (97) into Eq. (91)
reveals that for the ground-state atom (ωab < 0),(δEa)bnd

vac-3(z)
is proportional to z−2 as the leading term I2σ ∝ z−2, while

1Hereafter, {a,b} � c means a � c and b � c. Similarly, {a,b} �
c means a � c and b � c.
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FIG. 1. (Color online) g(ε) for ε � 1.

for the excited atom (ωab > 0), (δEa)bnd
vac-3(z) oscillates with

the distance between the atom and the surface of the sub-
strate. Adding the three parts, we find that (δEa)bnd

vac-1(z) and
(δEa)bnd

vac-2(z) are completely canceled by parts of (δEa)bnd
vac-3(z),

and as a result, the boundary-dependent energy shift due to
zero-point fluctuations in the long-distance region becomes

(δE−)bnd
vac (z) ≈ �

4πε0

αc

16πz4
g(ε), (100)

(δE+)bnd
vac (z) ≈ − �

4πε0

[
1 − √

ε

1 + √
ε

(
αω3

0

2zc2
cos(2zω0/c)

− αω2
0

2z2c
sin(2zω0/c)

)
+ αc

16πz4
g(ε)

]
,

(101)

with

g(ε) = 2g‖(ε) + g⊥(ε)

= −6ε2 + 3ε3/2 + 4ε + 3
√

ε − 10

ε − 1

+ 3(2ε3 − 4ε2 + 3ε + 1)

(ε − 1)3/2
ln[

√
ε + √

ε − 1]

+ 6ε2

√
ε + 1

ln

[
1 + √

ε + 1

ε + √
ε(ε + 1)

]
. (102)

As shown in Fig. 1, for ε > 1, g(ε) is always negative. Thus for
the ground-state atom, (δE−)bnd

vac (z) is proportional to z−4 and is
always negative, leading to an attractive Casimir-Polder force
proportional to z−5. For the excited atom, (δE+)bnd

vac (z) usually
oscillates with the distance between the atom and the surface
of the dielectric substrate, and the amplitude of oscillation
is much larger than that of the constant term proportional to
z−4; thus (δE+)bnd

vac (z) can be either positive or negative or can
even be zero. Accordingly, the Casimir-Polder force due to the
zero-point fluctuations can be either repulsive or attractive or
can even be zero. Let us note that the above result is not valid
for the case of a perfect conducting plane in which ε → ∞. In
this case, we should be careful in taking the limit of ε → ∞.
In fact, we should take the limit ε → ∞ in Tσ (t) and Aσ (t)
before performing differentiation on them when simplifying
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Eq. (98). Then, by so doing, we find that g‖(ε) = g⊥(ε) = −2
and

(δE−)bnd
tot (z) ≈ − �

4πε0

3α

8πz4
, (103)

(δE+)bnd
tot (z) ≈ �

4πε0

[
αω3

0

2zc2
cos(2zω0/c)

− αω2
0

2z2c
sin(2zω0/c) + 3αc

8πz4

]
. (104)

Thereby, the energy shift of an isotropically polarizable two-
level atom far from the surface of a perfect conducting plane
is recovered.

Until now, we have only discussed the atomic energy shift
and the Casimir-Polder force due to zero-point fluctuations.
Next, we will turn our attention to the contributions of the
thermal fluctuations. It is difficult to get analytical results
for a general case. However, fortunately, we are able to find
asymptotic behaviors in the low- and high-temperature limits.
In the following discussion, we assume that the difference
between the temperature of the substrate Ts and that of
the environment Te is neither extremely large nor extremely
small.

A. Low-temperature limit

We first deal with the low-temperature limit, i.e., βs

λ0
� 1

and βe

λ0
� 1. For simplicity, we abbreviate these two conditions

by {βs,βe} � λ0. Here we will analyze how the energy
shift and the atom-wall force behave as the distance varies.
Since now we have two length scales, i.e., the transition
wavelength of the atom λ0 and the wavelength of thermal
photons βs or βe, we can define a short-distance region where
{2z,2z

√
ε − 1} � λ0 � {βs,βe}. By doing the ω integration

before the t integration, (δE±)bnd
eq (z,βe) can be simplified

as

(δE−)bnd
eq (z,βe) = −(δE+)bnd

eq (z,βe)

≈ �

4πε0

[
96ζ [5]

π

cαz

β5
e

f1(ε)

+ 16π5

63

cαz2

β6
e

f2(ε)

]
, (105)

with

f1(ε) = π (ε − 1)(3ε3 + 11ε2 + ε + 1)

16(ε + 1)3
, (106)

f2(ε) =
∫ 1

0
dt t2

[
1 − ε

(t + √
ε − 1 + t2)2

+ (1 − 2t2)[(ε2 − 1)t2 − (ε − 1)]

(εt + √
ε − 1 + t2)2

]
. (107)

Here it is easy to see that the term proportional to zβ−5
e in

Eq. (105) which is absent in the case of a perfect conducting

plane [see Eqs. (72) and (73)] is much larger than that
proportional to z2β−6

e .
For the case out of thermal equilibrium [Eq. (85)], similarly,

we find, when 2z
√

ε − 1 � {βs,βe}, that

(δE−)bnd
neq(z,βs,βe)

= −(δE+)bnd
neq(z,βs,βe)

≈ �

4πε0

[
96ζ [5]

π

cαz

β5
s

f1(ε) − 96ζ [5]

π

cαz

β5
e

f1(ε)

]
. (108)

Here it is worth pointing out that Eqs. (105) and (108)
are not valid for the case of a perfect conducting plane as
they are obtained under the conditions {2z,2z

√
ε − 1} � βe

and 2z
√

ε − 1 � {βs,βe}, respectively, which means that the
parameter ε cannot be infinitely large. Adding Eqs. (105)
and (108) gives rise to the total boundary-dependent energy
shift of the excited- and ground-state atoms due to the thermal
fluctuations,

(δE−)bnd
ther(z,βs,βe)

= −(δE+)bnd
ther(z,βs,βe)

≈ �

4πε0

[
96ζ [5]

π

cαz

β5
s

f1(ε) + 16π5

63

cαz2

β6
e

f2(ε)

]
. (109)

Notice that this result is valid in the region {2z,2z
√

ε − 1} �
{βs,βe}. One can see that although both the thermal fluctuations
associated with the substrate and the environment contribute
to the atomic energy shift in this region, the contribution of the
former dominates over the latter.

Combining the above result for the contribution
of the thermal fluctuations with the contribution of
zero-point fluctuations, Eq. (96), we find that in the
short-distance region, {2z,2z

√
ε − 1} � λ0 � {βs,βe}, the

total boundary-dependent energy shift for an isotropically
polarizable two-level atom in the stationary regime out of
thermal equilibrium is

(δE−)bnd
tot (z) ≈ − �

4πε0

[
ε − 1

ε + 1

αω0

8z3
− 96ζ [5]

π

cαz

β5
s

f1(ε)

− 16π5

63

cαz2

β6
e

f2(ε)

]
, (110)

(δE+)bnd
tot (z) ≈ − �

4πε0

[
ε − 1

ε + 1

αω0

8z3
+ 96ζ [5]

π

cαz

β5
s

f1(ε)

+ 16π5

63

cαz2

β6
e

f2(ε)

]
. (111)

Obviously, the thermal fluctuations associated with both
the substrate and the environment contribute to the atomic
energy shift. Comparing the contribution due to the
thermal fluctuations with that due to zero-point fluctuations
characterized by the term proportional to z−3, we find that the
revision caused by the thermal fluctuations is negligible. Thus
the Casimir-Polder force that the atoms in both the ground
state and the excited state feel is attractive and proportional to
z−4, which is the van der Waals law.
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We can also introduce an intermediate distance region where λ0 � {2z,2z
√

ε − 1} � {βs,βe}; then we find, by combining
Eq. (109) with the contributions of zero-point fluctuations [Eqs. (100) and (101)], that in this region

(δE−)bnd
tot (z) ≈ �

4πε0

[
αc

16πz4
g(ε) + 96ζ [5]

π

cαz

β5
s

f1(ε) + 16π5

63

cαz2

β6
e

f2(ε)

]
, (112)

(δE+)bnd
tot (z) ≈ − �

4πε0

[
1 − √

ε

1 + √
ε

(
αω3

0

2zc2
cos(2zω0/c) − αω2

0

2z2c
sin(2zω0/c)

)
+ αc

16πz4
g(ε)

+ 96ζ [5]

π

cαz

β5
s

f1(ε) + 16π5

63

cαz2

β6
e

f2(ε)

]
. (113)

Similarly, as in the short-distance region, the thermal fluctu-
ations associated with both the substrate and the environment
contribute to the atomic energy shift. For the ground-state
atom, the contribution due to the thermal fluctuations is much
smaller than that due to zero-point fluctuations characterized
by the term proportional to z−4, and so the Casimir-Polder
force the atom feels is attractive [as g(ε) < 0] and proportional
to z−5. For the excited atom, oscillatory terms caused by
zero-point fluctuations appear, and the amplitude of oscillation
is much larger than the terms due to the thermal fluctuations
and the term proportional to z−4. As a result, the atomic energy
shift can be either negative or positive or can even be zero,
yielding an atom-wall force that can be either attractive or
repulsive or can even be zero.

Finally, let us turn to the long-distance region where
λ0 � {βs,βe} � {2z,2z

√
ε − 1}. When {2z,2z

√
ε − 1} �

βe, (δE±)bnd
eq (z,βe) can be calculated by performing the

integrations in Eq. (84) (see Appendix C) to get

(δE−)bnd
eq (z,βe) = −(δE+)bnd

eq (z,βe)

≈ − �

4πε0

αc

4βez3

ε − 1

ε + 1
, (114)

and when 2z
√

ε − 1 � {βs,βe}, treating Eq. (85) in a similar
way (see Appendix C) leads to

(δE−)bnd
neq(z,βs,βe) = −(δE+)bnd

neq(z,βs,βe)

≈ − �

4πε0

παc

12z2

ε + 1√
ε − 1

(
1

β2
s

− 1

β2
e

)
.

(115)

Notice that in Eq. (114), if we take the limit ε → ∞, we
recover the contribution of the thermal fluctuations to the
energy shift of an atom at a distance z from a perfect conducting
plane in a thermal bath at a temperature Te [see the third line
in both Eqs. (72) and (73)]. But trouble appears if we take the
ε → ∞ limit in Eq. (115) as the result would be divergent.
However, as pointed out in the paragraph above Eq. (103),
we should take the limit ε → ∞ in Tσ (t) and Aσ (t) before
taking their derivatives. Then following steps as those taken in
Appendix C, we get

(δE−)bnd
neq(z,βs,βe) = −(δE+)bnd

neq(z,βs,βe)

≈ − �

4πε0

παc

4z2
√

ε − 1

(
1

β2
s

− 1

β2
e

)
≈ 0, (116)

which means that for the perfect conducting plane, the effect
of nonthermal equilibrium vanishes due to the infinite ε.

For a general real dielectric substrate, adding Eqs. (114)
and (115), we obtain the total contribution of the thermal
fluctuations to the atomic energy shift. Under the assumption
that the temperature of the substrate Ts and that of the
environment Te are not extremely close, the result can be
approximated by

(δE−)bnd
ther(z,βs,βe) = −(δE+)bnd

ther(z,βs,βe)

≈ (δE−)bnd
neq(z,βs,βe)

≈ − �

4πε0

παc

12z2

ε + 1√
ε − 1

(
1

β2
s

− 1

β2
e

)
(117)

since (δE±)bnd
eq (z,βe) is negligible compared to

(δE±)bnd
neq(z,βs,βe). This result is valid in the region

where {2z,2z
√

ε − 1} � {βs,βe}. So, in this region, the
contribution of the effect of nonthermal equilibrium to
the atomic energy shift prevails over the effect of thermal
equilibrium. Noteworthily, here both contributions of
the thermal fluctuations of the substrate and that of the
environment are of the same order and are all proportional
to z−2 but with opposite signs. It is then a matter of an easy
differentiation exercise to get the Casimir-Polder force due to
the thermal fluctuations,

(F−)bnd
ther(z,βs,βe) = −(F+)bnd

ther(z,βs,βe)

≈ − �

4πε0

παc

6z3

ε + 1√
ε − 1

(
1

β2
s

− 1

β2
e

)
.

(118)

Thus, for an atom in its ground (excited) state, the
Casimir-Polder force is attractive (repulsive) if the temperature
of the substrate Ts is higher than that of the environment Te

and repulsive (attractive) otherwise. Here it is worth pointing
out that our result for the ground-state atom is consistent
with that obtained by Antezza et al. [28,29] [see Eq. (12) in
Ref. [28]], although the issue is dealt with from a different
perspective in the present paper. Moreover, in Refs. [28,29],
the result is obtained by mathematically assuming z → ∞,
and thus the physical region where this result is valid is not
clearly given. In contrast, here we find out the concrete region.
Notice that we use SI units, while Gauss units are adopted in
Refs. [28,29], so a discrepancy of a factor (4πε0)−1 appears
between our results and theirs.
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Combining Eq. (117) with the contributions of zero-point fluctuations, Eqs. (100) and (101), we find that in the long-distance
region, λ0 � {βs,βe} � {2z,2z

√
ε − 1}, the total boundary-dependent energy shift of the atom is

(δE−)bnd
tot (z) ≈ − �

4πε0

[
ε + 1√
ε − 1

παc

12z2

(
1

β2
s

− 1

β2
e

)
− αc

16πz4
g(ε)

]
, (119)

(δE+)bnd
tot (z) ≈ − �

4πε0

[
1 − √

ε

1 + √
ε

(
αω3

0

2zc2
cos(2zω0/c) − αω2

0

2z2c
sin(2zω0/c)

)
− ε + 1√

ε − 1

παc

12z2

(
1

β2
s

− 1

β2
e

)
+ αc

16πz4
g(ε)

]
.

(120)

Notice that in this region, if Ts and Te are not extremely close, the contribution of the effect of nonthermal equilibrium for the
energy shift of the ground-state atom dominates over the contribution of zero-point fluctuations, which is proportional to z−4;
thus the Casimir-Polder force it feels behaves like (T 2

s − T 2
e )/z3. If Ts > Te, the force is attractive, and it is repulsive otherwise.

For the excited atom, as the amplitude of the oscillatory terms is always larger than the contribution of the effect of nonthermal
equilibrium and the term proportional to z−4, the energy shift of the atom can be either negative or positive and can even be zero.
As a result, the Casimir-Polder force for the excited atom can be either attractive or repulsive or can even be zero.

B. High-temperature limit

We now analyze the behavior of the atom-wall force out of thermal equilibrium in the high-temperature limit, i.e., when
βs

λ0
� 1 and βe

λ0
� 1, which is not considered in Refs. [28,29]. We can combine these conditions into {βs,βe} � λ0. We then find,

in the short-distance region where {2z,2z
√

ε − 1} � βe � λ0,

(δE−)bnd
eq (z,βe) = −(δE+)bnd

eq (z,βe)

≈ − �

4πε0

[
8ζ [3]

αω2
0z

πcβ3
e

f1(ε) + 2π3αω2
0z

2

15cβ4
e

[f2(ε) − f3(ε)]

]
, (121)

with

f3(ε) = 2(ε − 1)3/2
∫ 1

0
dt t3

√
1 − t2

(3ε2 − 2ε − 1)t2 + (ε + 1)

(ε2 − 1)t2 + 1
. (122)

Here the term proportional to zβ−3
e which is absent in the case of a conducting plane [see Eqs. (74) and (75)] dominates over the

term proportional to z2β−4
e . When 2z

√
ε − 1 � {βs,βe} � λ0, we can show that

(δE−)bnd
neq(z,βs,βe) = −(δE+)bnd

neq(z,βs,βe)

≈ − �

4πε0

[
8ζ [3]

αω2
0z

πc

(
1

β3
s

− 1

β3
e

)
f1(ε) − 2π3αω2

0z
2

15c

(
1

β4
s

− 1

β4
e

)
f3(ε)

]
. (123)

For details on how to get the above analytical result, see Appendix D. By adding Eqs. (121) and (123), the total contributions of
the thermal fluctuations to the boundary-dependent energy shift of the ground-state and excited atoms out of thermal equilibrium
are found to be

(δE−)bnd
ther(z,βs,βe) = −(δE+)bnd

ther(z,βs,βe)

≈ − �

4πε0

[
8ζ [3]

αω2
0z

πcβ3
s

f1(ε) + 2π3αω2
0z

2

15cβ4
e

f2(ε) − 2π3αω2
0z

2

15cβ4
s

f3(ε)

]

≈ − �

4πε0

[
8ζ [3]

αω2
0z

πcβ3
s

f1(ε) + 2π3αω2
0z

2

15cβ4
e

f2(ε)

]
. (124)

Notice that this result is valid in the short-distance region where {2z,2z
√

ε − 1} � {βs,βe} � λ0. Just as in the case of the
low-temperature limit, the thermal fluctuations that originate from both the substrate and the environment contribute to the
atomic energy shift, and the former (characterized by zβ−3

s ) is much larger than the latter (characterized by z2β−4
e ).

Combining the above result with the contributions of zero-point fluctuations, Eq. (96), gives rise to the total boundary-dependent
energy shift of the atom in the short-distance region, {2z,2z

√
ε − 1} � {βs,βe} � λ0,

(δE−)bnd
tot (z) ≈ − �

4πε0

[
ε − 1

ε + 1

αω0

8z3
+ 8ζ [3]

αω2
0z

πcβ3
s

f1(ε) + 2π3αω2
0z

2

15cβ4
e

f2(ε)

]
, (125)

(δE+)bnd
tot (z) ≈ − �

4πε0

[
ε − 1

ε + 1

αω0

8z3
− 8ζ [3]

αω2
0z

πcβ3
s

f1(ε) − 2π3αω2
0z

2

15cβ4
e

f2(ε)

]
. (126)
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Obviously, in this region, the contribution of zero-point
fluctuations characterized by the term proportional to z−3

prevails over the contribution of the thermal fluctuations;
thus the Casimir-Polder force is attractive and proportional
to z−4 whether the atom is in its ground state or the excited
state.

Now, let us look at the intermediate-distance region
where {βs,βe} � {2z,2z

√
ε − 1} � λ0. In this region, we

have

(δE−)bnd
eq (z,βe) = −(δE+)bnd

eq (z,βe)

≈ �

4πε0

αω2
0

4cβez
f4(ε), (127)

with

f4(ε) = (3ε + 1)(ε − 1)

(ε + 1)2
, (128)

and

(δE−)bnd
neq(z,βs,βe) = −(δE+)bnd

neq(z,βs,βe)

≈ �

4πε0

αω2
0

4cz

(
1

βs

− 1

βe

)
f5(ε), (129)

with

f5(ε) = (5ε + 2)ε + 1

(ε + 1)2
. (130)

This shows that for the ground-state atom, the force is repulsive
(attractive) if Ts > Te (Ts < Te), and it is the other way around
for the excited atom. Adding Eqs. (127) and (129), we get the
total contribution of the thermal fluctuations to the boundary-
dependent energy shift of the atom,

(δE−)bnd
ther(z,βs,βe) = −(δE+)bnd

ther(z,βs,βe)

≈ �

4πε0

αω2
0

4cz

(
f5(ε)

βs

− 2

βe

)
. (131)

Again, the thermal fluctuations of both the substrate and
the environment contribute to the boundary-dependent energy
shift of the atom out of thermal equilibrium, but now their
contributions are of the same order and are all proportional to
z−1. Combining Eq. (131) with the contributions of zero-point
fluctuations, Eq. (96), yields the total boundary-dependent
energy shift of the atom,

(δE−)bnd
tot (z) ≈ − �

4πε0

[
ε − 1

ε + 1

αω0

8z3
− αω2

0

4cz

(
f5(ε)

βs

− 2

βe

)]
,

(132)

(δE+)bnd
tot (z) ≈ − �

4πε0

[
ε − 1

ε + 1

αω0

8z3
+ αω2

0

4cz

(
f5(ε)

βs

− 2

βe

)]
.

(133)

Thus, for the ground-state (excited) atom, if Ts

Te
< 2

f5(ε) [ Ts

Te
>

2
f5(ε) ], the boundary-dependent energy shift is negative, and
the Casimir-Polder force on the atom is attractive, and
if Tsf5(ε) − 2Te < ε−1

ε+1
c

2z2ω0
[Tsf5(ε) − 2Te > ε−1

ε+1
c

2z2ω0
], the

boundary-dependent energy shift is negative (positive), and
thus the Casimir-Polder force is attractive (repulsive).

Finally, let us turn our attention to the long-distance region
where {2z,2z

√
ε − 1} � βe � λ0. For a finite ε, we find

(δE−)bnd
eq (z,βe) = −(δE+)bnd

eq (z,βe)

≈ − �

4πε0

αω2
0

2βecz
f6(ε) cos(2zω0/c), (134)

with

f6(ε) =
√

ε − 1√
ε + 1

, (135)

and for an infinite ε, which corresponds to the case of a perfect
conducting plane, we find by following the same procedure as
that in the case of the low-temperature limit

(δE−)bnd
eq (z,βe) = −(δE+)bnd

eq (z,βe)

≈ − �

4πε0

[
αω2

0

2βezc
cos(2zω0/c)

− αω0

2βez2
sin(2zω0/c) + αc

4βez3

]
, (136)

which is exactly the same as the result in Eq. (75). Similarly,
we find, in the region 2z

√
ε − 1 � {βs,βe} � λ0, that for a

finite ε,

(δE−)bnd
neq(z,βs,βe) = −(δE+)bnd

neq(z,βs,βe)

≈ �

4πε0

αc

4z3

(
1

βs

− 1

βe

)
f7(ε), (137)

with

f7(ε) = ε3 − ε2 + 3ε + 1

ε2 − 1
, (138)

and for ε → ∞,

(δE−)bnd
neq(z,βs,βe) = −(δE+)bnd

neq(z,βs,βe)

≈ �

4πε0

3αc

4z3(ε − 1)

(
1

βs

− 1

βe

)
≈ 0, (139)

which shows that the contribution of the effect of nonthermal
equilibrium vanishes for a perfect conducting plane, as ex-
pected. Adding Eqs. (134) and (137), we get the contributions
of the thermal fluctuations to the boundary-dependent energy
shift of the atom (for finite ε),

(δE−)bnd
ther(z,βs,βe) = −(δE+)bnd

ther(z,βs,βe)

≈ − �

4πε0

[
αω2

0

2βecz
f6(ε) cos(2zω0/c)

− αc

4z3

(
1

βs

− 1

βe

)
f7(ε)

]
. (140)

So, in this region, the contribution of the thermal fluctuations
to the atomic boundary-dependent energy shift oscillates
with the distance between the atom and the surface of
the substrate, and the amplitude of oscillation is always
much larger than the term proportional to z−3 if the
temperature of the substrate Ts is not much higher than
that of the environment Te. For the case of a perfect
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conducting plane, the effect of nonthermal equilibrium
vanishes, so the total contribution of the thermal fluctuations
to the energy shift of the atom is actually described by
Eq. (136).

Combining Eq. (140) with the contributions of zero-
point fluctuations, Eqs. (100) and (101), we obtain the total
boundary-dependent energy shift of the atom in the long-
distance region and in the high-temperature limit,

(δE−)bnd
tot (z) ≈ − �

4πω0

[
αω2

0

2βecz
f6(ε) cos(2zω0/c) − αc

4z3

(
1

βs

− 1

βe

)
f7(ε) − αc

16πz4
g(ε)

]
, (141)

(δE+)bnd
tot (z) ≈ − �

4πω0

[
1 − √

ε

1 + √
ε

(
αω3

0

2zc2
cos(2zω0/c) − αω2

0

2z2c
sin(2zω0/c)

)

− αω2
0

2βecz
f6(ε) cos(2zω0/c) + αc

4z3

(
1

βs

− 1

βe

)
f7(ε) + αc

16πz4
g(ε)

]
. (142)

In this region, as Ts and Te are not extremely close, the term
proportional to Ts−Te

z3 which exists when thermal equilibrium is
not reached is always much larger than the term proportional
to z−4 due to zero-point fluctuations. For the ground-state
atom, the amplitude of the oscillation term due to the thermal
fluctuations at equilibrium is always much larger than the
second term which arises because of nonthermal equilibrium,
and as a result, the boundary-dependent energy shift of the
atom can be negative or positive or can even be zero, thus
resulting in a Casimir-Polder force that can be attractive or
repulsive or can even be zero. For the excited atom, the energy
shift and Casimir-Polder force also exhibits similar behaviors.

Let us now comment on the contributions of the evanescent
modes from the substrate and traveling modes from the
environment to the Casimir-Polder force. By adding Eqs. (84)
and (85), it is easy for us to see that both the evanescent
modes from the substrate and the traveling modes from
the environment generally contribute to the atomic energy
shift. In the short-distance region in both the low- and high-
temperature limits, the contribution of the evanescent modes
from the substrate dominates over that of the traveling modes
from the environment. This conclusion also holds for an atom
in the intermediate-distance region and in the low-temperature
limit. However, for an atom in the intermediate-distance region
and in the high-temperature limit, the contributions of the
evanescent modes from the substrate and the traveling modes
from the environment are always of the same order, and the
same is true for an atom in the long-distance region in both the
low- and high- temperature limits.

The above discussions are about the energy shift and
Casimir-Polder force of an atom out of thermal equilibrium
near the surface of a real dielectric substrate. Extending the
present discussion to a general dispersive dielectric substrate
for which the dielectric constant depends on the frequency,
i.e., ε = ε(ω), the Drude model for a metal, for example, is an
interesting topic for future research.

VI. SUMMARY

We have generalized the DDC formalism originally es-
tablished for thermal equilibrium to the case out of thermal
equilibrium but in a stationary state by adopting the local
source hypothesis, and then we applied it to the calculation of
the energy shift and the Casimir-Polder force of an atom out of

thermal equilibrium near a dielectric substrate. In particular,
we have calculated the energy shift and the Casimir-Polder
force of an isotropically polarizable two-level atom near a
real dielectric half-space substrate and analyzed in detail
their behaviors in three different distance regions in both the
low-temperature limit and the high-temperature limit for both
the ground-state and excited-state atoms.

In the low-temperature limit, where the wavelength
of thermal photons is assumed to be much larger than
the transition wavelength of the atom, we find that in all dis-
tance regions, i.e., the short-, intermediate-, and long-distance
regions, the thermal fluctuations that originate both from the
substrate and from the environment contribute to the atomic
energy shift and the Casimir-Polder force. In the short- and
intermediate-distance regions, the contribution of the former
is much larger than the contribution of the latter, whereas in
the long-distance region, the contributions of both thermal
fluctuations are of the same order but with opposite signs.
More importantly, the out-of-thermal-equilibrium fluctuations
give rise to an atom-wall force in the long-distance region with
a weaker dependence on the distance and strong dependence
on the temperature as opposed to the Lifshitz law at thermal
equilibrium. In particular, for the ground-state atom, the force
behaves like (T 2

s − T 2
e )/z3. Our result in the long-distance

region at low temperature not only confirms that by Antezza
et al. obtained in a different context [28,29] but also gives
a concrete region not clearly quantified in Refs. [28,29]
where the asymptotic behavior is valid. In the low-temperature
limit, the effects from being out of thermal equilibrium only
become appreciable in the long-distance region, while they
are negligible in the short- and intermediate-distance regions,
leading to an atom-wall force which respectively obeys the van
de Waals law and the Casimir-Polder law for the ground-state
atoms.

In the high-temperature limit where the wavelength of
thermal photons is assumed to be much smaller than the
transition wavelength of the atom, the contribution of zero-
point fluctuations characterized by the term proportional to
z−3 prevails over the contribution of the thermal fluctuations
in the short-distance region; thus the Casimir-Polder force is
attractive and proportional to z−4 whether the atom is in its
ground state or the excited state. In the intermediate-distance
region, the contribution of the thermal fluctuations may be-
come comparable to that of the zero-point fluctuations, and the
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Casimir-Polder force may be attractive or repulsive depending
on several factors, including whether the atom is in the
ground or excited state and the relative temperature between
the substrate and the environment. Only in the long-distance
region do the effects of the thermal fluctuations both at and
out of thermal equilibrium dominate over that of the zero-point
fluctuations, and in this region, even the atom-wall force on the
ground-state atoms becomes oscillatory around zero, meaning
that the force can either be attractive or repulsive.
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APPENDIX A: CORRELATION FUNCTIONS OF THE
FIELD OUT OF THERMAL EQUILIBRIUM

In order to find the two correlation functions of the field
out of thermal equilibrium defined in Eqs. (44) and (45),
(CF

ij )βs ,βe
(x(τ ),x(τ ′)) and (χF

ij )βs ,βe
(x(τ ),x(τ ′)), we first con-

sider the quantity

〈Ei(x(τ )),Ej (x(τ ′))〉βs ,βe

= 〈βs,βe|Ei(x(τ )),Ej (x(τ ′))|βs,βe〉. (A1)

Taking the Fourier transformation [see Eq. (2)] for the
electromagnetic field operator, we can expand the above
quantity into a sum of four parts as

〈Ei(t,r),Ej (t ′,r′)〉βs ,βe

=
∫ ∞

0
dω

∫ ∞

0
dω′e−i(ωt−ω′t ′)〈Ei(r,ω)E†

j (r′,ω′)〉βs ,βe
+

∫ ∞

0
dω

∫ ∞

0
dω′e−i(ωt+ω′t ′)〈Ei(r,ω)Ej (r′,ω′)〉βs ,βe

+
∫ ∞

0
dω

∫ ∞

0
dω′ei(ωt−ω′t ′)〈E†

i (r,ω)Ej (r′,ω′)〉βs ,βe
+

∫ ∞

0
dω

∫ ∞

0
dω′ei(ωt+ω′t ′)〈E†

i (r,ω)E†
j (r′,ω′)〉βs ,βe

, (A2)

where we have denoted x(τ ), with x(τ ) = (t(τ ),r(τ )). To obtain the above equation, we have used the relation Ei(r,−ω) =
E

†
i (r,ω). By resorting to Eq. (22), we obtain

〈Ei(r,ω)E†
j (r′,ω′)〉βs ,βe

= �

πε0

ω2ω′2

c4

∫
d3r1

∫
d3r2

√
εI (r1,ω)εI (r2,ω′)Gik(r,r1,ω)G�

jl(r
′,r2,ω)〈ak(r1,ω)a†

l (r2,ω
′)〉βs ,βe

,

(A3)

where the � symbol denotes the complex conjugate. Noticing that the density operator of the thermal baths with temperatures Ts

and Te are separately ρs = e−HF /kBTs and ρe = e−HF /kBTe , we find

〈ak(r1,ω)a†
l (r2,ω

′)〉βs ,βe
= δklδ(r1 − r2)δ(ω − ω′)[1 + N (ω,T (r1))], (A4)

with

N (ω,T (r1)) = 1

e�ω/kBT (r1) − 1
=

{
1

e�ω/kB Te −1
, z1 > 0,

1
e�ω/kB Ts −1

, z1 < 0.
(A5)

Thus

〈Ei(r,ω)E†
j (r′,ω′)〉βs ,βe

= �

πε0

ω2ω′2

c4
δ(ω − ω′)

[∫
z1<0

d3r1εI (r1,ω)Gik(r,r1,ω)G�
jk(r′,r1,ω)

(
1 + 1

eβsω/c − 1

)

+
∫

z1>0
d3r1εI (r1,ω)Gik(r,r1,ω)G�

jk(r′,r1,ω)

(
1 + 1

eβeω/c − 1

)]
. (A6)

Similarly, we can find the average values in the other three terms in Eq. (A2), and then we have

〈Ei(r,r),Ej (t ′,r′)〉βs ,βe
= �

πε0c4

∫ ∞

0
dω ω4e−iω(t−t ′)

(
1 + 1

eβsω/c − 1

) ∫
z1<0

d3r1εI (r1,ω)Gik(r,r1,ω)G�
jk(r′,r1,ω)

+ �

πε0c4

∫ ∞

0
dω ω4e−iω(t−t ′)

(
1 + 1

eβeω/c − 1

) ∫
z1>0

d3r1εI (r1,ω)Gik(r,r1,ω)G�
jk(r′,r1,ω)

+ �

πε0c4

∫ ∞

0
dω ω4eiω(t−t ′) 1

eβsω/c − 1

∫
z1<0

d3r1εI (r1,ω)G�
ik(r,r1,ω)Gjk(r′,r1,ω)

+ �

πε0c4

∫ ∞

0
dω ω4eiω(t−t ′) 1

eβeω/c − 1

∫
z1>0

d3r1εI (r1,ω)G�
ik(r,r1,ω)Gjk(r′,r1,ω). (A7)
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Using the relation [52] [see Eq. (27)]

ω2

c2

∫
d3r1εI (r1,ω)Gik(r,r1,ω)G�

jk(r′,r1,ω) = Im[Gij (r,r′,ω)], (A8)

where Im[Gij (r,r′,ω)] represents the imaginary part of Gij (r,r′,ω), we deduce that

ω2

c2

∫
z1>0

d3r1εI (r1,ω)Gik(r,r1,ω)G�
jk(r′,r1,ω) = Im[Gij (r,r′,ω)] − ω2

c2

∫
z1<0

d3r1εI (r1,ω)Gik(r,r1,ω)G�
jk(r′,r1,ω). (A9)

So 〈Ei(t,r),Ej (t ′,r)〉βs ,βe
can be simplified to be

〈Ei(t,r),Ej (t ′,r′)〉βs ,βe
= �

πε0c2

∫ ∞

0
dω ω2

[(
1 + 1

eβeω/c − 1

)
e−iω(t−t ′) + 1

eβeω/c − 1
eiω(t−t ′)

]
Im[Gij (r,r′,ω)]

+ �

πε0c2

∫ ∞

0
dω ω2

(
1

eβsω/c − 1
− 1

eβeω/c − 1

)
(eiω(t−t ′) + e−iω(t−t ′))gij (r,r′,ω), (A10)

where

gij (r,r′,ω) = ω2

c2

∫
z1<0

d3r1εI (r1,ω)Gik(r,r1,ω)G�
jk(r′,r1,ω). (A11)

For an atom at r = r′ = (0,0,z), combining Eqs. (23)–(31), we deduce that Im[Gij (r,r′,ω)] = Im[Gij (z,ω)] and gij (r,r′,ω) =
gij (z,ω) are nonzero only when i �= j .

Using procedures similar to those above, we can get 〈Ej (t ′,r),Ei(t,r)〉βs ,βe
. So the two correlation functions of the field can

be simplified as

(
CF

ij

)
βs ,βe

(x(τ ),x(τ ′)) = �δij

πε0c2

∫ ∞

0
dω ω2

(
1

2
+ 1

eβeω/c − 1

)
(e−iω(t−t ′) + eiω(t−t ′))Im[Gij (z,ω)]

+ �δij

πε0c2

∫ ∞

0
dω ω2

(
1

eβsω/c − 1
− 1

eβeω/c − 1

)
(eiω(t−t ′) + e−iω(t−t ′))gij (z,ω) (A12)

and (
χF

ij

)
βs ,βe

(x(τ ),x(τ ′)) = �δij

2πε0c2

∫ ∞

0
dω ω2(e−iω(t−t ′) − eiω(t−t ′))Im[Gij (z,ω)]. (A13)

Here we point out that in the above two correlation functions we have renormalized the term Im[G0
ij (r,r′,ω)], which corresponds

to the fluctuations of a vacuum and is infinitely large for r = r′, by simply subtracting it out.

APPENDIX B: THE DOUBLE INTEGRAL
IN EQUATION (89)

We use here the method proposed by Eberlein et al. [55,56]
to calculate the double integration in Eq. (89). The double
integral I1σ is the sum of the following integrals:

IT
1σ =

∫ ∞

0
dω

∫ 1

0
dt ω2Tσ (t) cos(ηωt), (B1)

IA
1σ =

∫ ∞

0
dω

∫ 1

0
dt ω2Aσ (t) e−η̄ωt , (B2)

where η = 2z/c, η̄ = η
√

ε − 1. As the two integrals are not
separately convergent, we replace the upper limit of the ω

integral in each by a positive � and take it to be infinity in the
end.

For IT
1σ , if we take the t integration by parts, we get

IT
1σ = −Tσ (1)

η2
� cos(η�) + Tσ (1)

η3
sin(η�)

− 1

η

∫ �

0
dω

∫ 1

0
dt ωT ′

σ (t) sin(ηωt). (B3)

For the last term in the above equation, we can subtract the
term T ′

σ (0) from the t integration and then add it later, i.e.,

1

η

∫ ∞

0
dω

∫ 1

0
dt ωT ′

σ (t) sin(ηωt)

= 1

η

∫ �

0
dω

∫ 1

0
dt ω[T ′

σ (t) − T ′
σ (0)] sin(ηωt)

+ T ′
σ (0)

η

∫ �

0
dω

∫ 1

0
dt ω sin(ηωt). (B4)

For the first term on the right-hand side of the above equation,
we do the t integration by parts, and for the second term, we
do the double integration directly; then we get

1

η

∫ ∞

0
dω

∫ 1

0
dt ωT ′

σ (t) sin(ηωt)

= −T ′
σ (1)

η3
sin(η�) + T ′

σ (0)

η2
�

+ 1

η2

∫ ∞

0
dω

∫ 1

0
dtT ′′

σ (t) cos(ηωt). (B5)
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Similarly, for the last term on the right-hand side of the above
equation, we repeat the above steps, and we get

1

η2

∫ ∞

0
dω

∫ 1

0
dt T ′′

σ (t) cos(ηωt) ≈ π

2

T ′′
σ (0)

η3
. (B6)

To obtain the above result, we have discarded the terms
proportional to or of order higher than �−1. Thus

IT
1σ = −Tσ (1)

η2
� cos(η�) + T ′

σ (1)

η3
sin(η�) + Tσ (1)

η3
sin(η�)

− T ′
σ (0)

η2
� − π

2

T ′′
σ (0)

η3
. (B7)

Taking similar steps on IA
1σ , we find

IA
1σ = A′

σ (0)

η̄2
� − 2

η̄3

(
A′

σ (0) −
∫ 1

0
dt

Aσ (t) − A′
σ (0)t

t3

)
.

(B8)

Now adding Eq. (B7) to Eq. (B8) and discarding the infinite
oscillating terms, we arrive at

I1σ
= − c3

8z3

[
π

2
T ′′

σ (0) + 2

(ε − 1)3/2

×
(

A′
σ (0) −

∫ 1

0
dt

Aσ (t) − A′
σ (0)t

t3

)]
. (B9)

Notice that to obtain the above result, we have used the
relation [23]

T ′
σ (0) = A′

σ (0)

ε − 1
. (B10)

APPENDIX C: INTEGRALS IN EQUATIONS (84) AND (85)
IN THE LONG-DISTANCE REGION AND IN THE

LOW-TEMPERATURE LIMIT

The integrals in Eqs. (84) and (85) are of the following forms:

Ĩ1σ =
∫ ∞

0
dω

∫ 1

0
dt Aσ (t)

(
ω3

ω + ω0
− ω3

ω − ω0

)
e−η̄ωt

eβω/c − 1
,

(C1)

Ĩ2σ =
∫ ∞

0
dω

∫ 1

0
dt Tσ (t)

(
ω3

ω + ω0
− ω3

ω − ω0

)
cos(ηωt)

eβω/c − 1
.

(C2)

In the low-temperature limit, β

λ0
� 1, where λ0 = c

ω0
, the

above integrals can be approximated as

Ĩ1σ ≈ 2c4

β4ω0

∫ ∞

0
dy

∫ 1

0
dt Aσ (t)

y3e−ayt

ey − 1
, (C3)

Ĩ2σ ≈ 2c4

β4ω0

∫ ∞

0
dy

∫ 1

0
dt Tσ (t)

y3 cos(byt)

ey − 1
, (C4)

with a = 2z
√

ε−1
β

and b = 2z
β

. For Ĩ1σ , we perform the y

integration by parts, and we obtain

Ĩ1σ = 2c4

β4ω0a

∫ 1

0
dt

Aσ (t)

t

∫ ∞

0
dy

3y2(ey − 1) − y3ey

(ey − 1)2
e−ayt .

(C5)

This integral can be done by subtracting A′
σ (0) from the t

integration and adding it later. Then, taking the limit a � 1,
we get

Ĩ1σ ≈ 2c4

β4ω0

[
π2

6

A′
σ (0)

a2

+ 2

a3

(∫ 1

0
dt

Aσ (t) − A′
σ (0)t

t3
− A′

σ (0)

)]
. (C6)

Similarly, for Ĩ2σ , we do the t integration by parts, and we
obtain

Ĩ2σ ≈ 2c4

β4ω0

[
Tσ (1)

b

∫ ∞

0
dy

y2 sin(by)

ey − 1

− 1

b

∫ ∞

0
dy

∫ 1

0
dt

y2 sin(byt)

ey − 1
T ′

σ (t)

]
. (C7)

We do the t integration in the second integral on the right-hand
side of the above equation by parts, and we obtain

Ĩ2σ ≈ 2c4

β4ω0

[
Tσ (1)

b

∫ ∞

0
dy

y2 sin(by)

ey − 1

+ T ′
σ (1)

b2

∫ ∞

0
dy

y cos(by)

ey − 1
− π2

6

T ′
σ (0)

b2

− 1

b2

∫ ∞

0
dy

∫ 1

0
dt

y cos(byt)

ey − 1
T ′′

σ (t)

]
. (C8)

For the last integral in the above square bracket, we can first
subtract T ′′

σ (0) from the t integration and add it later. Then we
take the limit b � 1, and we obtain

1

b2

∫ ∞

0
dy

∫ 1

0
dt

y cos(byt)

ey − 1
T ′′

σ (t)

≈ πT ′′
σ (0)

2b3
+ 1

2b4

∫ 1

0
dt

T ′′
σ (t) − T ′′

σ (0) − T ′′′
σ (0)t

t2
.

(C9)

Computing the other integrations in Eq. (C8) and combining
the results with Eq. (C9), we get the approximate result for Ĩ2σ :

Ĩ2σ ≈ 2c4

β4ω0

[
−π2

6

T ′
σ (0)

b2
− π

2

T ′′
σ (0)

b3

]
(C10)

up to the order b−3 in the limit b � 1.
Notice that when adding Ĩ1σ [see Eq. (C6)] and Ĩ2σ [see

Eq. (C10)], by using the relation (B10), the terms proportional
to z−2 are canceled out completely, and the leading term
is proportional to z−3. This is exactly what happens when
calculating Eq. (114).

APPENDIX D: INTEGRALS IN EQUATIONS (84) AND (85)
IN THE HIGH-TEMPERATURE LIMIT

In the high-temperature limit, β

λ0
� 1. The integrals in

Eqs. (84) and (85) are of the same forms as those in Eqs. (C1)
and (C2), which can be changed to

Ĩ1σ =
(

c

β

)3 ∫ 1

0
dt Aσ (t)

∫ ∞

0
dy

×
(

y3

y + y0
− y3

y − y0

)
e−ayt

ey − 1
, (D1)
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Ĩ2σ =
(

c

β

)3 ∫ 1

0
dt Tσ (t)

∫ ∞

0
dy

×
(

y3

y + y0
− y3

y − y0

)
cos(byt)

ey − 1
, (D2)

where parameters a and b are the same as those defined in
Appendix C and y0 = β

λ0
.

1. The asymptotic result of Ĩ1σ

When a � 1 and ay0 � 1, i.e., 2z
√

ε − 1 � β � λ0,

Ĩ1σ = c3

a3β3

∫ 1

0
dt Aσ (t)

∫ ∞

0
dx

(
x3

x + x0
− x3

x − x0

)
e−xt

ex/a − 1

≈ 2x0c
3

a3β3

∫ 1

0
dt Aσ (t)

(
t

∫ ∞

0
dx

x2

ex/a − 1

− t2

2

∫ ∞

0
dx

x3

ex/a − 1

)

≈ 4ζ [3]
ay0c

3

β3

∫ 1

0
dt tAσ (t) − π4a2c2ω0

15β2

∫ 1

0
dt t2Aσ (t),

(D3)

in which x0 = ay0 and we have only kept the z-dependent
term.

When a � 1 and ay0 � 1, i.e., β � 2z
√

ε − 1 � λ0, for
the y integration in Eq. (D1), we can expand the factor (ey −
1)−1 to be an infinite sum of a series, and then by changing
variables, it can be reexpressed as

Ĩ ′
1 =

∫ ∞

0
dy

(
y3

y + y0
− y3

y − y0

)
e−ayt/c

ey − 1

=
∞∑

n=1

eny0

∫ ∞

y0

dy
(y − y0)3

y
e−a(y−y0)t e−ny

−
∞∑

n=1

e−ny0

∫ ∞

−y0

dy
(y + y0)3

y
e−a(y+y0)t e−ny. (D4)

As y0 � 1, we approximate the infinite sum in the above
equation by integration. After some simplifications, Ĩ ′

1 can
be changed to

Ĩ ′
1 = y2

0

∫ ∞

0
dy

(
y2

y + 1
− y2

y − 1

)
e−(at+1)y0y ; (D5)

thus

Ĩ1σ = cω2
0

β

∫ 1

0
dt Aσ (t)

∫ ∞

0
dy

(
y2

y + 1
− y2

y − 1

)
e−(at+1)y0y.

(D6)

Performing the y integration in Eq. (D6) directly and then
taking the limit a � 1 and ay0 � 1, we get the asymptotic
result,

Ĩ1σ ≈ −2c2ω0

aβ2

∫ 1

0
dt

Aσ (t)

t
. (D7)

When a � 1 and ay0 � 1, i.e., 2z
√

ε − 1 � λ0 � β, we can
first change Eq. (D1) into Eq. (D6), then do the y integration

by parts, subtract A′
σ (0) from the t integration, and later add

it. Finally, taking the limit ay0 � 1, we obtain

Ĩ1σ ≈ 4c4

β4ω0a3

(∫ 1

0
dt

Aσ (t) − A′
σ (0)t

t3
− A′

σ (0)

)
. (D8)

2. The asymptotic result of Ĩ2σ

When b � 1 and by0 � 1, i.e., 2z � β � λ0, taking steps as
those we did in simplifying Ĩ1σ , we get

Ĩ2σ ≈ π4c3

15β3
b2y0

∫ 1

0
dt t2Tσ (t), (D9)

where we have kept only the leading z-dependent term.
When b � 1 and by0 � 1, i.e., β � 2z � λ0, we first

change Ĩ2σ to

Ĩ2σ = cω2
0

β

∫ 1

0
dt Tσ (t)

∫ ∞

0
dy

(
y2

y + 1
− y2

y − 1

)

× e−y0y cos(by0yt), (D10)

as we have done for Eq. (D1) [see Eqs. (D4)–(D6)]. Then we
divide the above double integral into the sum of two parts as

Ĩ2σ = cω2
0

β

[
−2

∫ 1

0
dt Tσ (t)

∫ ∞

0
dy e−y0y cos(by0yt)

+
∫ 1

0
dt Tσ (t)

∫ ∞

0
dy

(
1

y + 1
− 1

y − 1

)

× e−y0y cos(by0yt)

]
, (D11)

do the two integrals on the right-hand side of the above
equation directly, and finally take the limits y0 � 1 and
by0 � 1. As a result, we get the asymptotic result

Ĩ2σ ≈ −πc2ω0

β2b
Tσ (0). (D12)

When b � 1 and by0 � 1, i.e., 2z � β � λ0, we first change
Ĩ2σ into the sum of two parts as in Eq. (D11). For the first double
integral on the right-hand side of Eq. (D11), the y integration
can be done directly, so only the t integration is left. For the
t integration, it diverges at the point t = 0 if we take the limit
by0 � 1 directly. However, we can subtract Tσ (0) and T ′

σ (0)t
from the t integration and later add them. Similarly, for the
second double integral on the right-hand side of Eq. (D11),
because it diverges at the point t = 0 if we do the y integration
and take the limit by0 � 1 directly, we can subtract Tσ (0) and
T ′

σ (0)t from the t integration and later add them. After these
steps and further taking the limits b � 1 and by0 � 1, we
obtain

Ĩ2σ ≈ −πc2ω0

bβ2
Tσ (0) + πcω2

0

β

∫ 1

0
dt Tσ (t) sin(by0t)

≈ −πc2ω0

bβ2
Tσ (1) cos(by0). (D13)
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