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A bipartite state ρAB is symmetric extendible if there exists a tripartite state ρABB ′ whose AB and AB ′ marginal
states are both identical to ρAB . Symmetric extendibility of bipartite states is of vital importance in quantum
information because of its central role in separability tests, one-way distillation of Einstein-Podolsky-Rosen
pairs, one-way distillation of secure keys, quantum marginal problems, and antidegradable quantum channels.
We establish a simple analytic characterization for symmetric extendibility of any two-qubit quantum state ρAB ;
specifically, tr(ρ2

B ) � tr(ρ2
AB ) − 4

√
det ρAB . As a special case we solve the bosonic three-representability problem

for the two-body reduced density matrix.
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I. INTRODUCTION

The notion of symmetric extendibility for a bipartite quan-
tum state ρAB was introduced in [1] as a test for entanglement.
A bipartite density operator ρAB is symmetric extendible if
there exists a tripartite state ρABB ′ such that trB ′(ρABB ′) =
trB(ρABB ′). A state ρAB without symmetric extension is
evidently entangled, and to decide such an extendibility ρAB

can be formulated in terms of semidefinite programming (SDP)
[2]. Although this leads to numerical tests and bounds [3–6]
that allow for entanglement detection [7–11], an analytic
formula provides greater insight.

States with symmetric extension also have a clear oper-
ational meaning for quantum information processing [12].
One simple idea is that if a bipartite state ρAB is symmetric
extendible, then one cannot distill any entanglement from
ρAB by protocols only involving local operations and one-
way classical communication (from A to B) [13] because
of entanglement monogamy [14]. Furthermore, using the
Choi-Jamiolkowski isomorphism, symmetric extendibility of
bipartite states also provides a test for antidegradable quantum
channels [15] and one-way quantum capacity of quantum
channels [13].

A similar idea applies to the protocols for quantum key
distribution (QKD), which aim to establish a shared secret key
between two parties (for a review, see [16]). The corresponding
QKD protocols can be viewed as having two phases: in the first
phase, the two parties establish joint classical correlations by
performing measurements on an untrusted bipartite quantum
state, while in the second phase a secret key is distilled
from these correlations by a public discussion protocol (via
authenticated classical channels) which typically involves
classical error correction and privacy amplification [17–20].
If the underlying bipartite state ρAB is symmetric extendible,
then no secret key can be distilled by a process involving
only one-way communication. Therefore, the foremost task
of the public discussion protocol is to break this symmetric
extendibility by some bidirectional postselection process.
Failure to find such a protocol means that no secret key can be
established [15,21,22].

From each of these perspectives then, we draw motivation
for finding a simple characterization of all bipartite quantum
states that possess symmetric extensions.

For the simplest case in which ρAB is a two-qubit state,
it was conjectured in [22] that the set ρAB is symmetric
extendible if and only if the spectra condition tr(ρ2

B) �
tr(ρ2

AB) − 4
√

det ρAB is satisfied. This elegant inequality is
arrived at by studying several examples both analytically
and numerically, for example, the Bell diagonal states and
the ZZ-invariant states. Unfortunately, [22] fails to prove in
general either the necessity or the sufficiency of the conjecture,
an unusual situation as typically one of the directions would
be easy to establish. This hints at an intrinsic hardness to the
problem, whose solution may require new physical insight.

It has been observed that the symmetric extension problem
is a special case of the quantum marginal problem [15],
which asks for the conditions under which some set of density
matrices {ρAi

} for subsets Ai ⊂ {1,2, . . . ,n} is reduced density
matrices of some state ρ of the whole n-particle system [23].
The related problem in fermionic (bosonic) systems is the
so-called N -representability problem, which has a long history
in quantum chemistry [24,25].

Despite recent progress [23,24,26], most quantum marginal
problems are notoriously difficult. It was shown that the
quantum marginal problem belongs to the complexity class
of QMA(Quantum Merlin Arthur)-complete, even for the rel-
atively simple case where the marginals {ρAi

} are two-particle
density matrices [27–29]. Nevertheless, the solution to small
systems would provide insight on developing approximation
or numerical methods for larger systems, although on the
analytical side only a handful partial results are known [30,31].

In this work, we prove the conjecture that a two-qubit
state ρAB is symmetric extendible if and only if tr(ρ2

B) �
tr(ρ2

AB) − 4
√

det ρAB . Our main insight for obtaining this
result relies largely on the physical pictures from the study
of the quantum marginal problem. Besides providing a better
understanding for various quantum information protocols
related to symmetric extension, our result also gives an analytic
necessary and sufficient condition for a special case of the
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CHEN, JI, KRIBS, LÜTKENHAUS, AND ZENG PHYSICAL REVIEW A 90, 032318 (2014)

quantum marginal problem, which could lead to some insight
into more general situations.

II. SYMMETRIC EXTENSION

For any two-qubit state ρAB , we denote its symmetric
extension by ρABB ′ (which may be nonunique); hence ρAB =
ρAB ′ . Consider the following set:

A = {ρAB : �λ(ρAB) = �λ(ρB)}, (1)

where �λ(ρ) denotes the nonzero eigenvalues of ρ in decreasing
order. It is shown in [22] that A fully characterizes the set
of two-qubit states which admit pure symmetric extension
ρABB ′ = |ψABB ′ 〉〈ψABB ′ | for some pure state |ψABB ′ 〉. This
follows from the Schmidt decomposition of |ψABB ′ 〉, which
gives the same nonzero spectra for ρAB and ρB .

The convex hull of A is given by

B =
⎧⎨⎩ρAB : ρAB =

∑
j

pjρ
j

AB ;

0 � pj � 1;
∑

j

pj = 1; ρj

AB ∈ A

⎫⎬⎭ ,

which completely characterizes the set of two-qubit states that
admit symmetric extension.

It is conjectured in [22] that set B may be equal to another
analytically tractable set C given by

C = {
ρAB : tr

(
ρ2

B

)
� tr

(
ρ2

AB

)− 4
√

det ρAB

}
. (2)

Our main result is to show that the conjecture B = C is indeed
valid.

Theorem 1. A two-qubit state ρAB admits a symmetric
extension if and only if tr(ρ2

B) � tr(ρ2
AB) − 4

√
det ρAB .

Our key insight for obtaining this result relies largely on
the structure of B. Since B is a convex set, for any point
σAB ∈ ∂B, where ∂B denotes the boundary of B, there exists
a supporting hyperplane through σAB , which is associated
with an observable HAB(σAB). That is, tr[HAB(σAB)ρAB] � 0
holds for any ρAB ∈ B. This induces a Hamiltonian H =
HAB + HAB ′ for the three-qubit system ABB ′, which has
the symmetric extension ρABB ′ supported on the ground-state
space of H .

If it is true that B = C, then C must inherit all the
above-mentioned properties of the convex body B. These
observations then hint at the structure of the intersection of
∂C with the supporting hyperplane associated with HAB(σAB),
which are faces of the convex body C.

III. THE NECESSARY CONDITION

We first prove the necessary condition of Theorem 1, which,
as observed below, will follow if we prove C is convex.
A natural approach here would be to assume that for any
ρAB,σAB ∈ C, the convex combination pρAB + (1 − p)σAB

for any p ∈ [0,1] is also in C. However, the characterization of
C by Eq. (2) involves the square root of a determinant, which
is not easy to handle directly.

We therefore take another slightly different approach based
on the fact that a closed set with a nonempty interior is convex
if every point on its boundary has a supporting hyperplane
[32]. Thus our goal is to find such a supporting hyperplane for
any σAB ∈ ∂C.

To achieve our goal, we will need to characterize the
boundary of C (i.e., ∂C). Let f (σAB) = tr(σ 2

B) − tr(σ 2
AB) +

4
√

det σAB . We have the following result.
Lemma 1. ∂C contains all states σAB ∈ C without full rank

(i.e., has rank <4) and all full-rank states σAB ∈ C satisfying
f (σAB) = 0.

To prove Lemma 1, we first consider the case where σAB

is without full rank. Consider the polynomial det(yρAB +
σAB) = ∑4

k=0 ck(ρAB)yk for ρAB ∈ C. Define h(ρAB) =
c1(ρAB). Notice that c0(ρAB) = 0 and det(yρAB + σAB) � 0
when y → 0+. Furthermore, h(σAB) = 0. This implies that
{X : h(X) = 0} is a supporting hyperplane at σAB . Hence
it follows that any σAB ∈ C without full rank is in ∂C, and
furthermore there is always a supporting hyperplane at σAB .

We then discuss the case where σAB ∈ ∂C is of full rank
(i.e., rank 4). In this case, we show that all σAB ∈ ∂C are
characterized by f (σAB) = 0. To see this, notice that σAB lies
on the boundary if every neighborhood of σAB contains at least
one point in C and at least one point not in C.

For any Hermitian operator MAB , we have the following
expansion by Jacobi’s formula (see, e.g., [33]):

f (σAB + εMAB) − f (σAB) = 2 tr[HAB(σAB)MAB]ε

+O(ε2), (3)

where

HAB(σAB) =
√

det σABσ−1
AB − σAB + σB. (4)

Now for any full-rank state σAB satisfying the strict inequal-
ity f (σAB) > 0, we can always find an open ball centered at
σAB over which the strict inequality always holds; i.e., σAB is
an interior point. On the other hand, if f (σAB) = 0, then we can
always choose suitable Hermitian operators MAB,M ′

AB such
that tr[HAB(σAB)MAB] > 0 and tr[HAB(σAB)M ′

AB] < 0 unless
HAB(σAB) = 0. The latter cannot occur, as it would imply√

det σABIAB = σ 2
AB − σ

1
2

ABσBσ
1
2

AB � σ 2
AB . The last inequality

holds only if σAB ∝ IAB , which immediately contradicts
f ( I4 ) = 1

2 . Hence any full-rank states satisfying f (σAB) = 0
are boundary points of C.

Given the full characterization of ∂C given by Lemma 1,
especially the form of Eqs. (3) and (4), our main result in this
section is then the following theorem.

Theorem 2. For any full-rank state σAB ∈ ∂C and HAB(σAB)
as given in Eq. (4), the inequality

tr[HAB(σAB)ρAB] � 0 (5)

holds for any ρAB ∈ C.
Note that the equality of Eq. (5) holds when ρAB = σAB .

Equality (5) then means that for any full-rank σAB ∈ ∂C, there
is a supporting hyperplane of C which can be characterized by

L(σAB) := {X : tr[HAB(σAB)X] = 0}. (6)

In order to prove Eq. (5), we will need another characteri-
zation of the set C and follow a straightforward step-by-step
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optimization procedure that involves a lengthy calculation. We
provide the technical details in Appendixes A and B.

To summarize, we have thus shown that for any σAB ∈ ∂C,
with or without full rank, there exists a supporting hyperplane
at σAB . This implies that C is convex.

A direct consequence of the convexity of C is that B ⊆ C.
To see why, we can easily verify that A ⊂ C. Additionally, B
is the convex hull of A. Therefore the convex hull of A is a
subset of the convex hull of C, which is again C, and thus we
have B ⊆ C, as required.

IV. THE SUFFICIENT CONDITION

To prove the sufficiency of Theorem 1, we will need to show
that any state in C can be represented as a convex combination
of some states in A. In fact, given the convexity of C, it suffices
to show this for σAB ∈ ∂C.

Furthermore, we only need to deal with the cases where
σAB ∈ ∂C is of full rank or rank 3. The rank-1 case is obvious,
and the rank-2 case has already been solved in [22]. That is, any
rank-2 state ρAB ∈ C can be written as a convex combination
of two states in A; hence ρAB is symmetric extendible.

For the full rank case, let us first build up some intuition
by imagining what should happen if B = C. According to
Eq. (5), for any σAB ∈ ∂C, there exists a supporting hyperplane
L(σAB) given by all the X satisfying tr[HAB(σAB)X] = 0,
where HAB(σAB) given in Eq. (4) is a Hermitian operator
acting on qubits A and B.

Now let us consider the following operator H acting on the
three-qubit system ABB ′:

H = HAB + HAB ′ . (7)

Note that H can be viewed as a Hamiltonian of the system
ABB ′. The symmetric extension of σAB , denoted by σABB ′ ,
should have zero energy as tr(HσABB ′) = tr(HABσAB) +
tr(HAB ′σAB ′).

Furthermore, we show that H is positive. Since H is
symmetric when swapping BB ′, we can always find a complete
set of eigenstates {|ψi〉}8

i=1 of H , such that for each |ψi〉,
trB(|ψi〉〈ψi |) = trB ′(|ψi〉〈ψi |). This is because if there is
any eigenstate |φ〉 of H with energy Eφ which does not
satisfy trB(|φ〉〈φ|) = trB ′(|φ〉〈φ|), then the state |φ′〉 = S|φ〉
is also an eigenstate of H with the same energy Eφ , where
S := SWAPBB ′ is the swap operation acting on the qubits
BB ′. Therefore we can rechoose the eigenstates with energy
Eφ as ϕ = 1/

√
2(|φ〉 + |φ′〉) and ϕ′ = 1/

√
2(|φ〉 − |φ′〉); then

we will have trB(|ϕ〉〈ϕ|) = trB ′(|ϕ〉〈ϕ|) and trB(|ϕ′〉〈ϕ′|) =
trB ′(|ϕ′〉〈ϕ′|).

It then directly follows from Eq. (5) that for this complete set
of eigenstates {|ψi〉}8

i=1 with trB(|ψi〉〈ψi |) = trB ′ (|ψi〉〈ψi |),
tr(H |ψi〉〈ψi |) � 0. That is, H is positive. Therefore, σABB ′

with zero energy is supported on the ground-state space of H

(for a general discussion on supporting hyperplanes and the
ground-state space, see, e.g., [25,34,35]).

Because H is symmetric when swapping BB ′, generically,
the ground-state space of H should be doubly degenerate. To
see this, if |ψ0〉 is a ground state of H , S|ψ0〉 is also a ground
state of H . Generically, S|ψ0〉 should be linear independent of
|ψ0〉.

Let us now denote the ground-state space of H by VH ,
which is generically two-dimensional and define

F := {ρAB |ρAB = trB ′ ρABB ′ ,ρABB ′ supported on VH }.

Note that F ⊂ ∂C and F is, in fact, a face of the convex body
C. We have that for σAB ∈ F , the symmetric extension σABB ′

is supported on the ground-state space of H . This indicates
that F = L(σAB)

⋂
∂C.

Because VH is generically two-dimensional, any state
supported on VH can be parameterized by a two-dimensional
unitary operator U and the two eigenvalues λ0,λ1 of any
state that is supported on VH (with λ0 + λ1 = 1). That is, any
state ρABB ′ supported on VH is of the form, in some chosen
orthonormal basis of {|ψ1〉,|ψ2〉} of VH ,

ρABB ′(λ0,λ1,U ) = U (λ0|ψ0〉〈ψ0| + λ1|ψ1〉〈ψ1|)U †.

Consequently, any state ρAB = trB ′ ρABB ′ ∈ L(σAB)
⋂

∂C can
also be parametrized by λ0,λ1,U , which we can denote as
ρAB(λ0,λ1,U ).

Furthermore, any ρABB ′(λ0,λ1,U ) has the obvious decom-
position

ρABB ′(λ0,λ1,U ) = λ0ρABB ′(1,0,U ) + λ1ρABB ′(0,1,U ),

where both ρABB ′ (1,0,U ) and ρABB ′ (0,1,U ) are three-qubit
pure states. As a result,

ρAB(λ0,λ1,U ) = λ0ρAB(1,0,U ) + λ1ρAB(0,1,U ),

where both ρAB(1,0,U ) and ρAB ′(0,1,U ) are in ∂C and of
rank 2.

Summarizing the discussion above, for a full-rank σAB ∈
∂C, we shall expect that, generically, any state in L(σAB)

⋂
∂C

can be parameterized by a two-dimensional unitary U and two
real parameters λ0,λ1, denoted as ρAB(λ0,λ1,U ). Any such
ρAB(λ0,λ1,U ) can always be written as a convex combination
of two rank-2 states in ∂C. A detailed analysis of L(σAB)

⋂
∂C

shows this is not only generically the case but also always the
case. This is given as the following theorem. We shall provide
the technical details of the proof in Appendix C.

Theorem 3. Every full-rank σAB ∈ ∂C can be written as a
convex combination of two rank-2 states in ∂C.

Furthermore, because any rank-2 state ρAB ∈ C can be
written as a convex combination of two states in A, it follows
that any full-rank σAB ∈ ∂C can be written as a convex
combination of states in A and hence is symmetric extendible.

Now consider the case where σAB ∈ ∂C has rank 3. Let |φ〉
be the state in ker σAB . Notice that since any two-qubit state
is the local unitary equivalent to state a|00〉 + b|11〉 for some
a,b, we can always write σAB in the following form without
loss of generality:

σAB =

⎛⎜⎜⎜⎝
|b|2 b∗x∗ b∗y∗ −ab∗

bx |r|2 t −ax

by t∗ |s|2 −ay

−a∗b −a∗x∗ −a∗y∗ |a|2

⎞⎟⎟⎟⎠ .
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Let us choose the Hermitian operator

MAB =

⎛⎜⎜⎜⎝
0 b∗p∗ b∗q∗ bp

0 0 0 −ap

bq 0 0 −aq

0 −a∗p∗ −a∗q∗ 0

⎞⎟⎟⎟⎠ ,

where p,q are constants to be fixed later, and define σ (ε) =
σAB + εMAB .

Then

tr
[
σ (ε)2

B

]− tr
[
σ (ε)2

AB

]
= tr[(σB + εMB)2] − tr[(σAB + εMAB)2]

= tr
(
σ 2

B

)− tr
(
σ 2

AB

)+ ε2
[

tr
(
M2

B

)− tr
(
M2

AB

)]
+ 2ε[tr(σBMB) − tr(σABMAB)]

= −2|ap + b∗q∗|2ε2 − 4Re[(ap + b∗q∗)(a∗x∗ + by)]ε,

where Re stands for the real part of a complex number.
By choosing suitable p,q such that ap + b∗q∗ = 0, we will

have tr[σ (ε)2
B] = tr[σ (ε)2

AB], which implies σ (ε) ∈ ∂C if σ (ε)
is a density operator. MAB is a traceless operator whose kernel
also contains |φ〉; therefore with growing ε in either direction,
we will have positive ε+ and negative ε− such that σ (εi) =
σAB + εiMAB ∈ ∂C and rank[σ (εi)] � 2 for any i ∈ {+,−}.
Hence, σAB of rank 3 can be written as a convex combination
of, at most, two states from A.

This concludes the proof of the sufficiency condition of
Theorem 1.

V. EXAMPLE

To better understand the physical picture, let us look at an
example. Consider the two-qubit Werner state

ρW (p) = (1 − p)
I

4
+ p|φ〉〈φ|,

where |φ〉 = 1√
2
(|00〉 + |11〉) and p ∈ [0,1]. The equation

tr
[
ρ2

W (p)
] = tr{[trB ρW (p)]2} + 4

√
det ρW (p)

provides a unique solution of p = 2
3 ; i.e., ρW ( 2

3 ) ∈ ∂C. Further,
Eq. (4) gives

HAB

(
ρW

(
2

3

))
=

⎛⎜⎜⎜⎝
2
9 0 0 − 4

9

0 2
3 0 0

0 0 2
3 0

− 4
9 0 0 2

9

⎞⎟⎟⎟⎠.

The ground-state space of the Hamiltonian H (ρW ( 2
3 )) =

HAB(ρW ( 2
3 )) + HAB ′(ρW ( 2

3 )) is indeed twofold degenerate and
is spanned by

|ψ0〉 = 1√
6

(2|000〉 + |101〉 + |110〉) ,

|ψ1〉 = 1√
6

(2|111〉 + |010〉 + |001〉) .

Therefore any state ρABB ′ supported on this ground-state
space can be written as ρABB ′(λ0,λ1,U ) = U (λ0|ψ0〉〈ψ0| +
λ1|ψ1〉〈ψ1|)U † for some 2 × 2 unitary operator U acting on

the two-dimensional space spanned by |ψ0〉,|ψ1〉. And any
state ρAB in L(ρW ( 2

3 ))
⋂

∂C has the form ρAB(λ0,λ1,U ) =
trB ′[U (λ0|ψ0〉〈ψ0| + λ1|ψ1〉〈ψ1|)U †].

It is straightforward to check that ρW ( 2
3 ) = ρAB( 1

2 , 1
2 ,I).

In other words, the symmetric extension of ρW ( 2
3 ), given by

ρABB ′ ( 1
2 , 1

2 ,I), is the maximally mixed state of the ground-state
space of H (ρW ( 2

3 )). Also, ρW ( 2
3 ) can clearly be written as the

convex combination of two rank-2 states which are also in
L(ρW ( 2

3 ))
⋂

∂C: ρW

(
2
3

) = 1
2ρAB(1,0,I) + 1

2ρAB(0,1,I).
We remark that p = 2

3 corresponds to a fidelity 3
4 with |φ〉.

This is consistent with the result that Werner states with fidelity
� 3

4 have zero one-way distillable entanglement [36,37].

VI. DISCUSSION

We have fully solved the symmetric extension problem for
the two-qubit case. An immediate application of our result is
a full characterization for antidegradable qubit channels, as
it is known that a channel N is antidegradable if and only
if its Choi-Jamiolkowski representation ρN has a symmetric
extension [15]. Previously, analytic necessary and sufficient
conditions were only known for antidegradable unital qubit
channels [38–40].

We can also apply our result to the three-boson system
of two modes, i.e., the states supported on the symmetric
subspaces of the three-qubit space. Our result then leads
to a complete solution to the three-representability problem:
the set of all three-representable two-boson densities can be
characterized by {ρ2 : tr(ρ2

1 ) � tr(ρ2
2 )}, where ρi is the i-boson

density matrix for i = 1,2.
A natural question to ask is how to generalize the result

to higher-dimensional systems. Unfortunately, for any higher
dimensions a full characterization involving only spectra is
highly unlikely [22]. There have been some efforts made for
special cases, but no general results have been found [41–43].
It is also possible to generalize this result to k-symmetric
extension [3,6], i.e., to characterize the states ρAB with an
extension to k copies of B that is symmetric under the
interchange of the copies of B. We believe our physical picture
based on the convexity of B and the symmetry of the system
may shed light on the understanding of symmetric extendibility
for higher-dimensional systems or multicopies.
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APPENDIX A: A USEFUL CHARACTERIZATION OF C

To prove our main result, we will provide another
useful characterization of C = {ρAB : tr(ρ2

B) � tr(ρ2
AB) −

4
√

det ρAB}, the set we are mainly interested in.
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For simplicity, we use M2 to denote the set of 2 × 2
matrices.

Lemma 2.

C =
{(

Q R

P 0

)(
Q† P

R 0

)
: P,Q,R ∈ M2 such that

P,R � 0, ‖PR‖2
tr � ‖PQ†‖2

tr − ‖PQ‖2
tr

}
.

Proof. Any mixed state ρAB satisfying tr(ρ2
B) � tr(ρ2

AB) −
4
√

det ρAB can be written in the matrix form (
A C

C† B), where

B and A are 2 × 2 positive semidefinite matrices and C is
another 2 × 2 matrix. We first assume B is invertible; then A

can be written as CB−1C† + D, where D is another 2 × 2
positive semidefinite matrix.

Employing the identity(
CB−1C† + D C

C† B

)
=
(
I CB−1

0 I

)(
D 0

C† B

)
leads to det ρAB = det (BD).

It is not hard to verify that tr(ρ2
B) � tr(ρ2

AB) − 4
√

det ρAB

is equivalent to the condition that tr(BD) + 2
√

det BD �
tr(CC†) − tr(CB−1C†B).

Observe that tr(BD) + 2
√

det BD = (tr
√

B
1
2 DB

1
2 )2; we

can further let D = B− 1
2 X2B− 1

2 , where X is a positive
semidefinite matrix.

Then

ρAB =
(

CB−1C† + B− 1
2 X2B− 1

2 C

C† B

)
, (A1)

where B and X are 2 × 2 positive semidefinite matrices and
C is a 2 × 2 matrix and they satisfy (tr X)2 � tr(CC†) −
tr(CB−1C†B).

Let us write C = B− 1
2 YB

1
2 ; we have

ρAB =
(

B− 1
2 (YY † + X2)B− 1

2 B− 1
2 YB

1
2

B
1
2 Y †B− 1

2 B

)

=
(

B− 1
2 0

0 B
1
2

)(
Y X

I 0

)(
Y † I

X 0

)(
B− 1

2 0

0 B
1
2

)

=
(

B− 1
2 Y B− 1

2 X

B
1
2 0

)(
B− 1

2 Y B− 1
2 X

B
1
2 0

)†

,

where X and B are 2 × 2 positive semidefinite matrices and Y

is a 2 × 2 matrix and they satisfy (tr X)2 � tr(B−1YBY †) −
tr(YY †).

Therefore any ρAB ∈ C can be written as

ρAB =
(

Q R

P 0

)(
Q† P

R† 0

)
, (A2)

where Q and R are 2 × 2 matrices and Q is a 2 ×
2 positive semidefinite matrix and they satisfy ‖PR‖2

tr =
(tr

√
PRR†P )2 � tr[PP (Q†Q − QQ†)].

Furthermore, we can even choose R to be a positive
semidefinite matrix since R only appears in the term RR†

in the top left 2 × 2 submatrix of ρAB .
Now let’s look at the case where B is singular. B is thus

a rank-1 positive operator; without loss of generality, let’s
assume it is a rank-1 projection |u〉〈u|. From the positivity of
ρAB , C can be written as |u〉〈v|. Hence

ρAB =
(

D + |v〉〈v| |v〉〈u|
|u〉〈v| |u〉〈u|

)
,

where |u〉 is a unit vector but |v〉 is unnormalized.
We can simply choose P = |u〉〈u|, Q = |v〉〈u|, and R =√

D to satisfy our requirement. �

APPENDIX B: PROOF OF THEOREM 2

As we have shown in the main text, to prove the convexity
of C, it suffices to prove Theorem 2; that is, for any full-rank
state σAB ∈ ∂C and any state ρAB ∈ C,

tr
[(√

det σABσ−1
AB − σAB + σB

)
ρAB

]
� 0.

To prove Theorem 2, our main strategy is as follows: we
first restate Theorem 2 as the non-negativity of a multivariable
function on some specified region and then apply a step-by-
step optimization procedure to the objective function. In each
step, we fix several variables and think of objective function
as a one-variable function whose minimum point can easily
be computed. Thus one variable will be eliminated within
each step. By repeating this procedure several times, we
could greatly simplify the objective function as well as the
constraints.

Proof. As we have seen in Appendix A, we can parametrize
points in C by using three 2 × 2 matrices.

Thus we can write

ρAB =
(

Q1 R1

P1 0

)(
Q

†
1 P1

R1 0

)
(B1)

and

σAB =
(

Q2 R2

P2 0

)(
Q

†
2 P2

R2 0

)
, (B2)

where P1,Q1,R1,P2,Q2,R2 ∈ M2 satisfies ‖P1R1‖2
tr �

‖P1Q
†
1‖2

tr − ‖P1Q1‖2
tr, ‖P2R2‖2

tr = ‖P2Q
†
2‖2

tr − ‖P2Q2‖2
tr and

P1,R1,P2,R2 � 0.
Under our assumption, σAB has full rank; thus

σ−1
AB =

(
0 R−1

2

P −1
2 −P −1

2 Q
†
2R

−1
2

)(
0 P −1

2

R−1
2 −R−1

2 Q2P
−1
2

)
.

Hence tr[(
√

det σABσ−1
AB − σAB + σB)ρAB] can be written

as

tr
[
A
(
Q1Q

†
1 + R2

1

)]− tr(BQ1P1) − tr(P1Q
†
1B

†) + tr
(
CP 2

1

)
,

(B3)
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where

A =
(

a11 a12

a21 a22

)
= det(P2R2)R−2

2 + P 2
2 ,

B =
(

b11 b12

b21 b22

)
= det(P2R2)P −1

2 Q
†
2R

−2
2 + P2Q

†
2,

(B4)

C =
(

c11 c12

c21 c22

)
= Q2Q

†
2 + R2

2

+ det(P2R2)
(
P −2

2 + P −1
2 Q

†
2R

−2
2 Q2P

−1
2

)
.

We will denote our objective function (B3) as τ (P1,Q1,R1,

P2,Q2,R2). We will prove τ (P1,Q1,R1,P2,Q2,R2) � 0 un-
der the assumption that ‖P1R1‖2

tr � ‖P1Q
†
1‖2

tr − ‖P1Q1‖2
tr,

‖P2R2‖2
tr = ‖P2Q

†
2‖2

tr − ‖P2Q2‖2
tr, and P1,R1,P2,R2 � 0.

To prove the desired conditional inequality, let us first
fix P1,Q1,P2,Q2,R2 and minimize τ (P1,Q1,R1,P2,Q2,R2)
subject to ‖P1R1‖2

tr � ‖P1Q
†
1‖2

tr − ‖P1Q1‖2
tr. In this step, we

only need to consider the terms involving R1; that is, we
will minimize tr(AR2

1) subject to ‖P1R1‖2
tr � ‖P1Q

†
1‖2

tr −
‖P1Q1‖2

tr.
If ‖P1Q

†
1‖tr � ‖P1Q1‖tr, there is no constraint on R1.

Trivially, we have tr(AR2
1) � 0.

Now let us investigate the nontrivial situation where
‖P1Q

†
1‖tr > ‖P1Q1‖tr.

Let U2 denote the set of 2 × 2 unitary matrices. According
to the Cauchy-Schwarz inequality, we have

tr
(
AR2

1

)
tr
(
A−1P 2

1

)
= max

U,V ∈U2

[tr(U †R1AR1U ) tr(V †P1A
−1P1V )]

� max
U,V ∈U2

| tr(V †P1R1U )|2

= ‖P1R1‖2
tr � tr

[
P 2

1 (Q†
1Q1 − Q1Q

†
1)
]
.

This implies

tr
(
AR2

1

)
�

tr
[
P 2

1 (Q†
1Q1 − Q1Q

†
1)
]

tr
(
A−1P 2

1

) ,

and the equality holds only if there exist U,V ∈ U2 such that
A

1
2 R1U and A− 1

2 P1V are linearly dependent, V †P1R1U is
diagonal, and ‖P1R1‖2

tr = ‖P1Q
†
1‖2

tr − ‖P1Q1‖2
tr.

Thus by combining the two situations together, we have

tr
(
AR2

1

)
� max

{
0,

tr
[
P 2

1 (Q†
1Q1 − Q1Q

†
1)
]

tr
(
A−1P 2

1

) }
(B5)

�
tr
[
P 2

1 (Q†
1Q1 − Q1Q

†
1)
]

tr
(
A−1P 2

1

) . (B6)

As a consequence, it suffices to prove

tr
[(

Q
†
1A

1
2 − P1BA− 1

2
)(

A
1
2 Q1 − A− 1

2 B†P1
)]

+ tr
[
(C − BA−1B†)P 2

1

]+ tr
[
P 2

1 (Q†
1Q1 − Q1Q

†
1)
]

tr
(
A−1P 2

1

) � 0

(B7)
for any P1,Q1 ∈ M2 and P1 � 0.

Without loss of generality, we can always assume P1 is
diagonal. Let P1 = (x 0

0 y) and Q1 = (q11 q12
q21 q22

). Note that

q11 and q22 only appear in the first term, i.e., tr[(Q†
1A

1
2 −

P1BA− 1
2 )(A

1
2 Q1 − A− 1

2 B†P1)]. We thus choose suitable
q11 and q22 to minimize tr[(Q†

1A
1
2 − P1BA− 1

2 )(A
1
2 Q1 −

A− 1
2 B†P1)].
Here we divide Q1 into the diagonal part Q̂1 = (q11 0

0 q22
)

and the antidiagonal part Q̃1 = ( 0 q12
q21 0 ); then

‖A 1
2 Q1 − A− 1

2 B†P1‖F

= ‖q11A
1
2 |0〉〈0| + q22A

1
2 |1〉〈1| + A

1
2 Q̃1 − A− 1

2 B†P1‖F ,

which can be considered to be the distance from a point
(−A

1
2 Q̃1 + A− 1

2 B†P1) to another point on the plane spanned
by A

1
2 |0〉〈0| and A

1
2 |1〉〈1|.

Certainly, the minimum can be achieved if and only if
q11A

1
2 |0〉〈0| + q22A

1
2 |1〉〈1| is the projection of (−A

1
2 Q̃1 +

A− 1
2 B†P1) onto the plane, i.e., q11A

1
2 |0〉〈0| + q22A

1
2 |1〉〈1| +

A
1
2 Q̃1 − A− 1

2 B†P1 ⊥ span{A 1
2 |0〉〈0|,A 1

2 |1〉〈1|}.
Thus by solving the linear system derived by the orthogonal

conditions, we have

min
q11,q22

‖q11A
1
2 |0〉〈0| + q22A

1
2 |1〉〈1| + A

1
2 Q̃1 − A− 1

2 B†P1‖2
F

= ‖A 1
2 Q̃1 − A− 1

2 B†P1‖2
F −

∥∥∥∥(−〈0|AQ̃1 − B†P1|0〉
〈0|A|0〉

)
A

1
2 |0〉〈0| +

(
−〈1|AQ̃1 − B†P1|1〉

〈1|A|1〉
)

A
1
2 |1〉〈1|

∥∥∥∥2

F

. (B8)

By substituting corresponding terms in the left-hand side of Eq. (B7), we have

τ (P1,Q1,R1,P2,Q2,R2)

� tr
[
(Q†

1A
1
2 − P1BA− 1

2 )(A
1
2 Q1 − A− 1

2 B†P1)] + tr
[
(C − BA−1B†)P 2

1

]+ tr
[
P 2

1 (Q†
1Q1 − Q1Q

†
1)
]

tr
(
A−1P 2

1

)
� ‖A 1

2 Q̃1 − A− 1
2 B†P1‖2

F −
∥∥∥∥(−〈0|AQ̃1 − B†P1|0〉

〈0|A|0〉
)

A
1
2 |0〉〈0| +

(
−〈1|AQ̃1 − B†P1|1〉

〈1|A|1〉
)

A
1
2 |1〉〈1|

∥∥∥∥2

F
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+ tr
[
(C − BA−1B†)P 2

1

]+ tr
[
P 2

1 (Q†
1Q1 − Q1Q

†
1)
]

tr
(
A−1P 2

1

)
= tr(AQ̃1Q̃

†
1) − tr(B†P1Q̃

†
1) − tr(BQ̃1P1) − |〈0|AQ̃1 − B†P1|0〉|2

〈0|A|0〉 − |〈1|AQ̃1 − B†P1|1〉|2
〈1|A|1〉

+ tr
(
CP 2

1

)+ tr
[
P 2

1 (Q†
1Q1 − Q1Q

†
1)
]

tr
(
A−1P 2

1

)
= c11x

2 + c22y
2 + a11|q12|2 + a22|q21|2 − b21q12y − b12q21x − b∗

21q
∗
12y − b∗

12q
∗
21x

+ det(A)(x2 − y2)(|q21|2 − |q12|2)

a11y2 + a22x2
− |q21a12 − xb∗

11|2
a11

− |q12a21 − yb∗
22|2

a22

= det(A)(a11 + a22)

a11y2 + a22x2

×
(

1

a11

∣∣∣xq21 + (a11y
2 + a22x

2)(a12b11 − b12a11)∗

det(A)(a11 + a22)

∣∣∣2 + 1

a22

∣∣∣yq12 + (a11y
2 + a22x

2)(a21b22 − a22b21)∗

det(A)(a11 + a22)

∣∣∣2)

+
(

c11 − |b11|2
a11

−
a22
a11

|a12b11 − a11b12|2 + |a21b22 − a22b21|2
det(A)(a11 + a22)

)
x2

+
(

c22 − |b22|2
a22

− |a12b11 − a11b12|2 + a11
a22

|a21b22 − a22b21|2
det(A)(a11 + a22)

)
y2. (B9)

To complete our proof, we will show the last two terms all
vanish when the full-rank state satisfies σAB ∈ ∂C, which will
immediately lead to our desired conditional inequality.

Note that ( A −B†

−B C
) represents the matrix form of HAB =√

det σABσ−1
AB − σAB + σB . Thus the last two terms vanish if

and only if

det〈0B |HAB |0B〉 = det〈1B |HAB |1B〉

= a22| det 〈0B |HAB |0A〉|2 + a11| det 〈1B |HAB |0A〉|2
det 〈0A|HAB |0A〉(a11 + a22)

.

Let H (i1,...,ik)
AB be the submatrix formed by taking the (i1, . . . ,

ik)th rows and columns of HAB . Then det 〈0B |HAB |0B〉 =
det 〈1B |HAB |1B〉 means det H (1,3)

AB = det H (2,4)
AB . Once we have

proved the first equality, the second equality can be rewritten
as

a22 det 〈0A|HAB |0A〉 det 〈0B |HAB |0B〉
+ a11 det 〈0A|HAB |0A〉 det 〈1B |HAB |1B〉

= a22| det 〈0B |HAB |0A〉|2 + a11| det 〈1B |HAB |0A〉|2,

which can be further reformulated as det H (1,2,3)
AB =

− det H (1,2,4)
AB .

Thus, to accomplish our goal, it suffices to prove

det H (1,3)
AB = det H (2,4)

AB , (B10)

det H (1,2,3)
AB = − det H (1,2,4)

AB . (B11)

For Eq. (B10), i.e.,

〈0|A|0〉〈0|C|0〉 − |〈0|B|0〉|2 = 〈1|A|1〉〈1|C|1〉 − |〈1|B|1〉|2,

it is equivalent to

〈0|AC|0〉 + 〈1|CA|1〉 = 〈1|B†B|1〉 + 〈0|BB†|0〉.
To prove this, it suffices to show AC − BB† is the adju-
gate matrix of CA − B†B, i.e., AC − BB† + CA − B†B =
tr(AC − BB†)I.

In fact, to prove the above claim, our assumption
‖P2R2‖2

tr = ‖P2Q
†
2‖2

tr − ‖P2Q2‖2
tr is not necessary. The iden-

tity holds for all 2 × 2 Hermitian matrices P2, R2 and any 2 × 2
matrix Q2. This fact can be easily verified by using symbolic
computing software like Mathematica [44].

Now let us look at Eq. (B11). Let

H̃ =
(

A 0

0 C − BA−1B†

)

=
(

I 0

BA−1 I

)
H

(
I A−1B†

0 I

)
.

The determinant is invariant under elementary row and column
operations; we have det H (1,2,3)

AB = det H̃ (1,2,3) = det (A)H̃3,3

and det H (1,2,4)
AB = det H̃ (1,2,4) = det (A)H̃4,4. Therefore

Eq. (B11) is equivalent to H̃3,3 = −H̃4,4, i.e.,

tr(C − BA−1B†) = 0.

tr(C − BA−1B†) is invariant under local unitary operations;
thus it suffices to prove tr(C − BA−1B†) = 0 for diagonal P2.

Again, let P2 = (x
′ 0

0 y ′) and divide Q2 = (q
′
11 q ′

12
q ′

21 q ′
22

) into the

diagonal part Q̂2 and antidiagonal part Q̃2. Simple calculation
will show that Q̂2 all cancel out in tr(C − BA−1B†), so we
can assume q ′

11 = q ′
22 = 0 without loss of generality. Then

everything is straightforward.
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By substituting P2 = (x
′ 0

0 y ′), Q2 = ( 0 q ′
12

q ′
21 0 ), and R2 =

(r11 r12
r∗

12 r22
) in Eq. (B4), we will have

tr(C − BA−1B†)

= (r11x
′ + r22y

′)(r11y
′ + r22x

′) − |r12|2(x ′ − y ′)2

x ′y ′[(r11x ′ + r22y ′)2 + |r12|2(x ′ − y ′)2]

×{ (r11x
′ + r22y

′)2 + |r12|2(x ′ − y ′)2

− [(x ′)2 − (y ′)2](|q ′
21|2 − |q ′

12|2)}.
Under our assumption, a full-rank state σAB ∈ ∂C implies

‖P2R2‖2
tr = ‖P2Q

†
2‖2

tr − ‖P2Q2‖2
tr, or, equivalently, (r11x

′ +
r22y

′)2 + |r12|2(x ′ − y ′)2 = [(x ′)2 − (y ′)2](|q ′
21|2 − |q ′

12|2).
tr(C − BA−1B†) = 0 follows immediately. �

APPENDIX C: FACES OF C

From Theorem 2, C is a convex body. The faces of C are its
intersections with the supporting hyperplanes.

Let us start with a full-rank boundary point σAB ∈ ∂C. Let
HAB(σAB) = √

det σABσ−1
AB − σAB + σB ; then the supporting

hyperplane

L(σAB) := {X : tr[HAB(σAB)X] = 0}
also defines a face F(σAB) = L(σAB)

⋂
C.

Recall that in Appendix B, we applied a step-by-step
optimization procedure to prove tr[HAB(σAB)ρAB] � 0 for any
ρAB ∈ C. Thus L(σAB)

⋂
C contains all those states satisfying

the equality in every optimization step. In this appendix,
we will solve the equation system and then provide a complete
parametrization of F(σAB). As a by-product, we will prove
Theorem 3 at the end of this appendix.

According to Appendix A, σAB can be represented as
follows by using the 2 × 2 matrices P2,Q2,R2 satisfying
‖P2R2‖2

tr = ‖P2Q
†
2‖2

tr − ‖P2Q2‖2
tr and P2,R2 � 0:

σAB =
(

Q2 R2

P2 0

)(
Q

†
2 P2

R2 0

)
∈ ∂C.

We can represent any state ρAB ∈ F(σAB) in the same way:

ρAB =
(

Q1 R1

P1 0

)(
Q

†
1 P1

R1 0

)
.

Thus our aim is to characterize the set of three-tuples {(P1,Q1,

R1) : (Q1 R1
P1 0 )(Q

†
1 P1

R1 0 ) ∈ F(σAB)} for any given σAB =
(Q2 R2
P2 0 )(Q

†
2 P2

R2 0 ) ∈ ∂C, or, equivalently, the three-tuples
(P1,Q1,R1) to make τ (P1,Q1,R1,P2,Q2,R2), which is defined
in Eq. (B3), vanish.

We first consider the three-tuples (P1,Q1,R1) in which P1 is
a diagonal matrix (x 0

0 y), which is also what we assumed in our

proof in Appendix B. A = (aij )1�i,j�2 and B = (bij )1�i,j�2

are matrices depending on only P2,Q2,R2, as given in Eq. (B4).
As we provide a step-by-step optimization procedure to show
τ (P1,Q1,R1,P2,Q2,R2) � 0 in Appendix B, Q1 and R1 must
be chosen to make the equalities hold in every optimization
step.

(1) The equality in Eq. (B6) holds if and only if there exist
U,V ∈ U2 such that A

1
2 R1U and A− 1

2 P1V are linearly de-
pendent, V †P1R1U is diagonal, and ‖P1R1‖2

tr = ‖P1Q
†
1‖2

tr −
‖P1Q1‖2

tr.
(2) The minimum of the left-hand side in Eq. (B8) can

be achieved if and only if q11A
1
2 |0〉〈0| + q22A

1
2 |1〉〈1| is

the projection of (−A
1
2 Q̃1 + A− 1

2 B†P1) onto the plane,
i.e., q11A

1
2 |0〉〈0| + q22A

1
2 |1〉〈1| + A

1
2 Q̃1 − A− 1

2 B†P1 ⊥
span{A 1

2 |0〉〈0|,A 1
2 |1〉〈1|}.

(3) The right-hand side of Eq. (B9) equals zero
if and only if xq21 + (a11y

2+a22x
2)(a12b11−b12a11)∗

det(A)(a11+a22) and yq12 +
(a11y

2+a22x
2)(a21b22−a22b21)∗

det(A)(a11+a22) all vanish.
Q1 and R1 can thus be derived by using elementary linear

algebra. Explicit expressions will be given later in the more
general Lemma 3.

If P1 is not diagonal, then from the eigenvalue decom-
position, we can write P1 = U (x 0

0 y)U †, where U is a
2 × 2 unitary matrix and x,y are positive numbers. Note
that ρAB ∈ F(σAB) if and only if (U † ⊗ U †)ρAB(U ⊗ U ) ∈
F((U † ⊗ U †)σAB(U ⊗ U )) and (U † ⊗ U †)ρAB(U ⊗ U ) can
be represented by the three-tuple (U †P1U,U †Q1U,U †R1U );
hence our result for diagonal case will apply directly.

To summarize, given a full-rank σAB =
(Q2 R2
P2 0 )(Q

†
2 P2

R2 0 ) ∈ ∂C, we can parametrize all full-rank

states in F(σAB) by using a 2 × 2 unitary matrix U and
positive numbers x,y as the following lemma.

Lemma 3. All full-rank states in F(σAB) can be represented
as some

ρ̃AB(x,y,U ) =
(

Q1 R1

P1 0

)(
Q

†
1 P1

R1 0

)
,

where

P1 = U

(
x 0
0 y

)
U †,

Q1 = 1

det(A) tr(A)
U

(
q11 q12

q21 q22

)(
x 0

0 y

)−1

U †,

and

R1 =
√

(x2 − y2)
(∣∣ a12b11−b12a11

x

∣∣2 − ∣∣ a21b22−a22b21
y

∣∣2)

det(A) tr(A)
U

√(
a2

22x
2 + |a12|2y2 −a12(a11y

2 + a22x
2)

−a21(a11y
2 + a22x

2) |a21|2x2 + a2
11y

2

)
U †,

where

A(U ) = (aij )1�i,j�2 = U †[ det(P2R2)R−2
2 + P 2

2

]
U, B(U ) = (bij )1�i,j�2 = U †[ det(P2R2)P −1

2 Q
†
2R

−2
2 + P2Q

†
2

]
U,
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and

q11 = [(
a11a22 + a2

22 − a12a21
)
b∗

11 − a12a22b
∗
12

]
x2 + a12(a21b

∗
11 − a11b

∗
12)y2,

q12 = −(a11y
2 + a22x

2)(a21b22 − a22b21)∗,

q21 = −(a11y
2 + a22x

2)(a12b11 − b12a11)∗,

q22 = a21(a12b
∗
22 − a22b

∗
21)x2 + [(a11a22 + a2

11 − a12a21
)
b∗

22 − a21a11b
∗
21

]
y2.

We reuse the symbols aij and bij to keep our formulas simple, but one should keep in mind that they depend on the unitary
matrix U . Indeed, we should instead use the more precise form aij (U ) and bij (U ) in Lemma 3 if we do not care about the length
of the expressions.

To make sure that ρ̃AB(x,y,U ) lies in C, x and y must satisfy

(x − y)(|a21b22 − a22b21|x − |a12b11 − b12a11|y) � 0.

All full-rank states in F(σAB) can be parameterized in this way. However, for the case x = y or x
y

= | a12b11−b12a11
a21b22−a22b21

|, ρ̃AB(x,y,U )
has rank 2 since the corresponding R1 is a zero matrix for both cases.

F(σAB) also contains other non-full-rank states which correspond to x = 0 or y = 0. y = 0 occurs only if |a21b22 − a22b21| =
0. In this case, we have

ρ̃AB(x,0,U ) = (U ⊗ U )

⎛⎜⎜⎜⎜⎝
|b11|2x2

a12a21
−|b11|2x2

a22a21
0 0

−|b11|2x2

a12a22

|b11|2x2

a12a21
+ |b11|2x2

a2
22

b∗
11x

2

a12
0

0 b11x
2

a21
x2 0

0 0 0 0

⎞⎟⎟⎟⎟⎠ (U † ⊗ U †),

which is a rank-2 state. We have similar results for the case with x = 0.
We will now prove Theorem 3 as an application of our parametrization scheme. A simple calculation will show us that all

entries of ρ̃AB(x,y,U ) are linear combinations of x2 and y2. Let us assume | a12b11−b12a11
a21b22−a22b21

| > 1 without loss of generality; then for

any y � x � | a12b11−b12a11
a21b22−a22b21

|y, ρAB(x,y,U ) is a convex combination of ρ̃AB(y,y,U ) and ρ̃AB(| a12b11−b12a11
a21b22−a22b21

|y,y,U ), both of which
are rank-2 states.

In other words, after the normalization, ρ̃AB(x,y,U ) only depends on the unitary matrix U and the ratio of x and y. Let
ρAB(1,0,U ) = ρ̃AB(1,1,U ) and ρAB(0,1,U ) = ρ̃AB(|a12b11 − b12a11|,|a21b22 − a22b21|,U ); then all states on the face F(σAB)
can be represented as ρAB(λ,1 − λ,U ) = λρAB(1,0,U ) + (1 − λ)ρAB(0,1,U ), where 0 � λ � 1 and U ∈ U2.
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