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Weaving quantum optical frequency combs into continuous-variable hypercubic cluster states
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Cluster states with higher-dimensional lattices that cannot be physically embedded in three-dimensional space
have important theoretical interest in quantum computation and quantum simulation of topologically ordered
condensed-matter systems. We present a simple, scalable, top-down method of entangling the quantum optical
frequency comb into hypercubic-lattice continuous-variable cluster states of a size of about 104 quantum field
modes, using existing technology. A hypercubic lattice of dimension D (linear, square, cubic, hypercubic, etc.)
requires but D optical parametric oscillators with bichromatic pumps whose frequency splittings alone determine
the lattice dimensionality and the number of copies of the state.
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I. INTRODUCTION

Quantum computing promises exponential speedup for
particular computational tasks, such as integer factoring
[1], which bears importance for encryption technology, and
quantum simulation [2], which holds vast scientific potential.
The two main flavors of quantum computing are the circuit
model [3] and the measurement-based model [4] and, in
particular, one-way quantum computing [5,6], in which all
entanglement resources are generic and provided up front
in the form of a cluster state [7,8] with square-lattice [5,9]
structure. One-way quantum computing is experimentally
appealing because measurements are often easier to implement
than coherent control of quantum information [10].

Nevertheless, scalable generation of cluster states remains
a formidable challenge toward which many subfields of
physics have converged [11]. Most proposed experimental
implementations are “bottom-up” approaches, in which
qubits are brought together and entangled one by one
[11]. Alternatively, individual quantum modes of light,
or “qumodes,” can be entangled into continuous-variable
(CV) cluster states [8] and used for universal one-way
quantum computing [6,9] based on CV quantum information
[12–15]. Each qumode is an independent quantum oscillator
mode of the electromagnetic field with amplitude- and
phase-quadrature field observables, q̂ = 1√

2
(â + â†) and p̂ =

i√
2
(â† − â), the analogs of oscillator position and momentum.

A temporal bottom-up approach has been used to sequentially
generate the largest one-dimensional cluster state ever created
to date [16]: 10 000 qumodes, only available two at a
time—which still allows quantum computing [17,18].

Two previous “top-down” approaches are ultracold neutral
atoms undergoing a Mott insulator transition in an optical
lattice [19] and the method discovered by Menicucci, Flammia,
and Pfister [20,21] for generating vast square-grid cluster
states over the qumodes of the quantum optical frequency
comb (QOFC) of a single optical parametric oscillator (OPO).
Qumode-based implementations promise massive scalability
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in resource-state generation; but for quantum computing, they
will require non-Gaussian processing [22] and a fault-tolerant
encoding of qumodes due to errors from finite squeezing [9,23]
and photon loss [24]. Photon-number-resolving detection [25]
is a crucial enabler in this respect. Moreover, it is important to
note here that the existence of a fault-tolerance threshold for
CV quantum computing has now been proved [26].

The proposal of Ref. [27] was realized in 2011, with a record
60 qumodes in the QOFC of a single OPO simultaneously and
identically entangled into 15 copies of a quadripartite cluster
state with a square graph [28]. More recently, scalable dual-rail
quantum-wire cluster states were experimentally realized over
the QOFC of a single OPO: on the one hand, one 60-qumode
copy and, on the other hand, two independent 30-qumode
copies were fully characterized [29]. In this work like in
the work of Ref. [28], all qumodes were simultaneously avail-
able and the number of involved qumodes was only restricted
by a technical limitation: limited local oscillator tunability in
the measurement technique. A recent characterization of the
OPO gain bandwidth shows that at least 6 700 qumodes, in
lieu of 60, should actually be involved [30]. The experimental
confirmation of this assertion is in progress.

In this article, we propose a natural extension of the
aforementioned dual-rail quantum-wire generation—which
we review below—to generating CV cluster states with
hypercubic-lattice graphs. Moreover, generating large
qumode square-lattice cluster states also allows one to simulate
difficult measurements on topologically ordered systems of
oscillators [31].

While a square (two-hypercube) lattice is sufficient for
universal one-way quantum computation [5,6], error thresh-
olds two orders of magnitude higher than with concatenated
encodings are achievable using qubit cluster states with cubic
lattices [32]. This is based on the error-correction properties
of Kitaev’s surface code [33], which is closely related to both
qubit [34] and qumode [35] cluster states.

Finally, hypercubic-lattice cluster states are likely to have
a similar connection to four-dimensional surface-code states
[36]. When these codes are implemented as the ground space
of a local Hamiltonian, they have remarkable self-correction
properties. Our optical construction methods circumvent the
limitations of a three-dimensional world, enabling simulation
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of measurements on these systems and possibly paving the
way for Hamiltonian-based implementations, for instance, in
circuit QED [37,38].

Previous proposals for scalable construction of
CV multipartite entangled states using a single OPO
[20,21,27,28,39,40] required mode-concurrent interactions
within the OPO and no extraneous interactions. Using insight
from temporal-mode construction methods [16,18] and using
recent studies of errors in CV cluster-state generation [18,41],
we here relax the latter requirement and propose a simple setup
using D OPOs, each with a two-frequency pump—in contrast
to the complicated 15-frequency pump-spectrum OPO of Refs.
[20,21]—and the same free spectral range (FSR) as the source
of a multitude of frequency-encoded two-mode-squeezed
(TMS) states [42], which are approximations of the
Einstein-Podolsky-Rosen (EPR) states [43].

We first show that when qumodes are grouped by fre-
quency into logical collections known as macronodes [20,21],
these become naturally arranged into linear (D = 1), square
(D = 2), cubic (D = 3), and hypercubic (D = 4) lattices
by appropriate choices of the two OPO pump frequencies.
We then derive the corresponding final CV cluster state,
obtained by action of an interferometer within all macronodes.
As with temporal qumodes [18], a significant advantage of
using frequency-encoded qumodes is that the same optical
interferometer can act on all macronodes at once, enabling
huge scaling in the size of the generated states with a constant
number of optical elements. A crucial feature of the frequency-
qumode encoding not present when using temporal qumodes is
that all qumodes exist simultaneously, enabling measurements
to be made in any order. Finally, we expound the experimental
verification of the state by use of the established techniques of
Refs. [28,29].

Scalability comes in three different varieties in this work:
(i) Scaling the size of the cluster state—i.e., the number of

entangled qumodes in each OPO. With a FSR �ω = 0.95 GHz
[28,29] and a phase-matching bandwidth � of at least 3.2 THz
with a flat top, as measured in [30] in a 1-cm periodically poled
(PP) KTiOPO4 (KTP) nonlinear crystal, we expect �/�ω �
6 700 qumodes per OPO.

(ii) Scaling the dimensionality D of the lattice representing
the cluster state; D is the number of OPOs.

(iii) Scaling the number of copies of the desired cluster
state, determined by the frequency difference between the two
pump fields of each OPO.

II. TMS-STATE GENERATION

Our experimental system is based on a polarization-
degenerate OPO [28,29] containing two identical PPKTP
crystals oriented at 90◦ from each other, with the first (second)
quasi-phase-matching the ZZZ (YYY ) interaction, as defined
by the polarization directions of pump and down-converted
fields, Z (Y ) being the horizontal (vertical) direction.

The QOFC created by the optical cavity is a collection
of equally spaced, well-resolved qumodes at frequencies
ωn = ω0 + n�ω, with ω0 an arbitrary offset, n ∈ Z an integer
labeling the frequency index within the comb, and �ω the
FSR of the OPO cavity. Pump light at frequency ωpump in the
crystal will down-convert into photons of frequencies ωn1 and

ωn2 such that

ωpump = ωn1 + ωn2 = 2ω0 + �ω(n1 + n2). (1)

We rewrite this phase-matching condition by defining the pump
index

p := ωpump − 2ω0

�ω
= n1 + n2. (2)

Nondegenerate down-conversion, which creates TMS states
with no single-mode squeezing, requires an odd pump index
p so that n1 �= n2. Without loss of generality, we assume that
n1 is odd and that n2 is even from this point forward.

For convenience, we now replace each mode index with a
macronode index

m := (−1)nn. (3)

The phase-matching condition then becomes a difference
condition on macronode indices:

p = m2 − m1. (4)

Since m2 is assumed even and m1 is assumed odd, we can
repeatedly add 2 to both and still satisfy the condition. This
relation therefore produces a two-step-translationally invariant
set of interactions (for each polarization) with respect to the
macronode indices [Figs. 1(a), 2(a), and 5(a), top].

We can write the Hamiltonian in the interaction picture
with a single classical undepleted pump. The well-known TMS
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FIG. 1. (Color online) The phase-matched QOFC interactions in
two different OPOs, with Y - and Z-polarized pump indices pY and
pZ (black arrows). The qumodes are denoted by vertical lines (with
orthogonal polarizations at the same frequency slightly separated for
clarity) labeled by frequency index n and node index m (in red). The
curved arrows denote the nonlinear interactions (ZZZ, top; YYY ,
bottom), each of which becomes an edge of weight 1 in the OPO’s
Hamiltonian (H) graph [21,44] and generates corresponding TMS
states. (a) The QOFC of a single OPO with pY = −pZ = �m = 1,
which produces a single chain of interactions between adjacent node
indices. (b) The QOFC of a single OPO with pY = −pZ = �m = 3,
which produces interactions between all pairs of node indices m (red)
separated by three units. This can also be interpreted as producing
three independent chains (colored arrows) of the type obtained in (a).
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Hamiltonian is

Ĥ = i�κâ
†
1â

†
2 + H.c. , (5)

where κ > 0 is the overall nonlinear coupling strength. We can
write this in terms of the adjacency matrix of a Hamiltonian
(H) graph [21,27,40,44]

G =
(

0 1

1 0

)
= 1

, (6)

with components Gjk , as follows:

Ĥ [G] = i�
κ

2

∑
jk

Gjk â
†
j â

†
k + H.c. (7)

In this simple case, the two-mode interaction is purely nonde-
generate (i.e., G is purely off diagonal), and we have a graph
with no self-loops. We will eschew degenerate interactions
(self-loops in G) throughout this paper. We now introduce
more elaborate H graphs, which will be plugged into Eq. (7)
to represent more complicated interactions.

III. MACRONODE LATTICE SETUP

We now show that the TMS states generated by D OPOs
are naturally arranged by the phase-matching condition in a
D-hypercubic lattice of frequency-degenerate macronodes. In
Sec. IV, we will describe the interferometer that acts within
each macronode to generate cluster entanglement.

A. Scaling the graph valence

We consider a collection of D OPOs, each of which is
pumped by two monochromatic fields of distinct frequencies
and orthogonal polarizations, with OPO #j having pump index

pjε per polarization ε. This implements the Hamiltonian

Ĥ = i�κ

D∑
j=1

∑
ε∈{Y,Z}

∑
mjε∈2Z+1

â†
mjε

â
†
mjε+pjε

+ H.c. , (8)

which can be represented by Ĥ [G] from Eq. (7) using the H
graph

G=
D⊕

j=1

⊕
ε∈{Y,Z}

⊕
mjε∈2Z+1

( 1 )mjε,mjε+pjε
. (9)

To create the desired structures, we prescribe that

pjY = −pjZ = �mj, (10)

which corresponds to an H graph with exactly one edge
between all pairs of macronodes separated by |�mj |, each
of which produces a corresponding TMS state, as illustrated
in Fig. 1.

(1) Linear lattices. Figure 1(a) depicts the H graph of a
single OPO (#1) with p1Y = −p1Z = �m1 = 1. This graph is
a collection of TMS state edges, which are shown reordered
in Fig. 2(a), where all qumodes of same index define to a
macronode and a linear structure is clearly visible. (We will
see in Sec. IV that a Hadamard interferometer transforms
this linear sequence of disconnected EPR edges into a
dual-rail quantum entangled wire, or single quantum wire
over macronodes, as was experimentally demonstrated in
Ref. [29].)

Figure 1(b) shows an additional, remarkable feature of this
construction: when |�mj | > 1, the OPO will generate |�mj |

(a) (c)-1 0 1 2 3 4 5-2

1 8-6

0

5

6-1-8

-7

-2-9

7
-5

3-4 10

2 9

4-3 11

(b)

FIG. 2. (Color online) Arrangements of the TMS states 1 qumodes into (a) linear, (b) square-lattice, and (c) cubic-lattice
configurations (with M2 = 7 and M3 = 13) by grouping together frequency-degenerate qumodes into macronodes (red circles or white
spheres) labeled by macronode indices (red numbers). See text for details. In (c), only the macronode connective structure is shown; individual
qumodes and their connections are hidden for clarity. The macronode connections created by OPO #1, #2, and #3 are respectively drawn as
tight-coil-spiral (green), wide-coil-spiral (purple), and straight (yellow) connections.

032325-3



WANG, CHEN, MENICUCCI, AND PFISTER PHYSICAL REVIEW A 90, 032325 (2014)

(here, 3) disjoint quantum wires. This generation of multiple
quantum wires in a single OPO was also demonstrated in
Ref. [29] and is the basis for generating higher-dimensional
lattices, to which we now turn.

(2) Square lattice. We now imagine taking the quantum-
wire sequence of OPO #1, as in Fig. 2(a), and “wrapping” it
around a fictitious “cylinder,” like a piece of thread around a
spool [spiraling (green) wire in Fig. 2(b)]. We then employ
a second OPO (#2), with p2Y = −p2Z = �m2 = 7 here, to
create seven additional quantum-wire sequences [purple wires
in Fig. 2(b)] whose macronodes exactly overlap with those
of the first (spiraling) wire and bridge the spiral’s coils with
graph edges along the second lattice dimension (i.e., along
the cylinder’s axis), which will result in a square lattice with
twisted cylindrical topology [Fig. 2(b)]. For a cylinder of
circumference M2 in units of macronode-index spacing, such
a construction requires �m1 = 1 (for the wrapped wire) and
�m2 = M2 (for the cross links).

(3) Cubic lattice. This method can be extended to higher-
dimensional lattices by using a fractal procedure, treating
the twisted cylindrical lattice from the previous step as the
linear resource to itself be wrapped around another cylinder
[Fig. 2(c)], with an additional OPO used to create edges along
the axis of the new cylinder and between adjacent macronodes
along the new cylinder axis. For example, by first wrapping the
wire around a cylinder of circumference M2 and then wrapping
that entire structure around a second cylinder of circumference
M3, we can create all the required macronode links with three
OPOs with �m1 = 1, �m2 = M2, and �m3 = M2M3. This
results in a cubic lattice in the macronodes with twisted toroidal
topology in the first two dimensions and linear topology in the
third.

(4) Hypercubic lattices. Continuing this fractal progression
weaves hypercubic lattices from macronodes. In general, for a
D-dimensional hypercubic lattice, one employs D OPOs with
�mj = ∏j

k=1 Mk for OPO #j (and M1 = 1). These lattices
have twisted toroidal topology in the first D − 1 dimensions
and are linear in the Dth one.

B. Scaling the number of independent copies of the graph

The same D OPOs can create M copies of a D-hypercubic
lattice from step (4) above, if OPO #j has pump indices

pj (Z,Y ) = ±M�mj + (M − 1) (11)

and if we now label each macronode by a two-component
compound macronode index m(k) for previous macronode
index m within lattice k ∈ ZM , then the frequency indices
become

n = (Mm(k) + k), if m(k) is even, (12)

n = −(Mm(k) + k) + (M − 1), if m(k) is odd. (13)

An example of making three copies of linear lattice cluster
states is shown in Fig. 3. Following the dimension building-up
procedure from steps (2) to (4), multiple copies of square
[Fig. 2(b)], cubic [Fig. 2(c)], and hypercubic lattice cluster
states can be constructed.

6-105-6
210  -1-2 (0)(0) (0) (0)   (0)

7-214-5
210-1  -2 (1)(1) (1)(1) (1)

8-323-4
210  -1-2 (2)(2) (2)(2)   (2)

n :

n :

n :

(b)

m   :(k)

m   :(k)

m   :(k)

32 65410 -1-2-3-4- 85 7-6-7-8

(a)

. . .

9

. . .

n :

pZ = -1

pY = 5

m   :(k) -10 2-1-100111-2-2 -322-233

FIG. 3. (Color online) An example of making three copies of
linear lattice cluster states. Different line styles (colors) indicate
different linear lattice cluster states. (a) The compound macronode
index m(k) is used instead of the macronode index m. In this case,
�mj = 1, M = 3, and k ∈ {0,1,2}. (b) The TMS states can be
arranged into three groups [top to bottom: solid, dashed, and dotted
lines in Fig. 3(a)], each group will independently form a linear lattice
cluster state. Starting from this, by applying the procedure from steps
(2) to (4) in the text, multiple copies of lattice cluster states with
higher dimension can be constructed.

IV. MACRONODE LATTICE ENTANGLEMENT

The quantum-wire sequences being appropriately arranged
in a D-hypercubic pattern, we first describe the entangle-
ment step, which is to interfere all qumodes within each
(frequency-degenerate) macronode [18] by use of a Hadamard
interferometer. The formal justification and proof of this will
employ the graphical calculus for Gaussian pure states [44,45].

A. Experimental construction of hypercubic lattice clusters

In the Heisenberg picture, the action of an interferometer
on 2D qumodes (D frequencies, two polarizations) is modeled
by the action of a unitary matrix U on a vector of qumode
annihilation operators â = (â1, . . . ,â2D)T. Here, we need the
interferometer to be balanced, i.e., all entries of U to have
equal magnitude.

When 2D is a multiple of 4, up to 668 and possibly higher
[46], U can be chosen to be a 2D×2D Hadamard matrix R.
We restrict ourselves to this case for simplicity, leaving the
general case to future work. For D = 1, a π

8 half-wave plate
(HWP) acts as a balanced beamsplitter on polarization modes
with R, in this case, being

H1 := 1√
2

(
1 1

1 −1

)
. (14)
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FIG. 4. (Color online) Compact experimental setups for gener-
ating and verifying QOFC-based CV cluster states with linear,
square-lattice, and four-hypercubic-lattice graphs. All polarizing
beamsplitters (PBSs) transmit Z and reflect Y , and all half-wave
plates (HWPs) are at π

8 to the PBS axes. Box C1 generates at (1)
a CV cluster state with linear topology as in Fig. 2(a) and graph
structure as shown in Fig. 5(a), which can be verified using two-tone
balanced homodyne detection (BHD) in box V1 (and omitting all the
other optical elements). This was demonstrated experimentally in
Ref. [29]. Box C2 builds on this setup to generate at (21,2) a
square-lattice CV cluster state with twisted cylindrical topology as
in Fig. 2(b) and graph structure as shown in Fig. 5(b). This can
be verified using boxes V1 and V2. Box C4 further builds on this,
generating at (41−4) a four-hypercubic-lattice CV cluster state with
toroidal topology in the first three dimensions and linear topology in
the fourth, which can be verified using all BHDs. The BHDs contain a
two-tone local oscillator (LO), phase locked to the OPO and polarized
at π

4 to the PBS axis [28,29].

Using the Sylvester construction of Hadamard matrices [47],
we can obtain the balanced 2D-splitter matrix

HD := H⊗D
1 , (15)

which can be implemented using balanced beamsplitters
[48,49] or, equivalently, using π

8 HWPs and polarizing beam-
splitters (PBSs). Figure 4 shows the experimental setup to
generate cluster states with linear, square-lattice, and four-
hypercubic-lattice graphs. Each compact setup builds on the
previous one, akin to the fractal construction of Fig. 2. All ring
OPO cavities must be of identical FSR and held to the same
exact resonant frequency, e.g., by Pound-Drever-Hall servo
locks to the same counterpropagating reference laser beam
[28,29].

B. Theoretical construction of hypercubic lattice clusters

Any N -mode Gaussian pure state has a position-space wave
function of the form [44]

ψZ(q) = det

(
Im Z
π

) 1
4

exp

(
i

2
qTZq

)
, (16)

up to displacements, for some complex, symmetric matrix Z
with Im Z > 0. Z can be interpreted as the adjacency matrix of
an N -node, undirected, complex-weighted graph and evolves
under Gaussian unitary operations (in the Schrödinger picture)
according to simple graph transformation rules [44]: Starting
with the D OPOs represented by G from Eq. (9), when the
Hamiltonian Ĥ (G) in Eq. (8) is applied on the vacuum state
for time t , the output state is a Gaussian pure state with graph

Z0 = i exp(−2αG), (17)

where α = 2κt > 0 is an overall squeezing parameter. Cru-
cially, since G is self-inverse [41,44], this relation simplifies to

Z0 = icI − isG, (18)

where c = cosh 2α and s = sinh 2α, resulting in a TMS state
for each edge in G [Figs. 5(a), top, and 5(b), left].

We write the total interferometer as R = ⊕
m∈Z(HD)m,

which acts with HD simultaneously on each macronode,
evolving the state as [44]

Z0
R�→ Z = ic I − is RGRT. (19)

Since RGRT is self-inverse, Z is equivalent [18]—up to trivial
local phase shifts—to the approximate CV cluster state

ZC = iεI + tRGRT, (20)

where ε = sech 2α, and t = tanh 2α. We focus on Z rather than
ZC for experimental simplicity but still refer to the former as
a “CV cluster state” because the phase shifts can be absorbed
entirely into mode-wise quadrature redefinitions [18].

As shown in Fig. 5, we can see after interfering the 2D

output qumodes of the OPOs by the balanced 2D splitter,
all qumodes within each macronode are entangled with
all qumodes in the neighbor macronodes, thus creating a
D-dimensional lattice cluster state.

V. STATE VERIFICATION

A nullifier for a given state is any operator whose kernel
contains the state. Like stabilizers [3,50], nullifiers can be used
to compactly represent states and track their evolution [44].
Any zero-mean Gaussian pure state |ψZ〉 with graph Z satisfies
a complete set of Schrödinger-picture nullifier relations [44]

(p̂ − Zq̂) |ψZ〉 = 0. (21)

Note that linear combinations of nullifiers are still nullifiers.
Also,

Z−1 = −icI − isRGRT, (22)

and we can left-multiply Eq. (21) by iεRT and by iεRTZ−1 to
obtain, respectively,

[iεp̂′ + (q̂′ − tGq̂′)]|ψZ〉 = 0, (23)

[−iεq̂′ + (p̂′ + tGp̂′)]|ψZ〉 = 0. (24)
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FIG. 5. (Color online) Effect of the interferometers acting on the macronodes. In both (a) and (b), the combined H graph G for the output
of the OPO(s) is shown first, where the red circles indicate frequency-degenerate macronodes labeled by the red macronode indices (see text),
with polarization [and OPO# in (b)] as indicated in the legend. The state produced at the output of the OPOs has a graph [44] given by
Z0 = icI − isG (see text), which corresponds to a collection of separable TMS states in accord with G. After the interferometer is applied
(represented by the orthogonal matrix R), a state with graph Z = icI − isRGRT results, which is phase-shift equivalent to the CV cluster
state ZC = iεI + tRGRT (see text). The product RGRT, interpreted as an adjacency matrix, is visualized as the second graph and provides
an intuitive picture for the resulting state, as well as its precise definition through Z or ZC [44]. (a) An H graph that is linear with respect
to macronodes, also known as a dual-rail quantum wire [29], can be created from a single OPO with �m = 1 [Fig. 2(a)], and R represents
the action of a balanced two-mode interferometer acting on each macronode. (b) An H graph with a square-lattice graph on macronodes can
be created from two OPOs with �m = 1 and �m = M2 [Fig. 2(b)]. Here, M2 = 7, and R represents the action of a balanced four-mode
interferometer acting on each macronode.

where

q̂′ := RTq̂, (25)

p̂′ := RTp̂. (26)

By taking linear combinations of Eqs. (23) and (24) and
defining

q̂′
θ := q̂′ cos θ + p̂′ sin θ, (27)

p̂′
θ := q̂′

θ+π/2, (28)

we can generalize these to a continuum of θ -indexed nullifier
relations:

[iεp̂′
θ + (q̂′

θ − tGq̂′
−θ )]|ψZ〉 = 0, ∀ θ ∈ [0,2π ). (29)

In particular, θ = 0 and θ = π
2 yield Eqs. (23) and (24),

respectively.
We consider the vector in parentheses in Eq. (29):

RTq̂θ − tGRTq̂−θ =: n̂θ , (30)

which is comprised of simultaneously commuting observables
known as approximate nullifiers [44] or variance-based en-
tanglement witnesses [51]. Since R acts locally on frequency-

degenerate qumodes and since G links each node to exactly one
other of a different frequency, each component of n̂θ contains
exactly two frequencies and can be measured by the two-tone
balanced homodyne detection methods of Refs. [28,29]. The
theoretical covariance matrix [44] of n̂θ is given by

cov(n̂θ ) = ε

2
(I − tG cos 2θ ), (31)

vanishing in the large-squeezing limit α → ∞. Each element
of n̂θ therefore has a theoretical variance of ε (i.e., sech 2α)
units of vacuum noise.

Further application of the massively entangled QOFC to
quantum information processing will require separating the
frequencies. We are investigating the use of quantum-optics-
grade arrayed waveguide gratings [52] and of virtually imaged
phase arrays [53], which have been successfully implemented
in classical optical frequency combs [54].

VI. CONCLUSION

We have proposed hypercubic-lattice cluster states, highly
scalable in size, graph valence, and number of copies of the
state, and we have detailed their experimental generation
and characterization with remarkably compact and proven
technology [28,29]. The macronode-based implementation
presented here and elsewhere [18] occurs naturally in quantum
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optics [16] and is becoming known to be a more efficient
use of such cluster states for one-way quantum computing
[55]. This work further motivates the development of a unified
theoretical approach to macronode-based cluster states. Fi-
nally, the availability of large-scale, high-dimensional lattices
invites theoretical and experimental investigations into the
topological properties of these structures [31], including their
high-dimensional incarnations [36].
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Nature (London) 415, 39 (2002).
[20] N. C. Menicucci, S. T. Flammia, and O. Pfister, Phys. Rev. Lett.

101, 130501 (2008).
[21] S. T. Flammia, N. C. Menicucci, and O. Pfister, J. Phys. B, 42,

114009 (2009).
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[46] D. Ž. Doković, Combinatorica 28, 487 (2008).
[47] T. K. Moon, Error Correction Coding (Wiley, New York, 2005).
[48] M. Zukowski, A. Zeilinger, and M. A. Horne, Phys. Rev. A 55,

2564 (1997).
[49] Y. Ben-Aryeh, Opt. Comm. 283, 2863 (2010).
[50] D. Gottesman, Ph.D. thesis, California Institute of Technology,

Pasadena, CA1997, arXiv:quant-ph/9705052.
[51] P. Hyllus and J. Eisert, New J. Phys. 8, 51 (2006).

032325-7

http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1103/PhysRevLett.86.910
http://dx.doi.org/10.1103/PhysRevLett.86.910
http://dx.doi.org/10.1103/PhysRevLett.86.910
http://dx.doi.org/10.1103/PhysRevLett.86.910
http://dx.doi.org/10.1103/PhysRevA.73.032318
http://dx.doi.org/10.1103/PhysRevA.73.032318
http://dx.doi.org/10.1103/PhysRevA.73.032318
http://dx.doi.org/10.1103/PhysRevA.73.032318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.88.097904
http://dx.doi.org/10.1103/PhysRevLett.88.097904
http://dx.doi.org/10.1103/PhysRevLett.88.097904
http://dx.doi.org/10.1103/PhysRevLett.88.097904
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1103/PhysRevLett.104.250503
http://dx.doi.org/10.1103/PhysRevLett.104.250503
http://dx.doi.org/10.1103/PhysRevLett.104.250503
http://dx.doi.org/10.1103/PhysRevLett.104.250503
http://dx.doi.org/10.1103/PhysRevA.83.062314
http://dx.doi.org/10.1103/PhysRevA.83.062314
http://dx.doi.org/10.1103/PhysRevA.83.062314
http://dx.doi.org/10.1103/PhysRevA.83.062314
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevLett.101.130501
http://dx.doi.org/10.1103/PhysRevLett.101.130501
http://dx.doi.org/10.1103/PhysRevLett.101.130501
http://dx.doi.org/10.1103/PhysRevLett.101.130501
http://dx.doi.org/10.1088/0953-4075/42/11/114009
http://dx.doi.org/10.1088/0953-4075/42/11/114009
http://dx.doi.org/10.1088/0953-4075/42/11/114009
http://dx.doi.org/10.1088/0953-4075/42/11/114009
http://dx.doi.org/10.1103/PhysRevLett.102.120501
http://dx.doi.org/10.1103/PhysRevLett.102.120501
http://dx.doi.org/10.1103/PhysRevLett.102.120501
http://dx.doi.org/10.1103/PhysRevLett.102.120501
http://dx.doi.org/10.1103/PhysRevA.82.042336
http://dx.doi.org/10.1103/PhysRevA.82.042336
http://dx.doi.org/10.1103/PhysRevA.82.042336
http://dx.doi.org/10.1103/PhysRevA.82.042336
http://dx.doi.org/10.1088/1367-2630/12/11/113046
http://dx.doi.org/10.1088/1367-2630/12/11/113046
http://dx.doi.org/10.1088/1367-2630/12/11/113046
http://dx.doi.org/10.1088/1367-2630/12/11/113046
http://dx.doi.org/10.1364/OE.16.003032
http://dx.doi.org/10.1364/OE.16.003032
http://dx.doi.org/10.1364/OE.16.003032
http://dx.doi.org/10.1364/OE.16.003032
http://dx.doi.org/10.1103/PhysRevLett.112.120504
http://dx.doi.org/10.1103/PhysRevLett.112.120504
http://dx.doi.org/10.1103/PhysRevLett.112.120504
http://dx.doi.org/10.1103/PhysRevLett.112.120504
http://dx.doi.org/10.1134/S1054660X08050186
http://dx.doi.org/10.1134/S1054660X08050186
http://dx.doi.org/10.1134/S1054660X08050186
http://dx.doi.org/10.1134/S1054660X08050186
http://arxiv.org/pdf/0710.4980v3
http://dx.doi.org/10.1103/PhysRevLett.107.030505
http://dx.doi.org/10.1103/PhysRevLett.107.030505
http://dx.doi.org/10.1103/PhysRevLett.107.030505
http://dx.doi.org/10.1103/PhysRevLett.107.030505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://arxiv.org/abs/arXiv:1403.6631
http://dx.doi.org/10.1088/1367-2630/16/8/085011
http://dx.doi.org/10.1088/1367-2630/16/8/085011
http://dx.doi.org/10.1088/1367-2630/16/8/085011
http://dx.doi.org/10.1088/1367-2630/16/8/085011
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevLett.98.150404
http://dx.doi.org/10.1103/PhysRevLett.98.150404
http://dx.doi.org/10.1103/PhysRevLett.98.150404
http://dx.doi.org/10.1103/PhysRevLett.98.150404
http://dx.doi.org/10.1103/PhysRevA.78.052121
http://dx.doi.org/10.1103/PhysRevA.78.052121
http://dx.doi.org/10.1103/PhysRevA.78.052121
http://dx.doi.org/10.1103/PhysRevA.78.052121
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1103/PhysRevLett.106.090501
http://dx.doi.org/10.1103/PhysRevLett.106.090501
http://dx.doi.org/10.1103/PhysRevLett.106.090501
http://dx.doi.org/10.1103/PhysRevLett.106.090501
http://dx.doi.org/10.1103/PhysRevA.70.020302
http://dx.doi.org/10.1103/PhysRevA.70.020302
http://dx.doi.org/10.1103/PhysRevA.70.020302
http://dx.doi.org/10.1103/PhysRevA.70.020302
http://dx.doi.org/10.1103/PhysRevA.76.010302
http://dx.doi.org/10.1103/PhysRevA.76.010302
http://dx.doi.org/10.1103/PhysRevA.76.010302
http://dx.doi.org/10.1103/PhysRevA.76.010302
http://dx.doi.org/10.1103/PhysRevLett.68.3663
http://dx.doi.org/10.1103/PhysRevLett.68.3663
http://dx.doi.org/10.1103/PhysRevLett.68.3663
http://dx.doi.org/10.1103/PhysRevLett.68.3663
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRevA.83.042335
http://dx.doi.org/10.1103/PhysRevA.83.042335
http://dx.doi.org/10.1103/PhysRevA.83.042335
http://dx.doi.org/10.1103/PhysRevA.83.042335
http://dx.doi.org/10.1103/PhysRevA.37.3028
http://dx.doi.org/10.1103/PhysRevA.37.3028
http://dx.doi.org/10.1103/PhysRevA.37.3028
http://dx.doi.org/10.1103/PhysRevA.37.3028
http://dx.doi.org/10.1007/s00493-008-2384-z
http://dx.doi.org/10.1007/s00493-008-2384-z
http://dx.doi.org/10.1007/s00493-008-2384-z
http://dx.doi.org/10.1007/s00493-008-2384-z
http://dx.doi.org/10.1103/PhysRevA.55.2564
http://dx.doi.org/10.1103/PhysRevA.55.2564
http://dx.doi.org/10.1103/PhysRevA.55.2564
http://dx.doi.org/10.1103/PhysRevA.55.2564
http://dx.doi.org/10.1016/j.optcom.2010.03.024
http://dx.doi.org/10.1016/j.optcom.2010.03.024
http://dx.doi.org/10.1016/j.optcom.2010.03.024
http://dx.doi.org/10.1016/j.optcom.2010.03.024
http://arxiv.org/abs/arXiv:quant-ph/9705052
http://dx.doi.org/10.1088/1367-2630/8/4/051
http://dx.doi.org/10.1088/1367-2630/8/4/051
http://dx.doi.org/10.1088/1367-2630/8/4/051
http://dx.doi.org/10.1088/1367-2630/8/4/051


WANG, CHEN, MENICUCCI, AND PFISTER PHYSICAL REVIEW A 90, 032325 (2014)

[52] D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck,
D. J. Blumenthal, and J. E. Bowers, Opt. Express 19, 14130
(2011).

[53] M. Shirasaki, Opt. Lett. 21, 366 (1996).

[54] S. A. Diddams, L. Hollberg, and V. Mbele, Nature (London)
445, 627 (2007).

[55] R. N. Alexander, S. C. Armstrong, R. Ukai, and N. C. Menicucci,
arXiv:1311.3538.

032325-8

http://dx.doi.org/10.1364/OE.19.014130
http://dx.doi.org/10.1364/OE.19.014130
http://dx.doi.org/10.1364/OE.19.014130
http://dx.doi.org/10.1364/OE.19.014130
http://dx.doi.org/10.1364/OL.21.000366
http://dx.doi.org/10.1364/OL.21.000366
http://dx.doi.org/10.1364/OL.21.000366
http://dx.doi.org/10.1364/OL.21.000366
http://dx.doi.org/10.1038/nature05524
http://dx.doi.org/10.1038/nature05524
http://dx.doi.org/10.1038/nature05524
http://dx.doi.org/10.1038/nature05524
http://arxiv.org/abs/arXiv:1311.3538



