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We describe two implementations of the optimal error correction algorithm known as the maximum likelihood
decoder (MLD) for the two-dimensional surface code with a noiseless syndrome extraction. First, we show
how to implement MLD exactly in time O(n2), where n is the number of code qubits. Our implementation
uses a reduction from MLD to simulation of matchgate quantum circuits. This reduction however requires
a special noise model with independent bit-flip and phase-flip errors. Secondly, we show how to implement
MLD approximately for more general noise models using matrix product states (MPS). Our implementation has
running time O(nχ 3), where χ is a parameter that controls the approximation precision. The key step of our
algorithm, borrowed from the density matrix renormalization-group method, is a subroutine for contracting a
tensor network on the two-dimensional grid. The subroutine uses MPS with a bond dimension χ to approximate
the sequence of tensors arising in the course of contraction. We benchmark the MPS-based decoder against the
standard minimum weight matching decoder observing a significant reduction of the logical error probability
for χ � 4.
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I. INTRODUCTION

The surface code [1,2] is one of the simplest and most
studied quantum error correcting codes. It can be realized on
a two-dimensional grid of qubits such that the codespace is
defined by simple four-qubit parity check operators acting on
nearest-neighbor qubits. Recent years have witnessed a surge
of interest in the surface code as a promising architecture for
a scalable quantum computing [3,4]. Experimental advances
in manufacturing of multiqubit devices [5,6] give us hope that
a small-scale quantum memory based on the surface code
may become a reality soon. Given high operational costs
of a quantum hardware compared with the classical one, it
is crucial to put enough effort in optimizing algorithmic or
software aspects of error correction. In the present paper we
focus on optimizing the decoding algorithm that takes as input
measured syndromes of the parity checks and computes a
recovery operation returning a corrupted state of the memory
back to the codespace.

As the name suggests, the maximum likelihood decoder
(MLD) is an algorithm that finds a recovery operation maxi-
mizing the probability of a successful error correction condi-
tioned on the observed error syndrome. By definition, MLD is
the optimal error correction algorithm for a fixed quantum code
and a fixed noise model. The first rigorous definition of MLD
for the surface codes was proposed by Dennis et al. [2]. An
important observation made in [2] was that the computational
problem associated with MLD can be reduced to computing
the partition function of a classical Ising-like Hamiltonian on
the two-dimensional lattice. This observation has generated a
vast body of work exploring connections between MLD and
the statistical physics of disordered Ising-like Hamiltonians;
see for instance [7–10]. The insights made in [2] have also
guided the search for efficient implementations of MLD.
Although an exact and efficient algorithm for MLD remains an
elusive goal, several approximate polynomial-time algorithms
have been discovered, most notably the renormalization-group
decoder due to Duclos-Cianci and Poulin [11], and the Markov
chain Monte Carlo method due to Hutter, Wootton, and Loss

[12]. In the case of concatenated codes an efficient exact
algorithm for MLD based on the message passing algorithm
was proposed by Poulin [13]. By comparing MLD with the
level-by-level decoder commonly used for concatenated codes,
Ref. [13] found that MLD offers a significant advantage with
almost twofold increase of the error threshold for the depo-
larizing noise and a significant reduction of the logical error
probability.

Here we propose an alternative method of implementing
MLD in the case of the surface code for two simple noise
models known as the bit-flip noise and the depolarizing
noise. Our method combines the ideas of Dennis et al. [2]
and the standard classical-to-quantum mapping from classical
two-dimensional (2D) spin systems in the thermal equilibrium
to quantum 1D spin chains. It enables us to reduce the
computational problem associated with MLD to simulating
a particular type of quantum dynamics for a chain of qubits.

In the case of the bit-flip noise, MLD can be reduced to
simulating a quantum circuit with a special type of two-qubit
nearest-neighbor gates known as matchgates. It was shown by
Valiant [14] that quantum circuits composed of matchgates can
be efficiently simulated by classical means. Matchgate circuits
and their generalizations give rise to efficient holographic al-
gorithms for certain combinatorial problems [15] and efficient
tensor network contraction methods [16,17]. Matchgate-based
algorithms have been used to simulate quantum dynamics
in systems of fermionic modes with quadratic interactions
[18,19] and study statistics of dimer coverings in classical
lattice models [20–22]. Here we demonstrate that matchgates
also have applications for quantum error correction. Our
simulation algorithm based on fermionic Gaussian states [23]
provides an exact implementation of MLD with the running
time O(n2), where n is the number of code qubits. The
same algorithm can also be applied to a noise model with
independent bit-flip and phase-flip errors. We note that a
similar but technically different algorithm has been used by
Merz and Chalker in the numerical study of the random-bond
2D Ising model [24].
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In the case of the depolarizing noise, MLD can be reduced
to simulating the dynamics generated by matrix product
operators with a small bond dimension. To perform the
simulation efficiently we conjecture that all intermediate
states generated by this dynamics are weakly entangled.
This enables us to employ a vast body of efficient classical
algorithms for simulating weakly entangled quantum spin
chains based on matrix product states (MPS); see [25–29].
Our approximate implementation of MLD for the depolarizing
noise has running time O(nχ3) where χ is a parameter that
controls the approximation precision (the bond dimension of
the MPS). Although we do not have any rigorous arguments
in support of the weak entanglement conjecture, it reflects
the physical intuition that the classical 2D spin system
associated with MLD has a finite correlation length for
error rates below the threshold [2]. Accordingly, one should
expect that the classical-to-quantum mapping cannot generate
highly entangled states since the latter require long-range
correlations. Furthermore, we have justified the conjecture
numerically by applying the MPS-based decoder to the bit-flip
noise [30]. We observed that the logical error probabilities of
the exact MLD and the MPS-based decoder with a relatively
small bond dimension χ = 6 are virtually indistinguishable.
Likewise, in the case of the depolarizing noise we observed
that the logical error probability exhibits a fast convergence as
a function of χ suggesting that the MPS-based decoder with
χ = 6 implements nearly exact MLD.

Finally, we benchmark the exact and the approximate
implementations of MLD against the commonly studied
minimum weight matching (MWM) decoder [2,31]. The
benchmarking was performed for a fixed code distance d = 25
and a wide range of error rates. In the case of the bit-flip
noise we observed that the MWM decoder approximates the
logical error probability of MLD within a factor of 2. The
observed difference between MLD and the MWM decoder
can be attributed to the fact that the latter ignores the error
degeneracy [32]. Since the observed difference is relatively
small, we conclude that ignoring the error degeneracy does
not have a significant impact on the decoder’s performance for
the studied noise model. In the case of the depolarizing noise
we observed that the MPS-based decoder is far superior than
the MWM decoder offering more than two orders of magnitude
reduction of the logical error probability even for small values
of χ . This can be attributed to the fact that the MWM decoder
often fails to find the minimum weight error consistent with
the syndrome since it ignores correlations between X and Z

errors [33].
We emphasize that the studied noise models assume perfect

syndrome measurements. Extending our decoding algorithms
to the more realistic case of noisy syndrome extraction
is an interesting open problem that we leave for future
work.

The rest of the paper is organized as follows. We formally
define the maximum likelihood decoder, the studied noise
models, and the surface code in Secs. II, III, and IV,
respectively. Our exact implementation of MLD for the bit-flip
noise is described in Sec. V. The approximate implementation
of MLD based on matrix product states is presented in Sec. VI.
A comparison between the exact MLD, the approximate MLD
with various bond dimensions χ , and the minimum weight

matching decoder is presented in Sec. VII that describes our
numerical results.

II. MAXIMUM LIKELIHOOD DECODER

In this section we formally define MLD. We consider a
quantum memory composed of n physical qubits. Let H =
(C2)⊗n be the full n-qubit Hilbert space and P be the group
of n-qubit Pauli operators. By definition, any element of P
has a form f = cf1 ⊗ f2 ⊗ · · · ⊗ fn, where fj ∈ {I,X,Y,Z}
are single-qubit Pauli operators and c ∈ {±1, ± i} is an
overall phase factor. A quantum code of stabilizer type is
defined by an Abelian stabilizer group G ⊂ P such that
−I /∈ G. Quantum codewords are n-qubit states invariant
under the action of any element of G. Such states define a
codespace

H0 = {ψ ∈ H : gψ = ψ for all g ∈ G}.
The encoding step amounts to initializing the memory in some
(unknown) state ρ supported on the codespace H0.

We shall consider a stochastic Pauli noise described by a
linear map ρ → N (ρ), where

N (ρ) =
∑
f ∈P

π (f )fρf † (1)

and π is some normalized probability distribution on the Pauli
group. Since the initial state ρ is supported on the codespace
H0, one has fρf † = ρ for any f ∈ G. By the same token,
fρf † = hρh† whenever fG = hG. Given a Pauli operator
f ∈ P , a subset fG ≡ {fg : g ∈ G} is called a coset of G.
Clearly, P is a disjoint union of cosets Cα = f αG, where f α is
some fixed representative of Cα . The above shows that errors
in the same coset have the same action on the codespace.
Thus

N (ρ) =
∑

α

π (f αG)f αρf α, (2)

where the sum ranges over all cosets of G and

π (fG) ≡
∑
g∈G

π (fg).

For simplicity, here we assumed that all coset representatives
f α are Hermitian operators. We shall refer to the quantity
π (fG) as a coset probability.

At the decoding step one attempts to guess the coset of
the stabilizer group that contains the actual error based on
partial information about the error known as a syndrome. More
precisely, let g1, . . . ,gm ∈ G be some fixed set of generators
of G. Since the generators gi pairwise commute, they can be
diagonalized simultaneously. A configuration of eigenvalues
gi = ±1 can be described by a syndromes ∈ {0,1}m such that
gi = (−1)si for all i = 1, . . . ,m, where si ∈ {0,1}. Assuming
that the generators gi are independent, there are 2m possible
syndromes. The full Hilbert space can be decomposed into a
direct sum of syndrome subspaces

H =
⊕

s∈{0,1}m
Hs ,

where Hs = {ψ ∈ H : giψ = (−1)si ψ for all i}. Note that
the codespace H0 corresponds to the zero syndrome. A Pauli
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operator f ∈ P is said to have a syndrome s iff fgi =
(−1)si gif for all i = 1, . . . ,m. Equivalently, f has a syndrome
s iff fH0 = Hs . For each syndrome s let us choose some fixed
Pauli operator f (s) with the syndrome s. One can easily check
that the set of all Pauli operators with a syndrome s coincides
with the coset f (s)C(G), where

C(G) = {f ∈ P : fg = gf for all g ∈ G}
is a group known as the centralizer of G. Note that G ⊆ C(G).
Thus each coset of C(G) can be partitioned into a disjoint
union of several cosets of G. In the present paper we only
consider stabilizer codes with a single logical qubit. Let
X,Y ,Z ∈ C(G)\G be the logical Pauli operators on the encoded
qubit. Then each coset of C(G) consists of four disjoint cosets
of G, namely,

f (s)C(G) = Cs
I ∪ Cs

X ∪ Cs
Y ∪ Cs

Z, (3)

where

Cs
I = f (s)G, Cs

X = f (s)XG, (4)

Cs
Y = f (s)YG, Cs

Z = f (s)ZG. (5)

The decoding step starts by a syndrome measurement
that projects the corrupted state N (ρ) onto one of the
syndrome subspaces Hs . The above arguments show that
fρf † has support on Hs iff f ∈ f (s)C(G). Thus the syndrome
measurement reveals the coset ofC(G) that contains the error f ,
whereas our goal is to determine which coset of G contains f .
Using Eqs. (2), and (3)–(5), one can write the postmeasurement
(unnormalized) state as

ρ(s) = π
(
Cs

I

)
f (s)ρf (s) + π

(
Cs

X

)
f (s)XρXf (s)

+π
(
Cs

Y

)
f (s)YρYf (s) + π

(
Cs

Z

)
f (s)ZρZf (s), (6)

where s is the observed syndrome. Here we assumed for
simplicity that f (s) and the logical operators X̄,Ȳ ,Z̄ are Her-
mitian. This shows that the effective noise model conditioned
on the syndrome can be described by applying one of the four
Pauli errors f (s),f (s)X̄,f (s)Ȳ , and f (s)Z̄ with probabilities
π (Cs

I ),π (Cs
X),π (Cs

Y ), and π (Cs
Z), respectively. Clearly, the best

possible error correction algorithm for this effective noise
model is to choose a recovery operator as the most likely
of the four errors. Equivalently, we should choose a recovery
operator as any Pauli operator that belongs to the most likely
of the four cosets Cs

I ,Cs
X,Cs

Y ,Cs
Z , which we denote Cs

ML. These
steps can be summarized as follows:

ML Decoder
Input: syndrome s ∈ {0, 1}m

Output: recovery operator g ∈ P

f(s) ← any Pauli operator with a syndrome s
Cs
ML ← arg maxC π(C), where C ∈ {Cs

I , Cs
X , Cs

Y , Cs
Z}

return any g ∈ Cs
ML

The final step of the decoding is to apply the optimal recovery
operator g. It results in a state gρ(s)g†. We conclude that MLD
correctly identifies the coset of G that contains the actual error
and maps the corrupted state N (ρ) back to the encoded state

ρ with a probability

Psuccess =
∑

s∈{0,1}m
π

(
Cs

ML

)
.

The logical error probability 1 − Psuccess for a particular noise
model can be computed numerically using the Monte Carlo
method; see Sec. VII for details.

In what follows we shall always ignore overall phase
factors of Pauli operators. Such phase factors are irrelevant
for our purposes since they do not change the outcome of error
correction.

III. NOISE MODELS

We shall consider a stochastic i.i.d. (independent and
identically distributed) Pauli noise

N =
n⊗

j=1

Nj ,

where

Nj (ρ) = (1 − ε)ρ + εXXρX + εY YρY + εZZρZ

and ε ≡ εX + εY + εZ is called an error rate. Two commonly
studied noise models are the classical bit-flip noise where only
X-type errors are allowed (the X noise) and the depolarizing
noise where all types of errors are equally likely. The formal
definitions are given below:

X noise: εX = ε, εY = εZ = 0,

Depolarizing noise: εX = εY = εZ = ε/3.

The corresponding probability distributions on the Pauli group
are

π (f ) = (1 − ε)n−|f |(ε/3)|f |

for the depolarizing noise and

π (f ) =
{

(1 − ε)n−|f |ε|f | if f ∈ PX,

0 otherwise

for the X noise. Here |f | denotes the Hamming weight of f ,
that is, the number of qubits on which f acts nontrivially, while
PX ⊂ P denotes the subgroup generated by single-qubit Pauli
X operators.

One may also consider a noise model with independent
bit-flip and phase-flip errors, that is, εX = εZ and εY = (εX)2.
Since there are no correlations between the two types of errors,
one can perform error correction independently for bit-flip
and phase-flip errors. Furthermore, since correcting phase-flip
errors is equivalent to correcting bit-flip errors on the surface
code lattice rotated by 90◦, it suffices to consider the X-noise
model only.

IV. SURFACE CODES

We consider the surface code on a square lattice of size
d×d with open boundary conditions. The boundaries parallel
to the horizontal (vertical) axis are smooth (rough). The surface
code lattice with d = 3 is shown on Fig. 1. For the chosen
geometry the surface code encodes one logical qubit into
n = d2 + (d − 1)2 physical qubits with the minimum distance
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FIG. 1. (Color online) Distance-3 surface code. Solid dots, stars,
and diamonds indicate locations of qubits, site stabilizers, and pla-
quette stabilizers, respectively. Stabilizers located near the boundary
act only on three qubits. The distance-d surface code has d2 qubits
on horizontal edges, (d − 1)2 qubits on vertical edges, and d(d − 1)
stabilizers of each type.

d. We shall always consider odd values of d such that
the code corrects any combination of (d − 1)/2 single-qubit
errors. Let Au and Bp be the stabilizers of the surface code
associated with a site u and a plaquette p, respectively. We have
Bp = ∏

e∈p Xe, where the product runs over all edges e making
up the boundary of p. Likewise, Au = ∏

e
u Ze, where the
product runs over all edges e incident to u. Let GZ = 〈Au〉 and
GX = 〈Bp〉 be the subgroups of the Pauli group P generated
by all site stabilizers and all plaquette stabilizers, respectively.
Finally, let G = 〈Au,Bp〉 be the full stabilizer group. Logical
Pauli operators X,Z are shown on Fig. 2, while Y = iXZ.

By a slight abuse of notations, below we shall often identify
a Pauli operator f with the subset of edges in the lattice on
which f acts nontrivially.

V. EXACT ALGORITHM

In this section we consider the X noise and describe an exact
implementation of MLD. We begin by specializing MLD to the
X noise (Sec. V A) and describing our algorithm (Sec. V B).
A reader interested only in the question of how the algorithm

FIG. 2. (Color online) Logical Pauli operators X (left) and Z

(right).

works can skip the remaining sections explaining why it works
and proving its correctness. Specifically, Sec. V C shows how
to express the coset probability as a matrix element of a
matchgate quantum circuit. Our derivation partially follows
the one of Refs. [2,24]. An efficient method of simulating
matchgate circuits based on fermionic Gaussian states is
described in Sec. V D. The material of this section mostly
follows Ref. [23].

A. Specializing the ML decoder to X noise

Let s be the input syndrome and f (s) ∈ P be some fixed
Pauli error consistent with s. We can always choose f (s) ∈
PX, that is, such that f (s) acts on any qubit by I or X. Indeed,
since only X-type errors can appear with a nonzero probability,
the syndromes of all plaquette stabilizers must be zero. Let su

be the syndrome of a site stabilizer Au. We choose the desired
error f (s) by connecting each site u with a nonzero syndrome
su to the left boundary by a horizontal string of X errors
and adding all such strings modulo 2. Note that f (s) can be
constructed in time O(n).

Let π be the probability distribution on the Pauli group
describing the X noise; see Sec. III. To implement the ML
decoder it suffices to compute the four coset probabilities
π (Cs

I ), π (Cs
X), π (Cs

Y ), and π (Cs
Z) as defined in Sec. II. Note

that π (Cs
Y ) = π (Cs

Z) = 0 since any element of these two cosets
acts by Pauli Z on at least d qubits. Choose any logical
operator L ∈ {I ,X} and let f ≡ f (s)L. From now on we shall
assume that f is fixed. Since Z-type errors are not allowed,
one has π (fG) = π (fGX). Thus it suffices to compute the
coset probability π (fGX).

B. Algorithm for computing the coset probability

In this section we describe an algorithm that takes as input
an X-type Pauli operator f and outputs the coset probability
π (fGX). The algorithm has running time O(n2).

Let us begin by introducing some notations. The sets of all
horizontal and vertical edges of the surface code lattice will
be denoted H and V , respectively. For the code of distance d

one has |H | = d2 and |V | = (d − 1)2. We partition the set H

into columns of edges such that

H = H 1 ∪ H 2 ∪ . . . ∪ Hd,

where Hj denotes the j th leftmost column of horizontal edges;
see Fig. 3. Edges of every column Hj will be labeled by
integers 1, . . . ,d starting from the top edge. Likewise,

V = V 1 ∪ V 2 ∪ . . . ∪ V d−1,

where V j denotes the j th leftmost column of vertical edges;
see Fig. 3. Edges of every column V j will be labeled by
integers 1, . . . ,d − 1 starting from the top edge. We shall
refer to Hj and V j as horizontal and vertical columns,
respectively.
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FIG. 3. (Color online) Partition of edges into “horizontal”
columns H 1, . . . ,Hd and vertical columns V 1, . . . ,V d−1. Every edge
is identified with the respective code qubit (solid dot).

For each edge e of the surface code lattice define a weight

we =
{
ε(1 − ε)−1 if e /∈ f,

ε−1(1 − ε) if e ∈ f.
(7)

Recall that ε is the error rate.
For any integer m � 1 and a vector λ ∈ Rm let A(λ) be the

antisymmetric matrix of size (m + 1)×(m + 1) that contains
λ above the main diagonal and −λ below the main diagonal.
For example, if λ = (λ1,λ2,λ3), then

A(λ) =

⎡
⎢⎢⎢⎢⎢⎣

0 λ1 0 0

−λ1 0 λ2 0

0 −λ2 0 λ3

0 0 −λ3 0

⎤
⎥⎥⎥⎥⎥⎦ .

Let D(λ) be the diagonal matrix of size m×m that contains
λ on the main diagonal. Define also a standard antisymmetric
matrix

M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1[
0 1

−1 0

]
. . . [

0 1
−1 0

]
−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

such that M0 has size 2d×2d. The matrix M0 contains d − 1
blocks of size 2×2 on the main diagonal and two nonzero
elements M1,2d = 1 = −M2d,1. All remaining elements of M0

are zero. Let I be the identity matrix of size 2d×2d.
The first step of our algorithm is to compute the prob-

ability of the input error π (f ) = (1 − ε)n−|f |ε|f | and the
coefficients we defined in Eq. (7). This step takes time
O(n). At each subsequent step of the algorithm we maintain
a pair (M,	), where M is an antisymmetric real matrix
of size 2d×2d and 	 � 0 is a real number. The algo-
rithm calls two functions SimulateHorizontal(j,M,	) and
SimulateVertical(j,M,	) that update the pair (M,	) by
applying a simple combination of matrix inversions and matrix

multiplications:

Algorithm 1
Input: X-type Pauli operator f
Output: Coset probability π(fGX)
Compute the coefficients we defined in Eq. (7)
π(f) ← (1 − ε)n−|f |ε|f |
M ← M0

Γ ← 2d−1

for j = 1 to d − 1 do
SimulateHorizontal(j,M,Γ)
SimulateVertical(j,M,Γ)

end for
SimulateHorizontal(d, M, Γ)
return π(f)

√
Γ/2 det (M + M0)

1/4

function SimulateHorizontal(j,M,Γ)
for i = 1 to d do

e ← i-th edge of the column Hj

Γ ← Γ (1 + w2
e)/2

ti ← (1 − w2
e)/(1 + w2

e)
si ← 2we/(1 + w2

e)
end for
A ← A(t10t20 . . . td−10td)
B ← D(s1s1s2s2 . . . sdsd)
Γ ← Γ

√
det (M + A)

M ← A − B(M + A)−1B
end function
function SimulateVertical(j,M,Γ)

for i = 1 to d − 1 do
e ← i-th edge of the column V j

Γ ← Γ (1 + w2
e)

ti ← 2we/(w2
e + 1)

si ← (1 − w2
e)/(1 + w2

e)
end for
A ← A(0t10t2 . . . 0td−10)
B ← D(1s1s1s2s2 . . . sd−1sd−11)
Γ ← Γ

√
det (M + A)

M ← A − B(M + A)−1B
end function

If implemented naively, each matrix inversion and each matrix
multiplication takes time O(d3). Likewise, computing each
determinant takes time O(d3). Simple counting then shows that
the overall running time of the algorithm is O(d4) = O(n2).
Suggestions on improving stability of the algorithm against
rounding errors can be found in Sec. VII.

C. Reduction to a matchgate quantum circuit

Consider any stabilizer g ∈ GX. A simple algebra shows
that

π (fg) = π (f )
∏
e∈g

we,

where we are the weights defined in Eq. (7). Thus

π (fGX) = π (f )Z(w),

where w = {we} is the list of coefficients we and

Z(w) =
∑
g∈GX

∏
e∈g

we. (9)
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Since the factor π (f ) is easy to compute, below we
concentrate on computing Z(w). We shall express Z(w) as a
matrix element of a certain quantum circuit acting on d qubits.
The circuit will be composed of single-qubit and two-qubit
gates

G(w) ≡
[

1 0
0 w

]
, G′(w) ≡

⎡
⎢⎣

1 0 0 w

0 1 w 0
0 w 1 0
w 0 0 1

⎤
⎥⎦ , (10)

where w is a real parameter. We note that G(w) and G′(w)
are not unitary gates. Let Hd = (C2)⊗d be the Hilbert space
of d qubits. For each horizontal column Hj and each vertical
column V j defined at Fig. 3 define linear operators Ĥ j ,V̂ j

acting on Hd such that

Ĥ j = G(we1 ) ⊗ · · · ⊗ G
(
wed

)
(11)

and

V̂ j = G′
12

(
we1

)
G′

23

(
we2

) · · · G′
d−1,d

(
wed−1

)
. (12)

Here the subscripts indicate the qubits acted upon by each gate
and ei denotes the ith edge of the respective columns Hj and
V j counting from the top to the bottom. Finally, define a state

|ψe〉 =
∑

x∈{0,1}deven

|x〉, (13)

where {0,1}deven is the set of all d-bit binary strings with the
even Hamming weight.

Lemma 1. One has

Z(w) = 〈ψe|Û |ψe〉, (14)

where

Û = Ĥ d V̂ d−1 · · · Ĥ 2V̂ 1Ĥ 1 (15)

is a quantum circuit on d qubits shown at Fig. 4.
The gates G(w) and G′(w) defined in Eq. (10) are examples

of the so-called matchgates discovered by Valiant [14]. It was

G

G’

G

G

G

G

G

G

G

G

G’

G’

G’

G     = G’ =1 0
0 w

⎛

⎝
⎜

⎞

⎠
⎟

1 w
1 w
w 1

w 1

FIG. 4. Computing the coset probabilities for the X-noise model
is equivalent to computing the matrix element 〈ψe|Û |ψe〉, where Û is
a quantum circuit on d qubits shown above and ψe is the superposition
of all even-weight d-bit strings. The above example is for d = 3. Each
gate depends on a parameter we defined in Eq. (7).

shown in [14] that quantum circuits composed of matchgates
can be efficiently simulated by classical means. In the next
section we describe an alternative algorithm for computing the
quantity 〈ψe|Û |ψe〉 based on fermionic Gaussian states with a
running time O(n2). [For comparison, the original algorithm
of Ref. [14] would have running time O(n3) since it requires
computing the Pfaffian of a matrix of size O(n).]

In the rest of this section we prove Lemma 1.
Proof.
Proposition 1. For any subset T ⊆ H such that |T ∩ Hj |

is even for all j = 1, . . . ,d, there exists a unique g ∈ GX such
that g ∩ H = T .

Proof. Recall that a subset of edges g is called a cycle
iff any site has even number of incident edges from g. Let
us first show that for any T ⊆ H there exists exactly one
cycle g such that g ∩ H = T . Indeed, consider any vertical
column V j . It comprises a set of sites u1, . . . ,ud and a set
of edges e1, . . . ,ed−1 (listed in the order from the top to the
bottom). Since g ∩ H 1 = T ∩ H 1 and g ∩ H 2 = T ∩ H 2, the
cycle condition at u1 uniquely determines ge1 . Once ge1 is
determined, the cycle condition u2 uniquely determines ge2 .
Continuing in this fashion uniquely determines g ∩ V j . Since
V j can be any vertical column, we conclude that g is uniquely
determined by T . It remains to note that GX coincides with
the set of cycles that have even intersection with any column
Hj . �
Let g(T ) ∈ GX be the Pauli operator constructed in Proposi-
tion 1. Then

Z(w) =
∑
T ⊆H

∏
e∈g(T )

we, (16)

where the sum ranges over all subsets T such that |T ∩ Hj | is
even for all j . Let T j ≡ T ∩ Hj . We can regard T j as a binary
d-bit string such that T

j

i = 1 iff the ith edge of Hj belongs
to T . Let |T j 〉 ∈ Hd be the basis vector corresponding to T j .
Since g(T ) ∩ Hj = T j , we have∏

e∈g(T )∩Hj

we = 〈T j |G(
we1

) ⊗ · · · ⊗ G
(
wed

)|T j 〉, (17)

where e1, . . . ,ed are the edges comprising the column Hj

listed in the order from the top to the bottom and G(w) is the
single-qubit gate defined in Eq. (10).

Consider now some vertical column V j . Let e1, . . . ,ed−1

be the edges comprising V j listed in the order from the top to
the bottom. We claim that∏

e∈g(T )∩V j

we = 〈T j |G′
12

(
we1

)
G′

23

(
we2

) · · ·

· · ·G′
d−1,d

(
wed−1

)|T j+1〉, (18)

where G′(w) is the two-qubit gate defined in Eq. (10) and
G′

i,i+1(w) : Hd → Hd denotes the gate G′(w) applied to the
pair of qubits i,i + 1. One can easily check Eq. (18) by noting
that G′(w) = I ⊗ I + wX ⊗ X and following the arguments
given in proof of Propostion 1 to reconstruct g(T ) ∩ V j from
T j and T j+1.

Let {0,1}deven be the set of all d-bit strings with even
Hamming weight. Combining Eqs. (16), (17), and (18), one
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arrives at

Z(w) =
∑

T 1,...,T d∈{0,1}deven

〈T d |Ĥ d |T d〉〈T d |V̂ d−1|T d−1〉 · · ·

· · · 〈T 2|V̂ 1|T 1〉〈T 1|Ĥ 1|T 1〉, (19)

where Ĥ j and V̂ j are the linear operators on Hd defined in
Eqs. (11) and (12).

Let Heven
d ⊆ Hd be the subspace spanned by vectors |x〉

with x ∈ {0,1}deven. Note that the operators Ĥ j and V̂ j preserve
Heven

d since the gates G(w) and G′(w) preserve the Hamming
weight modulo 2. The above observations imply that Z(w) =
〈ψe|Û |ψe〉, which completes the proof of Lemma 1. �

D. Fermionic Gaussian states

Let Hd be the Hilbert space of d qubits. For each p =
1, . . . ,2d define a Majorana operator ĉp acting on Hd such
that

ĉ2j−1 = Z1 · · · Zj−1Xj, ĉ2j = Z1 · · · Zj−1Yj . (20)

The Majorana operators obey the well-known commutation
rules

ĉpĉq + ĉq ĉp = 2Iδp,q, ĉ2
p = I, ĉ†p = ĉp. (21)

We shall often use a formula

Zj = (−i)ĉ2j−1ĉ2j , XjXj+1 = (−i)ĉ2j ĉ2j+1. (22)

A covariance matrix of a pure (unnormalized) state ψ ∈ Hd

is a 2d×2d matrix M with matrix elements

Mp,q = (−i)

2〈ψ |ψ〉 〈ψ |ĉpĉq − ĉq ĉp|ψ〉. (23)

From Eq. (21) one can easily check that M is a real
antisymmetric matrix.

Consider as an example the state ψe defined in Eq. (13).
Let us compute its covariance matrix M . One can easily check
that ψe is a stabilizer state with the stabilizer group

G(ψe) = 〈X1X2,X2X3, . . . ,Xd−1Xd,Z1Z2 · · · Zd〉.
Applying Eq. (22) one can get an alternative set of generators
that are quadratic in Majorana operators,

G(ψe) = 〈(−i)ĉ2ĉ3, . . . ,(−i)ĉ2d−2ĉ2d−1,(−i)ĉ1ĉ2d〉. (24)

This shows that M2j,2j+1 = 1 for all j = 1, . . . ,d − 1 and
M1,2d = 1. Furthermore, 〈ψe|ĉpĉq |ψe〉 = 0 whenever ĉpĉq

anticommutes with at least one of the generators defined in
Eq. (24). Combining the above observations one can easily
check that ψe has the covariance matrix M0 defined in Eq. (8).

A state ψ ∈ Hd is said to obey the Wick’s theorem iff the
expectation value of any even tuple of Majorana operators on
ψ can be computed from its covariance matrix M using the
formula

〈ψ |(−i)mĉp1 ĉp2 · · · ĉp2m
|ψ〉 = 	 · Pf

(
M|p1,p2,...,p2m

)
, (25)

where 	 = 〈ψ |ψ〉 is the norm of ψ , M|p1,p2,...,p2m
is the

2m×2m submatrix of M formed by the rows and columns
p1,p2, . . . ,p2m, and Pf is the Pfaffian [14]. Recall that the

Pfaffian of an antisymmetric matrix K of size 2m×2m is
defined as

Pf(K) = 1

2mm!
A(K1,2K3,4 · · · K2m−1,2m),

where A stands for the antisymmetrization over all (2m)!
permutations of indexes. For example, Pf(K) = K1,2 for
m = 1 and

Pf(K) = K1,2K3,4 − K1,3K2,4 + K1,2K3,4

for m = 2.
A state ψ ∈ Hd is called a (fermionic) Gaussian state iff

it obeys the Wick’s theorem and, in addition, all odd tuples
of Majorana operators have zero expectation value on ψ . By
definition, a Gaussian state ψ is fully specified by the pair
(M,	), where M is the covariance matrix of ψ and 	 = 〈ψ |ψ〉
is the norm. Below we shall identify a Gaussian state and the
corresponding pair (M,	).

We shall need the following well-known facts; see, for
instance, Ref. [23].

Fact 1. A state ψ is Gaussian iff its covariance matrix obeys
MMT = I .

One can easily check that standard antisymmetric matrix
M0 defined in Eq. (8) satisfies M0M

T
0 = I . This shows that

ψe is a Gaussian state with the covariance matrix M0 and the
norm 	 = 2d−1.

Fact 2. Let ψ = (M,	) and φ = (M ′,	′) be Gaussian
states of d qubits. Then

|〈φ|ψ〉| =
√

		′

2d/2
det (M + M ′)1/4

. (26)

Fact 3. Let G be a (complex) antisymmetric matrix of size
2d×2d. Consider an operator

W = exp (Ĝ), Ĝ =
∑

1�p<q�2d

Gp,q ĉpĉq . (27)

Then W maps Gaussian states to Gaussian states.
The last fact will be very important for us since the operators

Ĥ j and V̂ j constructed in Sec. V C have the form Eq. (27).
Indeed, consider the gates G(w)a and G′(w)a,a+1 where
G(w),G′(w) are defined in Eq. (10) and the subscripts indicate
which qubits are acted upon by the gate. One can easily check
that G(w)a = √

weβZa , where β is defined through e−2β = w.
Likewise, G′(w)a,a+1 = √

weβXaXa+1 . From Eq. (22) and
Eq. (11) one gets

Ĥ j = √
we1 · · ·wed

exp

(
d∑

a=1

βa(−i)ĉ2a−1ĉ2a

)
, (28)

where βa is defined through

e−2βa = wea
, a = 1, . . . ,d.

The relation between the parameter βa and the error rate ε

defined by the above equation and Eq. (7) is known as the
Nishimori line condition [2]. Likewise, Eq. (12) implies

V̂ j = √
we1 · · · wed−1 exp

(
d−1∑
a=1

βa(−i)ĉ2aĉ2a+1

)
. (29)

Since ψe is a Gaussian state, Fact 3 implies that all intermediate
states obtained from ψe by applying the operators Ĥ j and V̂ j
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are Gaussian. Therefore, Z(w) = 〈ψe|Ĥ d V̂ d−1 · · · V̂ 1Ĥ 1|ψe〉
can be efficiently computed if we have a rule describing how
the covariance matrix and the norm of a Gaussian state change
upon application of Ĥ j and V̂ j . The desired rule can be
obtained using a fermionic version of the Jamiolkowski duality
between states and linear maps introduced in [23]. Let us first
define a fermionic version of the maximally entangled state
for a bipartite system of d + d qubits. Let ĉ1, . . . ,ĉ4d be the
Majorana operators defined for a system of 2d qubits according
to Eq. (20). Define a 2d-qubit state normalized ψI such that
ψI has a stabilizer group

G(ψI ) = 〈(−i)ĉa ĉa+2d ,a = 1, . . . ,2d〉.
One can easily check that ψI has a covariance matrix

MI =
[

0 I

−I 0

]
,

where each block has dimensions 2d×2d. Fact 1 implies
that ψI is a Gaussian state. Let W = exp (Ĝ) be the operator
defined in Eq. (27). Define a 2d-qubit state

ψW = (W ⊗ I )ψI ∈ H2d . (30)

Note that ψW is a Gaussian state due to Fact 3. Let

MW =
[

A B

−BT D

]

be the covariance matrix of ψW . Here A,B,D are some
matrices of size 2d×2d. Let 	W = 〈ψW |ψW 〉. We shall need
the following fact proved in [23].

Fact 4. Let ψ = (M,	) be a Gaussian state. Then Wψ =
(M ′,	′), where

M ′ = A − B(M − D)−1BT (31)

and

	′ = 	W	
√

det (M − D). (32)

It remains to compute (MW,	W ) for the two special cases
W = Ĥ j and W = V̂ j .

We shall perform the calculation for W = Ĥ j since both
cases are quite similar. First we note that W is a product of op-
erators acting on disjoint pairs of Majorana modes (ĉ2a−1,ĉ2a).
Accordingly, ψW is a product of states involving disjoint
4-tuples of Majorana modes (ĉ2a−1,ĉ2a,ĉ2a−1+2d ,ĉ2a+2d ). It
suffices to compute the covariance matrix and the norm
for each of those 4-tuples. Equivalently, it suffices to do
the calculation for d = 1. In this case W = G(w) is the
single-qubit operator defined in Eq. (10). By definition, ψI

is a two-qubit state with stabilizers (−i)ĉ1ĉ3 = −Y1X2 and
(−i)ĉ2ĉ4 = X1Y2. It can be written explicitly as

|ψI 〉 = 1√
2

(|10〉 + i|01〉).

Hence

|ψW 〉 ≡ (W ⊗ I )|ψI 〉 = 1√
2

(w|10〉 + i|01〉).

This state has norm

	W = 〈ψW |ψW 〉 = 1
2 (1 + w2).

To compute the covariance matrix MW we shall use a shorthand
notation

〈·〉 ≡ 〈ψW | · |ψW 〉
〈ψW |ψW 〉 .

By definition,

(MW )p,q = 〈(−i)ĉpĉq〉 for 1 � p < q � 4.

A straightforward calculation shows that the only nonzero
elements (with p < q) of MW are

(MW )1,2 = 〈Z1〉 = 1 − w2

1 + w2
≡ t,

(MW )1,3 = 〈−Y1X2〉 = 2w

1 + w2
≡ s,

(MW )2,4 = 〈X1Y2〉 = s,

and

(MW )3,4 = 〈Z2〉 = −t.

Thus

MW =
[

A B

−BT D

]
, (33)

where

A = −D =
[

0 t

−t 0

]
, B =

[
s 0
0 s

]
.

For an arbitrary d we just need to take a direct sum of d

matrices MW as above and take the product of d normalizing
coefficients 	W defined above. This yields

	W =
d∏

a=1

1

2

(
1 + w2

ea

)
,

whereas MW is given by Eq. (33) where A = −D =
A(t1,0,t2,0, . . . ,0,td ) and B = D(s1,s1, . . . ,sd ,sd ) with

ta = 1 − w2
ea

1 + w2
ea

, sa = 2wea

1 + w2
ea

.

Combining the above analysis and Fact 4 we infer that the
function SimulateHorizontal(j,M,	) defined in Sec. V B de-
scribes how the covariance matrix and the norm of a Gaussian
state change under application of the operator Ĥ j . A similar
calculation shows that the function SimulateVertical(j,M,	)
describes how the covariance matrix and the norm of a
Gaussian state change under application of the operator V̂ j .
The very last step of Algorithm 1 corresponds to computing
the overlap between ψe and the final state Ĥ d · · · V̂ 1Ĥ 1ψe

using Eq. (26). This completes the proof of correctness of
Algorithm 1.

VI. APPROXIMATE ALGORITHM

In this section we describe an approximate algorithm for
computing the coset probabilities. It is applicable to a general
stochastic i.i.d. Pauli noise including the depolarizing noise.
We assume some level of familiarity with matrix product states
and tensor networks; see [29] or [28] for a thorough review.
For the sake of completeness we summarize some basic facts
about matrix product states in Sec. VI C.

032326-8



EFFICIENT ALGORITHMS FOR MAXIMUM LIKELIHOOD . . . PHYSICAL REVIEW A 90, 032326 (2014)

FIG. 5. Restriction of a stabilizer g(α; β) onto the edge e depends
only on the variables αu(e), αv(e) and βp(e), βq(e).

A. Construction of the tensor network

Let fG be one of the cosets Cs
I ,Cs

X,Cs
Y ,Cs

Z defined in Sec. II.
Our goal is to compute the coset probability π (fG). Let π1

be any probability distribution on the single-qubit Pauli group.
For example,

π1(X) = π1(Y ) = π1(Z) = ε/3, π1(I ) = 1 − ε

for the depolarizing noise with a rate ε. By definition,

π (fG) =
∑
g∈G

∏
e

π1(fege), (34)

where the product ranges over all edges of the surface code
lattice. Let us parametrize g ∈ G by binary variables αu,βp ∈
{0,1} associated with sites u and plaquettes p such that

g(α; β) =
∏
u

(Au)αu ·
∏
p

(Bp)βp .

Here we used a convention (Bp)0 ≡ I and (Au)0 ≡ I . Let e be
some edge of the surface code lattice with end points u(e),v(e)
and adjacent plaquettes p(e),q(e); see Fig. 5. Let ge be the
restriction of g onto the qubit e. Clearly, ge depends only on
the bits αu(e),αv(e) and βp(e),βq(e). Thus we can write

ge(α; β) = ge(αu(e),αv(e); βq(e),βq(e)),

where ge(i,j ; k,l) is a function of just four binary variables
i,j,k,l ∈ {0,1}. For horizontal edges located at the left or
the right boundary of the lattice the variable αu(e) or αv(e)

respectively is missing. Likewise, for horizontal edges located
at the top or the bottom boundary the variable βp(e) or βq(e)

respectively is missing. We arrive at

π (fG) =
∑

α

∑
β

T (α; β), (35)

where the sums range over binary strings α,β ∈ {0,1}d(d−1)

corresponding to all possible configurations of variables αu,βp

and

T (α; β) =
∏

e

π1(fege(αu(e),αv(e); βq(e),βq(e))). (36)

The right-hand side of Eq. (35) coincides with the con-
traction value of a properly defined tensor network on a
two-dimensional grid. To define this tensor network, consider
the extended surface code lattice shown on Fig. 6. The extended
lattice has three types of nodes which we call s nodes, h

nodes, and v nodes. Each s node represents a location of a
stabilizer (either a site stabilizer Au or plaquette stabilizer
Bp), while h nodes and v nodes represent code qubits located
on horizontal and vertical edges of the original surface code
lattice, respectively. We shall refer to edges of the extended

FIG. 6. Extended surface code lattice for d = 3. Locations of
stabilizers are represented by s nodes. Code qubits located on
horizontal and vertical edges of the original lattice are represented by
h nodes and v nodes, respectively. In general, the extended lattice has
dimensions (2d − 1)×(2d − 1).

lattice as links to distinguish them from edges of the original
surface code lattice.

Consider any configuration of variables α,β and the
corresponding term T (α; β) in Eq. (35). For each site stabilizer
Au let us copy the corresponding variable αu to all links
incident to the s node u. Likewise, for each plaquette stabilizer
Bp let us copy the corresponding variable βp to all links
incident to the s node p. We obtain a labeling of the links
by binary variables γ (α; β) with the property that all links
incident to any s node have the same label. Let us call such a
link labeling valid. By definition, T (α; β) is a product of terms

Te(α; β) ≡ π1(fege(αu(e),αv(e); βq(e),βq(e)))

associated with h nodes and v nodes e of the extended lattice.
Since α and β are uniquely determined by the link labeling
γ (α; β), we can also write Te(α; β) as a function of γ , that is,
Te(α; β) = Te(γ ). This shows that

π (fG) =
∑

valid γ

∏
e∈h,v

Te(γ ), (37)

where the product is over all h nodes and v nodes and the sum
ranges over all valid link labelings. We can now extend the
sum in Eq. (37) to all link labelings γ by adding extra terms
Te(γ ) ∈ {0,1} associated with s nodes e such that Te(γ ) = 1
iff all links incident to e have the same label and Te(γ ) = 0
otherwise. We arrive at

π (fG) =
∑

γ

∏
e

Te(γ ), (38)

Now the product ranges over all nodes of the extended lattice
and the sum ranges over all link labelings. Furthermore, by
construction, each term Te(γ ) depends only on the labels of
links incident to the node e. The expression in the right-hand
side of Eq. (38) is known as a contraction value of the
tensor network defined by the collection of tensors Te(γ ).
Tensor networks are usually represented by diagrams like
the one shown on Fig. 6 such that each box on the diagram
carries a tensor with several indexes. Indexes of a tensor are
associated with the links emanating from the corresponding
box. Diagrams representing the tensors Te(γ ) are shown on
Eqs. (39), (40), and (41). All tensor indexes i,j,k,l on these
diagrams take values 0,1. For tensors located at the boundary
some of the indexes may be missing. Note that the order of
arguments of ge is interchanged in Eqs. (40) and (41). This
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is simply because the qubits located on horizontal edges (h
nodes) have site stabilizers on the left and on the right, whereas
qubits located on vertical edges (v nodes) have site stabilizers
on the top and on the bottom:

s node: =
{

1 if i = j = k = l,

0 otherwise, (39)

h node: = π1(fege(j,l; i,k)), (40)

v node: = π1(fege(i,k; j,l)). (41)

B. Approximate contraction algorithm

Let MPS(χ ) and MPO(χ ) be the set of matrix product
states and matrix product operators defined on a chain of
2d − 1 qubits and having the bond dimension χ . In this
section we shall identify a matrix product state (operator)
with the corresponding tensor network. Consider a partition
of the extended surface code lattice into columns shown on
Fig. 7. Each column V j and each internal column Hj defines
a matrix product operator V̂ j ∈ MPO(2) and Ĥ j ∈ MPO(2),
respectively. The first and the last columns H 1,Hd define
matrix product states Ĥ 1,Ĥ d ∈ MPS(2). Here we identify
horizontal links of the lattice with physical indexes of MPO
and MPS, while vertical links correspond to virtual indexes.
By definition, contracting a consecutive pair of columns is
equivalent to taking the product of the corresponding MPOs.
Thus Eq. (38) can be rewritten as

π (fG) = 〈Ĥ d |V̂ d−1 · · · Ĥ 2V̂ 1|Ĥ 1〉. (42)

To approximate the right-hand side of Eq. (42) we shall
employ the algorithm proposed by Murg, Verstraete, and Cirac
[26,27]; see also [34,35]. The approximation accuracy of the
algorithm is controlled by an integer parameter χ � 2 such that

FIG. 7. (Color online) Partition of the extended lattice into “hor-
izontal” columns H 1, . . . ,Hd and “vertical” columns V 1, . . . ,V d−1

(here d = 3).

the algorithm becomes exact if χ is exponentially large in d. At
each step of the algorithm we maintain a state ψ ∈ MPS(χ ).
Such a state can be described by a list of 2d − 1 tensors of
dimension 2×χ×χ which requires O(dχ2) real parameters.
We begin by initializing ψ = Ĥ 1. Note that Ĥ 1 ∈ MPS(2) ⊆
MPS(χ ). Each step of the algorithm updates ψ according
to ψ → Ĥ jψ (even steps) or ψ → V̂ jψ (odd steps). This
update is realized simply by taking the product of tensors of
ψ with the respective tensors of Ĥ j or V̂ j which takes time
O(dχ2). Since Ĥ j and V̂ j map MPS(χ ) to MPS(2χ ), extra
measures have to be taken to reduce the bond dimension after
each update. To this end we apply the truncation algorithm
described in Sec. 4.5 of Ref. [29]. We shall use a function
Truncate() that takes as input a state φ ∈ MPS(2χ ) and returns
a state ψ ∈ MPS(χ ) approximating φ. Such an approximation
is obtained by computing the Schmidt decomposition of φ

across each bipartite cut of the chain and retaining only the χ

largest Schmidt coefficients. A detailed implementation of the
function Truncate() is described in the next section. The last
step of the algorithm is to compute the inner product between
the final state ψ ∈ MPS(χ ) and Ĥ d ∈ MPS(2). This can be
done in time O(dχ3) by applying the standard contraction
method for MPS. As we explain in the next section, each call
to the function Truncate() involves 2d − 1 QR decompositions
and SVD decompositions on matrices of size 2χ×2χ and
2χ×χ , respectively, which takes time O(dχ3). Since we need
one truncation for each column of the lattice, the overall
running time of the algorithm is O(d2χ3) = O(nχ3). The
above steps can be summarized as follows:

Algorithm 2
Input: Pauli operator f
Output: Approximation to π(fG)

ψ ← Ĥ1

for j = 1 to d − 2 do
ψ ←Truncate(V̂ jψ)
ψ ←Truncate(Ĥj+1ψ)

end for
ψ ←Truncate(V̂ d−1ψ)
return 〈Ĥd|ψ〉

C. Truncation of a matrix product state

In this section we describe implementation of the function
Truncate() in Algorithm 2. Our implementation closely follows
Sec. 4.5 of Ref. [29]. For the sake of completeness, we begin by
summarizing the necessary facts about matrix product states.
Below we use a notation L ≡ 2d − 1 for the number of qubits
per column of the lattice.

A matrix product state |ψ〉 ∈ (C2)⊗L describing a chain
of L qubits is defined by a list of 2L matrices A0(s),A1(s),
where s = 1, . . . ,L is a qubit index (site of the chain). Any
amplitude of ψ in the standard basis is expressed as a product
of L matrices

〈x|ψ〉 = Ax1 (1)Ax2 (2) · · · AxL
(L), x ∈ {0,1}L. (43)

We shall use a shorthand notation A(s) for the pair of matrices
A0(s),A1(s) at some particular qubit s. Likewise A will stand
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for the full matrix product state. The L-qubit state defined in
Eq. (43) will be denoted ψ(A). Let r(s) and c(s) be the number
of rows and columns respectively in A0,1(s) [we shall always
assume A0(s) and A1(s) have the same dimensions]. Since we
want the product of matrices in Eq. (43) to be a 1×1 matrix (a
complex number), dimensions of the matrices must satisfy

r(1) = 1, c(L) = 1, c(s) = r(s + 1) for 1 � s < L.

A matrix product state is said to have a bond dimension χ iff
r(s) � χ and c(s) � χ for all qubits s. Let MPS(χ ) be the
set of all matrix product states A on L qubits with the bond
dimension χ . We shall say that A(s) has a left canonical form
(LCF) or right canonical form (RCF) iff

A0(s)†A0(s) + A1(s)†A1(s) = Ic(s) (44)

or

A0(s)A0(s)† + A1(s)A1(s)† = Ir(s), (45)

respectively. Here In denotes the identity matrix of size n×n.
The importance of LCF and RCF comes from the following
lemma. Here and below we use a notation ei for the column
vector [0, . . . ,0,1,0, . . . ,0]T with “1” at the ith coordinate.

Lemma 2. Suppose A(s) has LCF for s = 1, . . . ,m. For
each α = 1, . . . ,c(m) define a state φα ∈ (C2)⊗m with ampli-
tudes

〈x|φα〉 = Ax1 (1)Ax2 (2) · · · Axm
(m)eα, x ∈ {0,1}m. (46)

Then φα form an orthonormal family of vectors, i.e.,
〈φβ |φα〉 = δα,β for all 1 � α,β � c(m).

Proof. Indeed, using the definition of φα the inner product
〈φβ |φα〉 = ∑

x〈φβ |x〉〈x|φα〉 can be written as

∑
x

(eβ)TAxm
(m)† · · ·Ax1 (1)†Ax1 (1) · · · Axm

(m)eα,

where the sum runs over x ∈ {0,1}m. The LCF at qubit 1
implies

∑
x1

Ax1 (1)†Ax1 (1) = Ic(1). Hence 〈φβ |φα〉 is equal to

∑
x

(eβ)TAxm
(m)† · · ·Ax2 (2)†Ax2 (2) · · · Axm

(m)eα,

where the sum runs over x ∈ {0,1}m−1. Applying the same
argument to the remaining qubits one arrives at 〈φβ |φα〉 =
(eβ)Teα = δα,β . �

Exactly the same arguments show that if A(s) has RCF for
all s > m then states θα ∈ (C2)⊗(L−m) with amplitudes

〈y|θβ〉 = (eβ)TAy1 (m + 1) · · · AyL−m
(L) (47)

form an orthonormal family for 1 � β � r(m + 1).
The first step of the function Truncate is transforming all

matrices A(s) to LCF. We shall describe this step by a function
LeftCanonical(A) that takes as input a matrix product state
A ∈ MPS(χ ) and returns a pair (	,B), where 	 ∈ C is a
scalar and B ∈ MPS(χ ) is a matrix product state such that
ψ(A) = 	 · ψ(B) and B has LCF at every qubit. We shall

define LeftCanonical(A) by the following algorithm:

function (Γ, B)=LeftCanonical(A)
for s = 1 to L do

(Q, R) ← QR-decomposition of A(s)
as defined in Eqs (48,49)

B0(s) ← Q0

B1(s) ← Q1

if s < L then
A0(s + 1) ← RA0(s + 1)
A1(s + 1) ← RA1(s + 1)

else
Γ ← R

end if
end for

end function

Let us explain the QR-decomposition step in the above
algorithm and prove its correctness. Consider any qubit s and
represent A(s) as a block matrix

A(s) =
[
A0(s)
A1(s)

]
. (48)

Note that A(s) has 2r(s) rows and c(s) columns. Let m =
min {c(s),2r(s)}. Applying the “economic” QR decomposition
to A(s) one gets

A(s) = QR, (49)

where Q has dimensions 2r(s)×m, R has dimensions m×c(s),
and columns of Q form an orthonormal family of vectors, that
is, Q†Q = Im. Finally, R is an upper triangular matrix (this
property will not be important for us). Let us write

Q =
[
Q0

Q1

]
,

where Q0,1 have dimensions r(s)×m. The property Q†Q =
Im is equivalent to Q

†
0Q0 + Q

†
1Q1 = Im. Hence B(s) de-

fined in the above algorithm has LCF. Note that dimen-
sions of B0,1(s) may or may not be equal to the ones
of A0,1(s). Let A′

0,1(s + 1) = RA0,1(s + 1) be the updated
version of A(s + 1) defined in the algorithm. Obviously
Ax(s)Ay(s + 1) = Bx(s)A′

y(s + 1) for any x,y = 0,1. Thus
Ax1 (1) · · · AxL

(L) is equal to

Bx1 (1) · · ·Bxs
(s)A′

xs+1
(s + 1)Axs+2 (s + 2) · · · AxL

(L)

for all x ∈ {0,1}L and for all s = 1, . . . ,L − 1. The last step
of the algorithm (s = L) applies a QR decomposition to a
column vector A(L), possibly updated by the previous step of
the algorithm. Hence Q is a unit-norm column vector of size
2r(L), while R is a scalar which determines normalization of
the overall state. This proves that ψ(A) = 	 · ψ(B) and B has
LCF at every qubit.

Suppose the input matrix product state A has bond dimen-
sion χ . Then the computational cost of each QR decomposition
is O(χ3). Therefore, the function LeftCanonical(A) can be
computed in time O(Lχ3). Since no step of the algorithm
increases dimensions of the matrices, the final matrix product
state B also has bond dimension χ .

We are now ready to describe the function Truncate. Choose
any integer 1 � m � L and partition the chain as L ∪ m ∪ R,
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where

L = {1, . . . ,m − 1}, R = {m + 1, . . . ,L}.
Consider a matrix product state A such that A(s) has LCF for
all s ∈ L and RCF for all s ∈ R. Suppose also that the matrices
A0,1(s) have dimensions at most χ for all s ∈ R and at most
χ̃ for all s ∈ L. We assume that χ̃ > χ (we shall be interested
in the case χ̃ = 2χ ). Using the orthonormal families of states
φα and θα defined in Eqs. (46) and (47) one can write ψ(A) as

ψ(A) =
r(m)∑
α=1

c(m)∑
β=1

∑
x=0,1

Ax(m)α,β |φα ⊗ x ⊗ θβ〉. (50)

We shall compute the Schmidt decomposition of ψ(A) with
respect to the partition L ∪ {m,R} and truncate this decompo-
sition by retaining only the χ largest Schmidt coefficients. To
this end consider the singular value decomposition (SVD) of
A(m), namely,

A(m) ≡ [A0(m) | A1(m)] = USV †, (51)

where the matrices U,S,V have dimensions

dim U = r(m)×n, dim S = n×n,

dim V = 2c(m)×n,

with

n = min {r(m),2c(m)}.
The matrix S is diagonal such that Si,i is the ith largest singular
value of A(m). The matrices U and V are isometries, that is,

U †U = V †V = In.

Let us represent V as a block matrix

V =
[
V0

V1

]
, (52)

where V0 and V1 have dimensions c(m)×n. Using the above
SVD one can rewrite ψ(A) as

ψ(A) =
n∑

i=1

Si,i |φ̂i〉 ⊗ |θ̂ i〉, (53)

where φ̂i and θ̂ i are orthonormal family of n states defined as

|φ̂i〉 =
r(m)∑
α=1

Uα,i |φα〉 (54)

and

|θ̂ i〉 =
c(m)∑
β=1

(V ∗
0 )β,i |0 ⊗ θβ〉 + (V ∗

1 )β,i |1 ⊗ θβ〉. (55)

We conclude that Eq. (53) defines the Schmidt decomposition
of ψ(A) with respect to the partition L ∪ {m,R}, while Si,i

are the Schmidt coefficients. The best rank-χ approximation
to ψ(A) which we denote ψ ′(A) is obtained from Eq. (53) by
retaining χ largest Schmidt coefficients, that is,

ψ ′(A) =
χ∑

i=1

Si,i |φ̂i〉 ⊗ |θ̂ i〉. (56)

Decompose matrices U,S,V into blocks such that

U = [U ′ | U ′′], S =
[
S ′ 0
0 S ′′

]
, V ′ = [V ′ | V ′′]. (57)

By definition, U ′,S ′,V ′ have dimensions

dim U ′ = r(m)×χ, dim S ′ = χ×χ,

dim V ′ = 2c(m)×χ.

Furthermore, S ′ is a square diagonal matrix that contains χ

largest singular values of A(m), while U ′ and V ′ are isometries,
that is, (U ′)†U ′ = Iχ and (V ′)†V ′ = Iχ . We conclude that
ψ ′(A) = ψ(A′), where A′(s) = A(s) for s ∈ R and for s ∈
L \ m,

A′
0,1(m − 1) = A0,1(m − 1)U ′S ′, A′(m) = (V ′)†.

The fact that V ′ is an isometry implies that A′(m) has RCF,
so we can apply the above procedure again with L = L \
{m − 1} and R = R ∪ {m}. Starting from m = L and moving
towards the left boundary of the chain one can reduce the bond
dimension from χ̃ to χ . The above truncation algorithm can
be summarized as follows:

function Truncate(A)
(Γ, A) ←LeftCanonical(A)
for m = L to 1 do

(U, S, V ) ← svd-decomposition of A(m)
defined in Eq. (51)

U ′, S′, V ′ ← submatrices of U, S, V
defined in Eq. (57)

A0,1(m − 1) ← A0,1(m − 1)U ′S′
A0,1(m) ← (V ′

0,1)
†

end for
return Γ · A

end function

Here we decomposed V ′ into blocks V ′
0 and V ′

1 similar to
Eq. (52).

VII. NUMERICAL RESULTS

We have studied the following combinations of noise
models and decoders.

(1) X noise, ML decoder.
(2) X noise, MPS decoder.
(3) X noise, MWM decoder.
(4) Depolarizing noise, MPS decoder.
(5) Depolarizing noise, MWM decoder.
For each of the above combinations we estimated the

probability of a logical error—the decoding outcome in which
the recovery operator differs from the actual error by a
logical Pauli operator (we do not differentiate between X,Y ,
or Z logical errors). The performance of each decoder was
measured in terms of its error threshold and its badness
parameter—the ratio between the logical error probabilities
of a given decoder and the best available decoder for the
considered noise model. Thus badness �1 for any decoder
with smaller values indicating better decoders. The exact ML
decoder and MPS decoders were implemented as described
in Sec. V and Sec. VI, respectively. The MWM decoder was
implemented by a reduction from the minimum weight perfect
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FIG. 8. (Color online) X noise: exact implementation of the ML
decoder. The data suggest that the threshold error rate ε0 is between
10.9% and 11%, which is in a good agreement with the estimate
ε0 = 10.93(2) of Ref. [24] which calculated the phase-transition point
in the respective spin model. Each curve has data points at error rates
ε = 10.4,10.5, . . . ,11.3%. To compute the logical error probability,
at least 5000 failed error correction trials have been accumulated for
each data point.

matching problem to the maximum weight matching problem
as described in Ref. [36].

Let us first discuss our results for the X noise. The
threshold error rate ε0 of the ML decoder coincides with the
critical density of antiferromagnetic bonds in the random-
bond Ising model on the Nishimori line [2]. The latter
has been estimated numerically by Mertz and Chalker [24]
who found ε0 = 10.93(2)%. Our data shown at Fig. 8
suggest that 10.9% � ε0 � 11%, which is in a good agree-
ment with the estimate of Ref. [24]. For comparison, the
MWM decoder is known to have the threshold ε0 ≈ 10.31%;
see [37].

The performance of different decoders for a fixed code
distance d = 25 and a wide range of error rates is shown
at Fig. 9. We observed that the MWM decoder remains
nearly optimal for all simulated error rates with the badness
parameter �2, even though for these error rates the logical
error probability changes by several orders of magnitude.
The slight difference between MLD and the MWM decoder
can be explained by the fact that the latter ignores the error
degeneracy [32]. The data shown on Fig. 9 suggests that for X

noise ignoring the error degeneracy does not have a significant
impact on the performance, even for large error rates and large
code distances.

Perhaps more surprisingly, Fig. 9 demonstrates that the
MPS decoder with a relatively small bond dimension χ = 6,8
is virtually indistinguishable from the optimal one in terms of
the logical error probability. This serves as a numerical proof
of correctness for the MPS decoder.

We observed numerically that the exact MLD algorithm
described in Sec. V becomes very sensitive to rounding
errors in the regime of large code distances and small error
rates. One way to suppress rounding errors is to enforce an
orthogonality condition MT M = I on the covariance matrix
M in Algorithm 1. The orthogonality condition is satisfied
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FIG. 9. (Color online) X noise: exact and approximate imple-
mentations of the ML decoder. Logical error probability as a function
of the error rate ε is shown. The curves representing the exact MLD
and MPS decoders with χ = 6,8 are too close to be distinguishable
on the main plot. The red curve represents the standard minimum
weight matching decoder. The inset shows “badness” of various
decoders as a function of the error rate. We define the badness as
the ratio between logical error probabilities of a given decoder and
the optimal decoder (MLD). Each curve has data points at error rates
ε = 5,5.5,6, . . . ,11%. To compute the logical error probability, at
least 1000 failed error correction trials have been accumulated for
each data point.

automatically if all arithmetic operations are perfect (because
M represents a covariance matrix of a pure Gaussian state;
see Sec. V D for details). In practice, we observed that the
orthogonality can be quickly lost if no special measures are
taken. A simple and computationally cheap solution of the
above problem is to compute the QR decomposition M = QR,
where Q is an orthogonal matrix and R is an upper-triangular
matrix. Note that MT M = I is possible only if R is a diagonal
matrix with entries ±1 on the diagonal. This form of R can
be easily enforced by setting all off-diagonal entries of R

to zero and replacing each diagonal entry Ri,i by the sign
of Ri,i . Let R̃ be the resulting diagonal matrix. We found
that replacing M by M ′ ≡ [QR̃ − (QR̃)T ]/2 after each call
to the functions SimulateHorizontal and SimulateVertical in
Algorithm 1 makes the algorithm more stable against rounding
errors.

Let us now discuss the depolarizing noise. In this case
we only have an approximate implementation of MLD with
no direct means of estimating the approximation precision.
Hence the first natural question is whether the MPS decoder
with a fixed bond dimension χ has a nonzero error threshold
ε0. Our data suggests (although not conclusively) that the
answer is “yes.” Most importantly, we observed an exponential
decay of the logical error probability as a function of the
code distance d for a fixed error rate, see Fig. 10, where
we used χ = 6. Assuming that the observed decay does not
saturate for larger d, the data shown at Fig. 10 gives a lower
bound ε0 � 14%. The logical error probability as a function
of the error rate for a fixed d is shown on Fig. 11 which
also exhibits a typical thresholdlike behavior and suggests that
17% � ε0 � 18.5%. Previously studied approximate versions
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FIG. 10. (Color online) Depolarizing noise: logical error prob-
ability of the MPS decoder with χ = 6 as a function of the code
distance d for a fixed error rate ε = 10,12,14%. To compute the
logical error probability, at least 1000 failed error correction trials
have been accumulated for each data point.

of MLD such as the renormalization group decoder [11] and
the Markov chain decoder [12], as well the MWM decoder [38]
have error thresholds between 15% and 16%. The threshold
of the exact ML decoder corresponding to the phase-transition
point in the disordered eight-vertex Ising model is known to
be ε0 ≈ 18.9(3)%; see Ref. [10]. Since the correlation length
of the Ising model diverges at the phase-transition point, we
expect that the MPS decoder can only achieve this optimal
threshold if the bond dimension χ is a growing function of the
code distance d.

The performance of different decoders for a fixed code
distance d = 25 and a wide range of error rates is shown at
Fig. 12. In a striking contrast with the analogous X-noise
data, we observed that the MWM decoder becomes highly
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FIG. 11. (Color online) Depolarizing noise: logical error proba-
bility of the MPS decoder with χ = 6 as a function of the error
rate ε. Assuming a nonzero error threshold ε0, the data suggest that
17% � ε0 � 18.5%. To compute the logical error probability, at least
5000 failed error correction trials have been accumulated for each
data point.
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FIG. 12. (Color online) Depolarizing noise: approximate imple-
mentations of the ML decoder. Logical error probability as a function
of the error rate ε is shown. The red curve represents the minimum
weight matching decoder. The inset shows “badness” of various
decoders as a function of the error rate. We define the badness
as the ratio between logical error probabilities of a given decoder
and the best decoder (MPS decoder with χ = 8). Each curve has
data points at error rates ε = 9,10, . . . ,20%. To compute the logical
error probability, at least 1000 failed error correction trials have been
accumulated for each data point.

nonoptimal in the regime of small error rates with the badness
parameter above 100. This can be attributed to the fact that
MWM decoder often fails to find the minimum weight error
consistent with the syndrome since it ignores correlations
between X and Z errors [33]. We also observed that the logical
error probability of MPS decoders converges very quickly as
one increases the bond dimension. The data shown on Fig. 12
indicates that the MPS decoder with χ = 6 is nearly optimal
for all error rates and all code distances d � 25.

While the logical error probability is the most natural
figure of merit, one may also ask how well the MPS-based
algorithm with a small bond dimension χ approximates the
coset probabilities for some fixed syndrome. For simplicity, we
considered the trivial syndrome, that is, the cosets G,XG,YG,
and ZG. We observed a very fast convergence for the most
likely coset and a poor convergence for the remaining cosets;
see Tables I and II. Since the only goal of the decoder is to
identify the most likely coset, the slower convergence for some
of the unlikely cosets might not be a serious drawback.

TABLE I. X noise: probabilities of the two cosets computed
by the MPS algorithm. The simulation parameters are ε = 5% and
d = 25. The exact values of the coset probabilities are π (G) =
1.78283×10−27 and π (XG) = 5.58438×10−57.

χ π (G)×1027 π (X̄G)×1057

2 1.78275 4.72777
3 1.78277 5.52579
4 1.78283 5.80294
5 1.78283 6.03204
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TABLE II. Depolarizing noise: probabilities of the four cosets
computed by the MPS algorithm. The simulation parameters are
ε = 10% and d = 25.

χ π (G)×1055 π (X̄G)×1089 π (ȲG)×10122 π (Z̄G)×1090

2 1.11782 2.81823 36.0410 1.64802
3 1.11781 2.81777 7.62958 1.70803
4 1.11781 2.81781 2.79984 1.78193
5 1.11781 2.81781 3.24487 2.94628

The MPS decoder offers a lot of possibilities for improve-
ment. One rather obvious improvement (employed in the above
simulations) is to use a single run of Algorithm 2 to compute
two different coset probabilities. Indeed, suppose we choose
the logical operator Z supported in the rightmost column of
the lattice denoted Hd on Fig. 7. Then the tensor networks
constructed for the cosets Cs

I and Cs
Z are exactly the same

except for the column Hd . Since we contract the network
column by column starting from the leftmost column H 1, the
difference between the two cosets manifests itself only in the
very last step of Algorithm 2 (computing the inner product

〈Ĥ d |ψ〉). Since this step takes a negligible time compared
with the rest of the algorithm, it makes sense to compute both
probabilities π (Cs

I ) and π (Cs
Z) by performing a single network

contraction. The same observation applies to the probabilities
π (Cs

X) and π (Cs
Y ). We also expect that a choice of the standard

error f (s) consistent with the syndrome s may affect the
convergence of the algorithm. While we have chosen f (s)
by connecting each syndrome to the left-top boundary, it may
be advantageous to choose f (s) as a small-weight error, for
example, using the MWM decoder. Finally, a challenging open
problem is how to extend the MPS decoder to noisy syndrome
extraction. A naive extension would require a contraction of
a 3D tensor network. We anticipate that this problem can be
attacked using recently developed algorithms for simulating
2D quantum systems based on projected entangled pairs States
(PEPS); see [26,27].
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