
PHYSICAL REVIEW A 90, 032324 (2014)

Renormalization and scaling in quantum walks
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We show how to extract the scaling behavior of quantum walks using the renormalization group (RG).
We introduce the method by efficiently reproducing well-known results on the one-dimensional lattice. For a
nontrivial model, we apply this method to the dual Sierpinski gasket and obtain its exact, closed system of RG
recursions. Numerical iteration suggests that under rescaling the system length, L′ = 2L, characteristic times
rescale as t ′ = 2dw t , with the exact walk exponent dw = log2

√
5 = 1.1609 . . . Despite the lack of translational

invariance, this value is very close to the ballistic spreading, dw = 1, found for regular lattices. However, we
argue that an extended interpretation of the traditional RG formalism will be needed to obtain scaling exponents
analytically. Direct simulations confirm our RG prediction for dw and furthermore reveal an immensely rich
phenomenology for the spreading of the quantum walk on the gasket. Invariably, quantum interference localizes
the walk completely, with a site-access probability that decreases with a power law from the initial site, in contrast
to a classical random walk, which would pass all sites with certainty.
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I. INTRODUCTION

Following Grover’s work [1], it was shown that discrete-
time quantum walks [2–6] can access any chosen site of
a regular lattice in two or more dimensions at least in
O(

√
N ln N ) steps. Such a quadratic speedup over classical

O(N ) first-passage times is one of the promising aspects
of quantum computing, for instance, to search for items
in an unsorted list. The fundamental importance of search
algorithms to databases cannot be overstated, especially for
hierarchical networks without translational invariance. For
an example, we only need to mention Google’s page-rank
algorithm, for which a quantum version was recently proposed
[7]. As fundamental as the random walk is to the description of
classical diffusion and transport phenomena in physics [8,9]
or the mixing times of randomized algorithms in computer
sciences [10], the analogous quantum walk is rapidly rising
in importance to describe a range of phenomena. Already,
there are a number of experimental realizations of quantum
walks, such as in waveguides [11,12], photonics [13,14],
and optical lattices [15]. Therefore, classifying the physical
behavior of quantum walks, their entanglement, localization,
and interference effects in complex environments is interesting
in its own right.

To date, only a very few analytical means [6,16] exist to de-
scribe the wealth of experimental and numerical observations.
Aside from path-integral methods, these are mostly based
on using a Fourier decomposition of the walk equation that
presupposes a translational or relabeling symmetry between all
sites. Accordingly, the general quantum walk on a simple line
has now been relatively well explored [2–4], with a few forays
into specific instances of two-dimensional lattices [5,17,18].
However, insistence on translational invariance leaves us
with a limited understanding of the full impact of quantum
interference effects, which are the origin of the quadratic
speedup in the spreading on regular lattices. However, the
range of studied systems remains too narrow to assess, let
alone predict, how interference causes any particular scaling.
In addition, localization effects emerge as soon as lattices
possess loops [19–21] or disorder [22].

Here, we develop the venerable real-space renormalization
group (RG) [23–25] to discover the long-range behavior of
discrete-time quantum walks in more complex geometries.
We introduce RG for the simple line, where we show how
to reproduce the well-known ballistic spreading exponent,
dw = 1, by extending the traditional fixed point analysis into
the complex plane [26]. For quantum walks on the dual
Sierpinski gasket (DSG), iterating our exact recursions to
k = 21 generations, which corresponds to a gasket with N ≈
321 ≈ 1010 nodes, shows that time t rescales with baseline
length L as t ∼ Ldw , with dw = 1.16096 . . . = log2

√
5, which

is not quite ballistic but is spreading faster than a random
walk on DSG [27], for which dRW

w = log2 5. However, we
find that localization effects diminish the magnitude of the
wave function almost everywhere by |ψ | ∼ L−β , with β =
0.424(3), such that extensive transport (which can still reach
the boundaries for increasing L) decays with a power of
L that is bounded between dw and dw + 2β, and we have
1 < dw < dw + 2β < dRW

w . We test our predictions with direct
simulations on DSG with up to k = 12 generations.

This paper is organized as follows. In the next section, we
introduce a formulation of the walk problem that allows us to
study classical and quantum walks on comparable footing. In
Sec. III, we apply the RG for walks, classical and quantum,
on the simple line. In Sec. IV, we study the RG for the dual
Sierpinski gasket. In Sec. V, we discuss the unusual aspects
of the RG for quantum walks. In Sec. VI, we conclude with a
summary of our results and outline future work.

II. FORMULATION OF THE WALK PROBLEM

The generic master equation for a discrete-time walk with
a coin, whether classical or quantum, is

|�(t + 1)〉 = U |�(t)〉, (1)

where the time-evolution operator (or propagator) is written as

U = S(C ⊗ I), (2)
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which contains the “shift” operator S and the coin C. In the
d-dimensional site basis |�n〉, we can describe the state of
the system in terms of the site amplitudes ψ�n,t = 〈�n|�(t)〉,
which are simply the probability density to be at that site for
a classical walk but represent a vector in coin space with each
component having the amplitude for transitioning out of site
�n along one of its links for the quantum walk. Application
of the coin C entangles these components, with subsequent
redistribution of the walk to neighboring sites by the shift
operator S based on those amplitudes. On the line, the shift
operator for a homogeneous nearest-neighbor walk is

S =
∑

x

{P ⊗ |x − 1〉〈x| + Q ⊗ |x + 1〉〈x| + R ⊗ |x〉〈x|},
(3)

with the shift matrices P and Q for moving left or right and R

for staying in place, for instance,

P =
(

1 0
0 0

)
, Q =

(
0 0
0 1

)
, R =

(
0 0
0 0

)
. (4)

From Eq. (2), we get the propagator

U =
∑

x

{A ⊗ |x − 1〉〈x| + B ⊗ |x + 1〉〈x| + M ⊗ |x〉〈x|},

(5)

with A = PC, B = QC, and M = RC, where the unitary coin
matrix C is most generally given by [6]

C =
(

sin η eiχ cos η

eiϑ cos η −ei(χ+ϑ) sin η

)
. (6)

In a quantum walk, the “hopping”operators A, B, and M

are constrained by the requirement of unitary propagation,
I = U†U , which gives the conditions in coin space,

Id =A†A+ B†B + M†M, 0 = A†M + M†B = A†B, (7)

implying that A + B + M is unitary. As C is unitary, these
conditions equally apply to P , Q, and R. They cannot be
satisfied by scalars (except for trivial cases) [28,29].

The algebra in Eq. (7) requires at least two-dimensional
matrices, and matching the dimension c of the coin space and
the degree of each site represents a natural and commonly
studied choice. For the d-dimensional hypercubic lattice, this
means c = 2d, but higher-dimensional coins [20,21] and even
coinless alternatives [28–32] have been studied.

III. RENORMALIZATION OF THE QUANTUM
WALK ON A LINE

We introduce generating functions [9,33]

ψ̃x(z) =
∞∑
t=0

ψx,t z
t (8)

to eliminate the explicit time dependence, which allows us to
obtain the RG recursions. The asymptotic behavior for t → ∞
is obtained in the limit of z → 1, which puts more weight on
terms with high values of t in Eq. (8). In the inverse transform
of Eq. (8), the limit z → 1 is intimately related to the large-time
limit due to the crossover at t(1 − z) ∼ 1 in zt = exp{t ln z} ∼

⎥ψIC〉

F- F+
Ak-2

B0

F- F+
Ak-1 Ak-1

B0 Bk-1

F- F+
Ak

B0

Ak-2 Ak-2 Ak-2

Bk-2 Bk-2 Bk-2

FIG. 1. (Color online) Absorption model for a simple line, indi-
cating the three final recursion steps. Boxes represent absorbing sites,
and sites indicated by black dots indicate the initial conditions |ψIC〉.
Labels A and B indicate the respective hopping parameters for each
site.

exp{−t(1 − z)} (see Ref. [9] or any textbook on generating
functions).

The master equation (1) with U in Eq. (5) then becomes

ψ̃x = zMψ̃x + zAψ̃x−1 + zBψ̃x+1 + δx,0ψIC. (9)

For simplicity, we merely consider initial conditions (IC)
localized at the origin, ψx,t=0 = δx,0ψIC. As depicted in Fig. 1,
we recursively eliminate ψ̃x for all sites for which x is an
odd number and then set x → x/2 and repeat each step for
k = 0,1,2, . . . Each such step corresponds to a rescaling of the
system size by a factor of 2; after k iterations, ψ̃ (k)

x represents
the renormalized wave function describing a domain of size
2k , and the corresponding renormalized hopping parameters
describe the effective transport in and out of that domain.

Therefore, starting at k = 0 with the “raw”hopping coeffi-
cients A0 = zA, B0 = zB, and M0 = zM , after each step, the
master equation becomes self-similar in form when redefining
the renormalized hopping coefficients Ak , Bk , and Mk . For
example, for consecutive sites near any even site x at step k

we have [26]

ψ̃x−1 = Mkψ̃x−1 + Akψ̃x−2 + Bkψ̃x,

ψ̃x = Mkψ̃x + Akψ̃x−1 + Bkψ̃x+1 + δx,0ψIC, (10)

ψ̃x+1 = Mkψ̃x+1 + Akψ̃x + Bkψ̃x+2.

Solving for the central site x yields

ψ̃x = Mk+1ψ̃x + Ak+1ψ̃x−2 + Bk+1ψ̃x+2 + δx,0ψIC, (11)

with RG “flow”

Ak+1 = Ak(I − Mk)−1Ak,

Bk+1 = Bk(I − Mk)−1Bk, (12)

Mk+1 = Mk + Ak(I − Mk)−1Bk + Bk(I − Mk)−1Ak,

where the hopping parameters, in general, are matrices.

A. Example: RG for the classical random walk

In the classical analysis [9,33] for a random walk with a
Bernoulli coin p, Eqs. (12) reduce to

ak+1 = a2
k

1 − mk

, bk+1 = b2
k

1 − mk

, mk+1 = mk + 2akbk

1 − mk

,

(13)
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with scalar quantities, which initiate at k = 0 with a0 =
zp, b0 = z(1 − p), and m0 = 0. The fixed points (FPs)
arising from this RG flow for k ∼ k + 1 → ∞ at z → 1
are (a∞,b∞,m∞) = (0,0,m∞), (1 − m∞,0,m∞), or (0,1 −
m∞,m∞) for any value of m∗ on the unit interval [34].

Perturbing the RG flow in Eqs. (13) via {a,b,m}k ∼
{a,b,m}∞ + (1 − z){α,β,μ}k for z → 1 and large k, we
find the linear system (α,β,μ)k+1 = J ◦ (α,β,μ)k with the
Jacobian

J = ∂(ak+1,bk+1,mk+1)

∂(ak,bk,mk)

∣∣∣∣
k→∞

=

⎛
⎜⎝

2a∞
1−m∞

, 0, 2b∞
1−m∞

0, 2b∞
1−m∞

, 2a∞
1−m∞

a2
∞

(1−m∞)2 ,
b2

∞
(1−m∞)2 , 1 + 2a∞b∞

(1−m∞)2

⎞
⎟⎠ . (14)

The largest eigenvalue λw of this Jacobian, via t(1 − z) ∼ 1,
then describes how time rescales, tk = λwtk−1, when the
system length is doubled, Lk = 2Lk−1. Assuming a similarity
solution for the probability density function of the walk,
ρ(x,t) ∼ f (xdw/t), the scaling ansatz relating distance and
time, tk ∼ L

dw

k , thus provides

dw = log2 λw. (15)

Inserting the second and third FPs in J easily yields the
ballistic solutions, dw = 1, for drifting either to the left or to
the right. In contrast, the undeterminedness of m∞ in the first
FP is peculiar. In fact, for z = 1, ak + bk + mk = 1 for all k,
and starting from symmetric initial values a0 = b0, i.e., p = 1

2 ,
both remain identical and vanish together, ak ≡ bk → 0, and
mk → m∞ = 1. Since both numerators and denominators in
the Jacobian vanish, a correlated solution has to be constructed
that “peals off” the leading behavior to glance into the
boundary layer. Using ak ≡ bk ∼ a′

kε
k and mk ∼ 1 − m′

kε
k ,

assuming large k and |ε| < 1, results in

a′
k+1 = a′2

k

εm′
k

, m′
k+1 = 1

ε
m′

k − 2a′2
k

εm′
k

, (16)

with a single FP that self-consistently determines a′
∞

m′∞
= ε = 1

2 .

The Jacobian of these recursions, J ′ = ∂(a′
k+1,m

′
k+1)

∂(a′
k ,m

′
k ) |k→∞, at its

FP gives λw = 4 as the largest eigenvalue; that is, dw = 2 for
the diffusive solution. In this formulation, even if we start with
a vanishing self-term initially, m0 = 0, the self-term ultimately
dominates, mk → 1, reflecting the fact that in diffusion the
renormalized domain of length Lk ∼ 2k outgrows the walk
such that almost all hops remain within that domain.

We note that the RG projects the salient properties of the
walk into three “universality classes”: diffusive and ballistic
motion either to the left or right, characterized by an exponent
dw = 2 or 1. Each characterizes a fixed point of the dynamics,
reached either for p = 1

2 or p �= 1
2 .

B. RG for the quantum walk on a line

For the quantum walk, we set

Ak = PkC, Bk = QkC, Mk = RkC, (17)

where, initially, P0 = zP , Q0 = zQ, and R0 = zR from
Eq. (4). To gain insight, we evolve the RG flow (12) for a

few iterations from these raw values. Each iteration consists
of assembling the hopping parameters at level k according to
Eq. (17), the actual RG step of applying Eqs. (12), and then
the step of inverting Eq. (17) with C−1 to arrive at Pk+1, Qk+1,
and Rk+1. After two steps, a recurring pattern emerges that
suggests the parametrization:

Pk =
(

ak 0
0 0

)
, Qk =

(
0 0
0 −ak

)
, Rk =

(
0 mk

mk 0

)
.

(18)

Indeed, for ak and mk , the RG flow (12) closes after each
iteration with

ak+1 = a2
k sin η

1 − 2mk cos η + m2
k

,

(19)

mk+1 = mk + (mk − cos η)a2
k

1 − 2mk cos η + m2
k

for 0 < η < π/2 (setting χ = ϑ = 0). These recursions have
a single fixed point at (a∞,m∞) = (sin η, cos η), yet the
Jacobian at k → ∞ is η independent and has a degenerate
eigenvalue λw = 2, suggesting dw = log2 λ = 1. This reflects
the well-known universality of the large-scale dynamics of the
quantum walk on the line with respect to the chosen coin [4].

As we will show in Sec. V, however, this picture may
be incomplete, a lucky accident due to the fact that the
“fractal” exponent df = log2 λf = 1 and the walk exponent
dw coincide. To exemplify this aspect here, let us consider the
probability Fa of ever being absorbed at a site x = a as a simple
and generic observable [4,35]. From Eq. (8), for a random walk
with ρ(x,t) = ψx,t , it is simply Fa = ∑

t ψa,t = limz→1 ψ̃a(z).
For a quantum walk, it is instead ρ(x,t) = |ψx,t |2, and hence,

Fa =
∞∑
t=0

|ψa,t |2 =
∮

dz

2πiz
|ψ̃a(z)|2 =

∫ π

−π

dθ

2π
|ψ̃a(θ )|2,

(20)

where we choose

z = −eiθ (−π < θ � π ), (21)

i.e., z → −1 for θ → 0 as a reference point (see below). While
the random walk merely entails a local analysis for real z → 1
[9], the unitarity of quantum walks generally demands an
analysis along the entire unit circle in the complex-z plane. Let
us put the quantum walk on the line between two absorbing
walls F±, as shown in Fig. 1, with F

(k)
− at x− = −1 right

next to the starting site x = 0; the wall F
(k)
+ at site x+ = 2k

recedes farther away from the starting site with every iteration
of the flow equations. In Fig. 2(a), we plot the integrand
|ψ̃ (k)

+ (z)| for arg z = π − θ on the unit circle. Some algebra
shows that ψ̃

(k)
+ (z) ∝ ak , which depends on z through a0. The

asymptotic behavior of ak in Eq. (19) for large k at fixed
θ falls into one of four different cases: (i) At θ = 0 and
θ = π , the stationary behavior for the aforementioned fixed
point is obtained. (ii) For 0 < |θ | < η and 0 < π − |θ | < η,
ak varies chaotically with k. (iii) For |θ | = η and |θ | = π − η

local analysis recovers classical diffusive scaling. (iv) For η <

|θ | < π − η, ak vanishes exponentially with N = 2k . We argue
that only the chaotic regimes, |θ | < η and π − |θ | < η, with
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FIG. 2. (Color online) Plot of |ψ̃ (k)
+ (z)| at η = π/4 and generic

initial conditions ψIC = (0,1) (a) for arg z after k = 2,3 iterations
and (b) for the rescaled variable 2kθ , z = −eiθ , to collapse all data
up to k = 24 for θ → 0. As (a) shows, the integrand is periodic with
period π and has significant support only for |θ | < η and π − |θ | < η.

the stationary points at their centers contribute to extensive
quantum transport [36]. That is, it can be shown that for
η → 0 the “velocity” of the ballistically spreading quantum
walk decreases to zero and eventually becomes localized for
η = 0, exactly when both chaotic regimes shrink to zero, while
the stationary point remains inside.

Clearly, quantum transport here is determined by properties
of the entire wave function ψ̃x(z), not just the limit z → z0

near some fixed point z0. We will analyze this situation in
more detail in Sec. V.

IV. RENORMALIZATION OF THE QUANTUM WALK ON
THE DUAL SIERPINSKI GASKET

The DSG is a degree-3 lattice (see Fig. 3), and unitarity
requires at least a (c = 3)-dimensional coin. As the most
general such coin has six real parameters, we focus here on
only the real and symmetric Grover coin,

C = 1

3

⎛
⎝−1 2 2

2 −1 2
2 2 −1

⎞
⎠ , (22)

and we defer generalizations to future discussions. Note
that DSG has several advantages over the more familiar
Sierpinski gasket. DSG is a regular degree-3 lattice, while the
Sierpinski gasket itself is a regular degree-4 lattice. However,
it is not merely the higher degree that causes difficulties
for quantum walks on the original Sierpinski gasket. The
internal coin degrees of freedom cause a labeling problem that
severely complicates its consideration, as shown in Ref. [37].
Interestingly, none of these problems exist for the classical
random walk, and the Sierpinski gasket (or its dual counterpart)
serves as a popular example of a simple demonstration of

A

B

B

B

A

A

F0

C

C C

C

C

C

C

CC

A

B A

A

A

A

A

B

B

B

B

B

⎥ψIC〉 ⎥ψIC〉

FIG. 3. (Color online) Absorption model for the dual Sierpinski
gasket at generation k = 1. The box represents the absorbing site, and
sites marked by black dots indicate the initial conditions |ψIC〉. Labels
A,B,C indicate the respective hopping parameters for leaving each
site. Note that for increasing generation k, the minimal separation
between initiating sites and the sole absorbing site will increase
as ∼2k .

the RG because its hierarchical structure and high degree of
symmetry affect a RG flow in a single real hopping parameter.
For the quantum walk, we will find instead five coupled
complex recursions with a large number of terms.

A. Renormalization of the dual Sierpinski gasket

Figure 3 shows the elementary graphlet of nine sites
that is used to construct the DSG. It also represents the
basic unit from which we can extract the flow equations by
tracing out the wave functions ψ̃4, . . . ,ψ̃9 on the six inner
sites, leaving only the three corner sites ψ̃1, . . . ,ψ̃3 and the
renormalized hopping coefficients between them. Note the
systematic labeling for each of the three outbound directions
at every site that determines, in effect, which shift operator
applies to that direction. The master equations relating those
nine sites are

ψ̃1 = Mkψ̃1 + Ckψ̃1̄ + Akψ̃4 + Bkψ̃5,

ψ̃2 = Mkψ̃2 + Ckψ̃2̄ + Akψ̃6 + Bkψ̃7,

ψ̃3 = Mkψ̃3 + Ckψ̃3̄ + Akψ̃8 + Bkψ̃9,

ψ̃4 = Mkψ̃4 + Ckψ̃9 + Akψ̃5 + Bkψ̃1,

ψ̃5 = Mkψ̃5 + Ckψ̃6 + Akψ̃1 + Bkψ̃4, (23)

ψ̃6 = Mkψ̃6 + Ckψ̃5 + Akψ̃7 + Bkψ̃2,

ψ̃7 = Mkψ̃7 + Ckψ̃8 + Akψ̃2 + Bkψ̃6,

ψ̃8 = Mkψ̃8 + Ckψ̃7 + Akψ̃9 + Bkψ̃3,

ψ̃9 = Mkψ̃9 + Ckψ̃4 + Akψ̃3 + Bkψ̃8.

Here, ψ̃1̄, . . . ,ψ̃3̄ refer to the corner sites of the respective
neighboring graphlets, which do not get renormalized them-
selves.

The algebraic effort is drastically reduced by tracing out
ψ̃4, . . . ,ψ̃9 in a symmetrical way. When eliminated, each of
those amplitudes must be a function of the remaining three,
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ψ̃1, . . . ,ψ̃3, in a cyclically permuted manner. Thus, we start
with the ansatz

ψ̃4 = aψ̃1 + bψ̃2 + cψ̃3, ψ̃5 = dψ̃1 + eψ̃2 + f ψ̃3, (24)

and we proceed similarly for the inner sites at the other two
corners, (ψ̃6,ψ̃7) and (ψ̃8,ψ̃9), by appropriately permuting the
indices on ψ̃1, . . . ,ψ̃3. Inserting these prospective solutions
into the right-hand side of the last six relations in Eqs. (23) and
comparing coefficients with Eqs. (24) provide self-consistency
relations for the matrices a, . . . ,f . This step eliminates
ψ̃4, . . . ,ψ̃9 by transforming the problem into one of expressing
matrices a, . . . ,f in terms of Ak,Bk,Ck, and Mk , or, with
simpler notation, Ā = (I − Mk)−1Ak , B̄ = (I − Mk)−1Bk ,
and C̄ = (I − Mk)−1Ck . Most important, this ansatz has dis-
entangled the original six equations into two equivalent, closed
sets of three relations that can be solved independently: Since
comparing coefficients provides a bipartite set of relations
initially,

a = Ād + C̄e + B̄, d = B̄a + C̄c + Ā,

b = Āe + C̄f, e = B̄b + C̄a,

c = Āf + C̄d, f = B̄c + C̄b

(25)

(note that these are noncommuting matrices), we write

a = ĀB̄a + ĀC̄c + Ā2 + C̄B̄b + C̄2a + B̄,

b = ĀB̄b + ĀC̄a + C̄B̄c + C̄2b, (26)

c = ĀB̄c + ĀC̄b + C̄B̄a + C̄2c + C̄Ā,

and we write a corresponding set for d,e,f by identifying
a ⇔ d, b ⇔ f , c ⇔ e, and Ā ⇔ B̄, while C̄ remains in place.
To minimize the number of matrix multiplications, it is now
convenient to abbreviate

V = (
I − ĀB̄ − C̄2

)−1
,

A = V ĀC̄,

B = V C̄B̄,

W = (I − BA)−1, (27)

X = A2 + B,

Y = W (A + B2),

Z = WV (A2 + B).

With these abbreviations, we find

c = [I − AB − XY ]−1
(
V C̄Ā + XZ

)
,

a = Yc + Z, (28)

b = Aa + Bc,

and the complementing set for d,e, and f . Finally, inserting
ψ̃4,ψ̃5 from Eqs. (24) into the relation for ψ̃1 (or, equivalently,
inserting ψ̃6,ψ̃7 into the relation for ψ̃2 or ψ̃8,ψ̃9 into that for
ψ̃3) yields the renormalization flow

Mk+1 = Mk + Aka + Bkd, Ak+1 = Akc + Bkf,
(29)

Bk+1 = Akb + Bke, Ck+1 = Ck.

(Note that Ck does not renormalize.) While tedious to derive,
these equations are exact and easily implemented on a
computer algebra system.

B. Parametrizing the RG flow for the dual Sierpinski gasket

As in Sec. III B, we define shift matrices

P =
⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦ , Q =

⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦ , R = 0. (30)

Since Ck does not renormalize, Ck = C0, it does not require a
parametrization. We initiate the recursions at k = 0 with A0 =
zPC,B0 = zQC, and M0 = zRC = 0. After a single iteration,
a recursive pattern emerges that suggests a five-parameter
ansatz:

Pk =
⎛
⎝a

(1)
k a

(2)
k 0

a
(2)
k a

(3)
k 0

0 0 0

⎞
⎠ , Qk =

⎛
⎝a

(3)
k a

(2)
k 0

a
(2)
k a

(1)
k 0

0 0 0

⎞
⎠ ,

(31)

Rk = 1

2

⎛
⎝m

(1)
k − m

(2)
k m

(1)
k + m

(2)
k 0

m
(1)
k + m

(2)
k m

(1)
k − m

(2)
k 0

0 0 0

⎞
⎠ .

Iteration provides of closed set of five complex recursions,
{a(1,2,3)

k+1 ,m
(1,2)
k+1 } = R({a(1,2,3)

k ,m
(1,2)
k }; z), each a ratio of poly-

nomials similar to Eqs. (19) but with dozens of terms and
an explicit dependence on z due to C0. Again, the algebra is
easily handled by a computer; however, these recursions prove
numerically unstable, and numerical precision is quickly lost
near points of interest, such as z = −1.

C. Asymptotic properties of the RG flow

As a specific observable to study, we again focus on the
probability to ever get absorbed at a wall, as shown in Fig. 3.
With increasing length L, the sole absorbing site at one corner
of DSG recedes from the starting point of the quantum walk
(IC), chosen at the opposite corner. Thus, the total absorption
F

(k)
0 is a measure of quantum transport across the system.

Figure 4(a) shows the integrand |ψ̃ (k)
0 (z)|2 of F0 in Eq. (20)

for 0 � arg z � π (all observables are symmetric around the
real-z axis). We derive the expression for ψ̃0 in Eq. (A7) in
the Appendix. Compared to Fig. 2(a) for the line, remarkably
complex patterns emerge for a quantum walk on DSG:

(1) There is an isolated stationary point at arg z = π , i.e.,
θ = 0 [see Eq. (21)], where a

(1,2,3)
k = −m

(1)
k = − 1

3 and m
(2)
k =

1 for all k � 2.
(2) A sequence of sparse, rugged peaks that slowly decay

seem to accumulate for θ → 0 with increasing k.
(3) Everywhere else, the function decays rapidly for

increasing k, where a
(1)
k ∼ a

(2)
k ∼ a

(3)
k → 0 and |m(1,2)

k | → 1.
There is no finite oscillatory domain to signal extensive
quantum transport. Instead, since ψ̃

(k)
0 ∼ a

(1,2,3)
k , it is easy to

show from the five recursions that for any fixed value of θ �= 0,
|ψ̃ (k)

0 (z)| → 0 for k → ∞, suggesting that for large systems
quantum transport ceases such that the absorption approaches
zero.

Unlike for translation-invariant lattices, where some frac-
tion of quantum walks might localize, on DSG the entire walk
eventually gets trapped. However, unlike the sharp localization
on lattices [20,21], the entrapped portion of the wave function
has broad tails here. Only at θ = 0 do we find a fixed point. The
largest eigenvalue of its Jacobian is λf = 3, which coincides
with the fractal exponent of DSG, df = log2 3. However, the
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5
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0
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1.0 0.5 0.5 1.000000000000
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5

ln ψ̃
(k)
0

2

k = 5

k = 15

k = 5

k = 15

k = 21

k = 21

ln(5
k
2 θ)

ln Lβ
k ψ̃

(k)
0

2

(b)

FIG. 4. (Color online) (a) Log plot of the integrand |ψ̃ (k)
0 (z)| in Eq. (20) for 0 � arg z � π for k = 1, . . . 6. Decaying almost everywhere,

the integrand has the most support near the fixed point, arg z → π . A logarithmic scale with θ = π − arg z → 0 reveals a self-similar sequence
of periodic structures. (b) Scaling collapse of |Lβ

k ψ̃
(k)
0 (z)| with Lk = 2k for ln(λk

wθ ) at k = 5, . . . ,15 using λw = √
5. At β = 0, all data line up;

in particular, all peaks remain constant (= 1 up to k = 21; see the insets) but narrow. At β = 0.424(3), all data in the fast-decaying intervals
collapse, but the peaks now diverge.

data collapse in Fig. 4(b) demonstrates that the limit θ → 0 is
singular: all data align and collapse according to Eq. (32) but
with an eigenvalue smaller than the Jacobian. This collapse
occurs in a regime such that λk

wθ ∼ 1, while the fixed point at

ln θ → −∞ seems infinitely far away and irrelevant. We will
discuss this point in more detail in Sec. V.

The exponents λw and β from Eq. (32) can be deter-
mined recursively with high accuracy from the collapse with
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FIG. 5. (Color online) Simulations of quantum walks on DSG
for the collapse f (xdw/t) ∼ ρ(x,t)tγ /dw , with dw = log2

√
5, for the

probability density function ρ(x,t) = |ψx,t |2 (see inset) for finding the
walker at any site x hops away from the initial sites at times t = 2l ,
l = 7, . . . ,12, on a DSG of size N ∼ 312, before the absorbing wall
is reached. To fit not only the cutoff but also the bulk distribution, we
estimate a power-law decay with exponent γ ≈ 3 for ρ as a function
of x; see the inset.

computational cost linear in k (i.e., logarithmic in system size).
As shown at the bottom of Fig. 4(b) and especially in the
insets, lining up the data for |ψ̃ (k)

0 (z)|, k = 5, . . . ,21, without
resizing (β = 0) yields λw = 2.23607(2), which we identify
as λw = √

5, such that dw = log2 λw = log2

√
5. (The only

limitation in the ability to determine the value of λw to arbitrary
accuracy numerically is set by the chaotic nature of the RG
recursions; initiating z near θ → 0 with 1500-digit accuracy,
no accuracy remains after only k = 25 iterations.)

To demonstrate the relevance of this eigenvalue λw for the
asymptotic spreading of the quantum walk, we have directly
conducted large-scale numerical simulations of the master
equation (see Fig. 5). The value of dw = log2

√
5 causes a

data collapse for ρ(x,t) ∼ f (xdw/t)/tγ/dw , with γ ≈ 3, from
fitting ρ(x,t) ∼ x−γ (see the inset in Fig. 5). (The origin of this
power-law decay, in contrast to a Gaussian kernel for diffusion,
is as yet unknown.) In particular, the inset shows that the cutoff
in ρ(x,t) scales perfectly as xco ∼ t1/dw , leading to the collapse
in the main panel.

However, this shift in θ alone results in a set of functions that
uniformly decay with increasing k everywhere but in isolated
points [see the down arrows in Fig. 4(b)]. Using β = 0.424(3)
in Eq. (32) collapses the data everywhere except for isolated
peaks that now grow with k [see the up arrows in Fig. 4(b)].
The absorption integral from Eq. (20) that receives most of
its support near |θ | < ε � 1 yields F

(k)
0 ∼ F

(k−1)
0 /(λw22β),

using Eq. (32), with the solution F
(k)
0 ∼ L

−(dw+2β)
k , Lk ∼ 2k ,

as a lower bound on the adsorption. Thus, the true F
(k)
0

vanishes with length L as a power law with an exponent
at least as large as dw (β = 0) but not larger than dw +
2β ≈ 2.01(1). Simulations of quantum walks on DSG up to
k = 12 generations shown in Fig. 6 suggest a unique expo-
nent ≈1.23(1) that is only minutely above dw, independent
of the IC.

0 0.2 0.4 0.6
1/ln(L

k
)

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

-ln
(F

0)/l
n(

L k)

FIG. 6. (Color online) Extrapolation for the scaling exponent in
the decay of the simulated absorption F0 with system length Lk =
2k , k � 12, based on a power law, for many different symmetric
(pluses) and asymmetric (dots) initial conditions (IC). All data appear
to extrapolate to the same intercept (Lk → ∞) at about 1.23(1), with
the most linear fit (extended line) provided by the symmetric ψIC ∝
(1,2,1). This exponent is closely bounded below by dw = log2

√
5

(cross).

V. HOW RG FIXED POINTS FAIL TO DETERMINE
ASYMPTOTIC PROPERTIES

As Sec. IV A has shown, extracting the scaling ρ(x,t) ∼
f (xdw/t) from the fixed point proves insufficient for the
quantum walk on DSG. While the fixed point of the RG for
the quantum walk on the line naively appears to reproduce
the known scaling properties, the discussion shows that this
is likely a coincidence for this rather simple scenario. The
examples of the line in Sec. III and of DSG in Sec. IV show
the fixed point found in both cases appear to coincide with
the fractal exponent df = log2 λf , which refers to structural
properties of the lattice, rather than to the dynamics of the walk
itself.

Since most dynamic observables require an extended
examination in the complex-z plane, the example of the
Sierpinski gasket suggests that the same holds true for the
RG flow. As the data collapse in Fig. 4 demonstrates, the way
to extract the eigenvalue λw (and hence dw) that is consistent
with the RG on fractals (such as DSG below) results from the
scaling

ψ̃ (k)
a (θ ) ∼ 2−βψ̃ (k−1)

a (λwθ ) (32)

at large k near a fixed point for θ → 0, such that λk
wθ � 1.

Rescaling θ corresponds to z → z1/λw for k → k + 1, and
hence, from Eq. (8) we see that it amounts to a rescaling of
time t with λw when L doubles, such that dw = log2 λw. The
scenario posed by Eq. (32) is depicted in Fig. 7, which suggests
that the RG flow will have to be solved asymptotically in an
intermediate scaling regime, as it can never reach the fixed
point for λw < λf . While such an exact analysis has not been
achieved yet, the simplicity of the exponent suggests that it
should be achievable. It suggests that the RG for quantum
walks requires an entirely new approach, beyond the usual
fixed-point analysis.

The fixed-point analysis happened to be successful for the
1d line because fractal and walk exponents coincide there,
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FIG. 7. (Color online) Depiction of the characteristic trajectories
along which the RG flow remains invariant, where θ = arg(z − z0)
is a measure of the angular distance from the fixed point at z0 in the
complex unit circle. In this picture, the fixed point is off to the left at
ln θ = −∞, where the data collapse by way of the fractal exponent
df = log2 λf [red (light gray) trajectories], resulting from the largest
Jacobian eigenvalue λf . On the right, where λk

wθ � 1 [blue (dark
gray) trajectories], a far more subtle collapse like that shown in Fig. 4
results. Note that those trajectories cannot ever reach the fixed point
since λw < λf and will require some intermediate scaling ansatz
(except for the quantum walk on a line, where λf = λw). The green
(gray) shaded area between those different characteristics marks an
unknown crossover region.

dw = df = d = 1 (and β = 0 there), as demonstrated by the
data collapse in Fig. 2(b). As the limit θ → 0 for the simple
line is not singular, it is not surprising that scaling collapse and
traditional RG analysis near the fixed point provide identical
results.

VI. CONCLUSIONS

In conclusion, we have devised a method to determine the
asymptotic behavior of discrete-time quantum walks on the
dual Sierpinski gasket using RG. Fractal graphs, as well as ran-
dom networks, lack the translational symmetry that is essential
to study quantum walks on lattices. The present treatment
can be applied to renormalizable structures [9] to generate
analytical results for important physical quantities such as
the spreading rate of the probability distributions. However,
compared to random walks, quantum walks require extending
RG into the complex plane, which we have explored in some
detail. We confirmed that quantum walks are more intricate
than random walks, and we analyzed the effects of geometry
on quantum interference. Direct numerical simulations support
our conclusions.

The RG analysis for quantum walks appears to be more
complicated than for classical random walks, likely a result of
unitarity, which precludes the typical contractive mapping that
makes RG of classical, stochastic processes easy. However,
our results suggest that such quantum systems will ultimately
find just as exact a description as those for classical systems. In
turn, much more will be gained, as these quantum processes

exhibit a far richer phenomenology compared to the rather
structureless diffusion process.

Finally, we note that the potential scope of the RG is
much broader [24] than being merely a toll to calculate
exponents for some specific fractals, where it happens to be
exact. Once the present technical issues have been resolved,
it should be possible to use the RG, exactly or approximately,
to classify the asymptotic properties of quantum walks
and, hopefully, other quantum algorithms into universality
classes. Such a classification ultimately should serve as the
basis for understanding and hence controlling the observed
behaviors.
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APPENDIX

1. Absorption on the line

We consider the case of two absorbing walls on both ends
of a simple line with the initial conditions (IC) located on a
single site right next to the left wall, as shown in Fig. 1. It is
convenient to identify the IC site as the origin (i = 0); that is,
the left-absorbing site is ψ̃−, and the right wall is located on
site i = 2k with ψ̃+. Since nothing escapes out of the absorbing
sites, we have the following master equations:

ψ̃− = B0ψ̃0,

ψ̃0 = N0ψ̃0 + B0ψ̃1 + ψIC,

ψ̃x = M0ψ̃x + A0ψ̃x−1 + B0ψ̃x+1 (1 � i � 2k − 2),

ψ̃2k−1 = M0ψ̃2k−1 + A0ψ̃2k−2,

ψ̃+ = A0ψ̃2k−1. (A1)

This setup has been chosen exactly such that all quantities
renormalize according to the flow in (12), avoiding some of
the special considerations typically required near boundaries.
The only exception refers to the self-term at ψ̃0: Although
initially N0 = M0 = 0, its recursion is Nk+1 = Nk + Bk(I −
Mk)−1Ak instead. (This geometry resembles exactly the setup
of Ref. [35], with which we can now compare.)

In each recursion step, every second intervening site still
present is eliminated (see the sequence in Fig. 1). As the last
setting suggests, we are left with three relations,

ψ̃− = B0ψ̃0, ψ̃0 = Nkψ̃0 + ψIC, ψ̃+ = Akψ̃0. (A2)

We now simply eliminate ψ̃0 to get

ψ̃
(k)
− = B0(1 − Nk)−1ψIC, ψ̃

(k)
+ =Ak(1 − Nk)−1ψIC. (A3)

2. Absorption on the dual Sierpinski gasket

Using the recursions developed in Eqs. (29), we exactly
evolve from the raw hopping coefficients A0,B0, and M0 (C
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does not renormalize, i.e., Ck = C0) to the kth stage; the next
to last stage is shown in Fig. 3. After tracing out the remaining
six inner sites, we have

ψ̃0 = C0ψ̃1,

ψ̃1 = Mkψ̃1 + Akψ̃3 + Bkψ̃2,
(A4)

ψ̃2 = Mkψ̃2 + Akψ̃1 + (Bk + C0)ψ̃3 + 1√
2
ψIC,

ψ̃3 = Mkψ̃3 + (Ak + C0)ψ̃2 + Bkψ̃1 + 1√
2
ψIC.

Here, we assume symmetric IC applied at the two corner sites
opposite the absorbing wall; the procedure is easily extended
to two unequal IC. For η ∈ {Ak,Bk,C0,ψIC} we define η̄k =

(I − Mk)−1ηk and make the ansatz

ψ̃2 = Xψ̃1 + Uψ̄IC, ψ̃3 = Y ψ̃1 + V ψ̄IC. (A5)

Inserting ψ̃2,3 into Eqs. (A4) determines self-consistently

X = [I − (Āk + C̄0)(B̄k + C̄0)]−1[B̄k + (Āk + C̄0)Āk],

Y = [I − (B̄k + C̄0)(Āk + C̄0)]−1[Āk + (B̄k + C̄0)B̄k],
(A6)

U = [I − (Āk + C̄0)(B̄k + C̄0)]−1[I + (Āk + C̄0)],

V = [I − (B̄k + C̄0)(Āk + C̄0)]−1[I + (B̄k + C̄0)].

Inserting ψ̃2,3 in Eqs. (A5) into ψ̃1 in Eqs. (A4), and then ψ̃1

into ψ̃0, yields

ψ̃0 = C0(I − ĀkX − B̄kY )−1(ĀkU + B̄kV )ψ̄IC. (A7)
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