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We present a comprehensive study of maximally entangled symmetric states of arbitrary numbers of qubits in
the sense of the maximal mixedness of the one-qubit reduced density operator. A general criterion is provided to
easily identify whether given symmetric states are maximally entangled in that respect or not. We show that these
maximally entangled symmetric (MES) states are the only symmetric states for which the expectation value of
the associated collective spin of the system vanishes, as well as in corollary the dipole moment of the Husimi
function. We establish the link between this kind of maximal entanglement, the anticoherence properties of spin
states, and the degree of polarization of light fields. We analyze the relationship between the MES states and
the classes of states equivalent through stochastic local operations with classical communication (SLOCC). We
provide a nonexistence criterion of MES states within SLOCC classes of qubit states and show in particular
that the symmetric Dicke state SLOCC classes never contain such MES states, with the only exception of the
balanced Dicke state class for even numbers of qubits. The 4-qubit system is analyzed exhaustively and all MES
states of this system are identified and characterized. Finally the entanglement content of MES states is analyzed
with respect to the geometric and barycentric measures of entanglement, as well as to the generalized N-tangle.
We show that the geometric entanglement of MES states is ensured to be larger than or equal to 1/2, but also that

MES states are not in general the symmetric states that maximize the investigated entanglement measures.
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I. INTRODUCTION

Entanglement is among the key features of quantum me-
chanics. It arises when two or more quantum systems interact
with each other, even indirectly, and provides nonclassical
correlations between them. Entanglement can be used as
a resource for various quantum informational tasks such
as quantum computation. In the last decades, a lot of effort
has been made to quantify the amount of entanglement of
various multipartite states, either pure or mixed. This is crucial
as a minimal amount of entanglement is needed in pure state
quantum computation to outperform classical algorithms [1].
In particular, the search for maximally entangled states (states
maximizing certain measures of entanglement) has focused
a great deal of attention [2-6]. In the case of 2 qubits, it is
known that Bell states are maximally entangled with respect
to any measures of entanglement [7]. For higher numbers
of qubits, the problem is no longer simple and depends in
general on the entanglement measure. In [8], Verstraete et al.
refer to maximally entangled states as states with maximally
mixed one-qubit reduced density matrices. The same definition
was used by Gisin and Bechmann-Pasquinucci [2], whereas
Scott [9] uses the term of 1-uniform states. They are called
normal forms in [8,10] and nongeneric states in [11]. These
states maximize several measures of entanglement, such as the
Meyer-Wallach entanglement measure [12]. They also maxi-
mize any entanglement monotone based on linear homogenous
positive functions of pure state density matrices within their
classes of states equivalent through stochastic local operations
with classical communication (SLOCC) [8]. Besides, they are
conjectured to be maximally entangled with respect to the
negative partial transpose measure of entanglement [13]. As
appreciated by Kraus [11], they play a specific role in the
determination of the local unitary equivalence of multiqubit
states. Moreover, they are maximally fragile (in the sense that
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they are the states which are the most sensitive to noise) and
have therefore been proposed as ideal candidates for ultrasen-
sitive sensors [2]. All these characteristics together highlight
the importance of identifying such maximally entangled states.
This problem and its generalization to multiqubit states with
maximally mixed k-qubit reductions have been approached
in [14,15]. Its complexity grows rapidly with the number of
qubits, making analytical results particularly hard to establish.
In the case of multiqubit symmetric states, the Hilbert-space
dimension increases linearly with the number of qubits, which
makes the problem easier to tackle. This paper is specifically
dedicated to this latter case.

The paper is organized as follows. In Sec. II, we present a
general criterion to quickly identify whether a pure symmetric
state of an arbitrary number of qubits is maximally entangled
in the sense defined above or not. We then provide two
physical interpretations of maximally entangled symmetric
(MES) states, one in terms of the collective spin that can
be associated with the multiqubit system and a second
one in terms of the Husimi function [16] of the state. In
Sec. III, we study the properties of MES states with respect
to local operations assisted with classical communication, the
so-called SLOCC operations [17,18]. A general nonexistence
criterion is provided allowing us to know immediately whether
SLOCC classes of symmetric states [19] can contain MES
states or not. An exhaustive identification of all MES states is
then performed for 4-qubit systems, after a short reminder
of the known 2- and 3-qubit cases. In Sec. IV, we study
the entanglement content of MES states with respect to
the geometric and barycentric measures of entanglement
[20,21], as well as to the generalized N-tangle [22]. We then
draw conclusion in Sec. V. Finally, four appendices about
technical results that are used in different sections close this

paper.
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II. MAXIMALLY ENTANGLED SYMMETRIC STATES
A. Identification criterion

The symmetric subspace of an N-qubit system gathers all
states that are symmetric under any permutation of the qubits.
It is of dimension N + 1 and is spanned by the orthonormal
symmetric Dicke states

(K)\ __ —
IDY)=N>"10...01...1), k=0.....N, ()
™ —k

k

where the sum runs over all permutations of the qubits and
N is a normalization constant. Symmetric Dicke states |D§\I,‘) )
are simultaneous eigenstates of 8 and S, with eigenvalues
NJ2(N/2+1) and k — N/2 where S denotes the collective
spin associated to the N-qubit system [23].

For any N-qubit symmetric state |Ys), the partial traces
over all qubits but (0 <t < N) of ps = |V¥s) (V¥sl, tr—(0s),
yields identical results for all possible choices of ¢ qubits out
of N. We can refer in this case to the t-qubit reduced density
operator p, of the symmetric state. It reads explicitly (see
Appendix A)

t

pr=ti(ps) = Y (u?[u”)[ D7) o)
q,¢4=0
where [v'?) (¢ =0, ... 1) are the (N — )-qubit states
( ) (k)
| ! Cz de+q N q —k k+q|DN t 3)

Here, Cij is the binomial coefficient (j.) with the usual

convention Clzi =0forj <Oorj>i,andd; (k=0,...,N)
are the expansion coefficients of the symmetric state |1g) in
the Dicke state basis (1):

N
Ws) = > di| DY). )

For instance, the one-qubit reduced density operator
p1 reads in the single-qubit Dicke state basis {|D(10)) =
10),1D1") = 1))

L
WOB) D)

This immediately yields the conditions for a symmetric
state to be a MES state, i.e.,

N-1
N —k 1
SRERED ST
Lov
N—-1
N —k)k+1
1) = 3 R R i =0 )

k=0
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or, equivalently, considering the normalization condition,

N
Y (N =2k 1di]* =0, ®)
k=0
N—-1
(N —k)k + D) ded, = 0. 9)
k=0

As an example, these conditions show that the symmetric
states (|D) + DY ™))/vV2 (N =2, k=0,...,IN/2| —
1) are MES states [24]. For k = 0, one gets the Bell state
(N =2) and the |GHZy) states (N > 2), whose maximal
entanglement in that respect is indeed well known [2]. These
states are just a few examples of MES states that can exist
for N-qubit systems. In Sec. III of this paper, an exhaustive
analysis of all such states is performed for N = 4 and some
general results are given for arbitrary N > 4.

For every ¢ > 1, the ¢-qubit reduced density operator g, is
symmetric under any permutation of the ¢ qubits and has only
nonzero matrix elements in the #-qubit symmetric subspace.
We denote hereafter by p, any matrix representation of g, in
this subspace of dimension ¢ + 1.

B. Physical interpretations

Maximally entangled symmetric (MES) states exhibit
interesting properties with respect to the collective spin S of
the system and to the multipole moments of their Husimi
functions. These aspects are investigated in the next two
subsections.

1. In terms of collective spin

The two following general results hold (see Appendices B
and C): (1) any symmetric operator of an N-qubit system
can be written as a polynomial of degree at most N in the
collective spin observables, and (2) the matrix elements of the
t-qubit reduced density matrix p, of any symmetric state |g)
can be written as a polynomial of order ¢ in the expectation
values of collective spin observables in the state |g).

For instance, the one-qubit reduced density matrix of any
symmetric state |Ys) [Eq. (5)] can be reexpressed as

. 10 I
. ) l\i N ’ 10
P1 < 1(8) L1 (10)

z|~

where the expectation values are meant in the |yg) state. This
merely follows from Eqgs. (6) and (7) and the two identities

N

(82) = (k= N/2)|di], (11)

k=0
(8;) = Z\/(N Ok + D dedy, . (12)

Equation (10) yields a very interesting physical interpre-
tation of MES states. They are the only states to verify
(S;) = (S4+) = (S-) =0, or, equivalently,

(S) = 0. (13)
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The expectation value of the collective spin vanishes for
MES states and only for them. This also implies that these
states coincide with spin-N/2 order-1 anticoherent states.
A spin-N/2 state is said to be anticoherent to order 7 if
((S-n)k) is independent of n for k = 1, ... ,¢, where n is a unit
vector [25]. This definition exactly coincides with Eq. (13)
for t = 1. Order-1 anticoherence and maximal mixedness of
01 are thus strictly equivalent concepts. In quantum optics, an
analogous concept has been introduced regarding the degree of
polarization of light fields [26]. At the end, order-1 unpolarized
light states [27], order-1 anticoherent spin states, and N-qubit
MES states are one and the same concept. Actually, this

J
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generalizes to any order: order-¢ anticoherence is equivalent to
maximal mixedness of g, in the symmetric subspace [28], and
consequently to

1
= ———1y,
D1 t/+lt+l

V' <t (14)
where 1, denotes the (' + 1)-dimensional identity matrix.

For instance, the two-qubit reduced density operator
02> can be expressed in the two-qubit Dicke state basis

{ID), 1Dy, 1 D)) as

(82) = yw(S) + By —v2((8:8.) —an(5.)) (82)
1 ~ A N N N
P=NN-1) V2((8:8:) — an(81)) —2(87) + 8w V2((8.82) +an (S0 | - (15)
(82) V2((8:8) +an(8e) (82 4+ yw(Se) + By

where ay =sy — 1, By =sy(sy — 1), yvn =2sy — 1, and
Sy = 2s12\,, with sy = N/2. Furthermore, order-2 anticoher-
ence is equivalent to the conditions [29]

(S0) = (8,) =(S.) =0,
($:8,) = (8,8.) = (8.8,) =0, (16)
(83) = (83) = (32),

which leads to p, = 13/3 and p; = 1,/2.

The z-qubit reduced density matrix p; of any pure N-
qubit symmetric state has at most min(¢ + 1,N — ¢+ 1)
nonvanishing eigenvalues. Indeed, this follows from Schmidt
decomposition which implies that p, and py_; have the same
spectra, aside from zeros [2]. In order to be anticoherent to
order ¢, the t-qubit reduced density matrix must be full rank
which is only possible if # < N/2. As a consequence, any
pure symmetric state of N qubits can be anticoherent at most
to order [ N/2].

2. In terms of multipole moments of the Husimi function

We now turn to another interpretation of MES states relying
on the Husimi function. From the continuous set of separable
states | (0,9)) = [$(0,9)®" with |$(0,¢)) = cos(6/2)|0) +
e'?sin(6/2)|1), one constructs the Husimi function of a
symmetric state |Ys) as [16]

H(O,9) = |{PO,0)|¥s) . A7)

The Husimi function is a quasiprobability distribution on the

sphere verifying the normalization condition
N+1
4

/H(G,(p)dQ =1 (18)

The following interpretation of MES states can then be
given: a symmetric state is a MES state iff the dipole moment
of its Husimi function vanishes, i.e., iff

d= /rH(@,@dQ =0, (19)

where r = (sinf cos ¢, sin6 sin g, cosf). The proof relies
on the expression of the collective spin operators in the
overcomplete separable state basis,

8 = K / ! 19(0.0))(D(0.9)] 2. 20)

withi = x,y,zand y = (N + 1)(N +2)/8x [30,31]. From
this representation, the expectation value of the spin operator
readily follows,

S) =Ky / rH0,9)d2 = Kyd. (1)

But as shown previously, a state is a MES state (or anticoherent
state to order 1) iff (S) = 0, thatisiffd = 0. This interpretation
can be pursued to higher orders of anticoherence. An antico-
herent state to order 2 will be characterized by vanishing dipole
and quadrupole moments of its Husimi function. Indeed, a little
algebra shows that the expectation values (S S;) translate into

izlfjklrl"f_(sjk

(Sjgk)ZNN/[rjrk-F N3

:| HO,p)d2
22)

with Ny = (N + 1) (N +2) (N + 3) /167 and where €y is
the Levi-Civita symbol. It is now easy to see from Egs. (21)
and (22) that the conditions (16) of anticoherence to order 2
are satisfied iff the dipole and the quadrupole moments of the
Husimi function vanish, i.e., iff d = 0 and

Qi = /(3rjrk — 28 HO,9)d2=0, Vjk (23)

As these developments suggest, a much more general result
holds: A state |s) is anticoherent to order ¢ iff all multipole
moments up to order 2 of its Husimi function vanish [28].

III. MAXIMALLY ENTANGLED SYMMETRIC STATES
AND SLOCC CLASSES

General N-qubit systems are known to exhibit sev-
eral types of entanglement with respect to the stochastic
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interconvertibility of the states through local operations with
classical communication, the so-called SLOCC operations
[18]. This entanglement richness is reflected in the N-qubit
Hilbert space by the SLOCC classes gathering together all
states interconvertible to each other through these operations.
MES states are not found within each SLOCC class. However,
should there be, they are unique up to local unitaries [8,10].
In this section, we provide a general nonexistence criterion of
MES states in SLOCC classes and we explicitly identify all of
them in the 4-qubit case.

The SLOCC classes in the symmetric subspace have
been described in Ref. [19]. They follow the Majorana
representation that writes the symmetric states as

Ws) =N Ity - - - Brcw)s (24)

where |¢1), .. .,|¢n) are single-qubit states, the sum runs over
all permutations 7 of the qubits, and A is a normalization
constant. In this form, symmetric states can be geometrically
represented by N points on the Bloch sphere, the so-called
Majorana points, associated with the individual single-qubit
states |¢;). Some of these points can be superimposed on each
other (in the case of equality of the corresponding individual
states), yielding a single distinct point on the Bloch sphere
with a multiplicity larger than 1. The total number of distinct
points defines the diversity degree d of the symmetric states
|1s) and the list £ of multiplicities of each distinct point, sorted
by decreasing order, defines the degeneracy configuration D,
of the states. All states with identical such parameters are
gathered into state families denominated accordingly. In the
symmetric subspace, SLOCC classes contain only states with
identical degeneracy configurations and the number of SLOCC
classes of states of a given degeneracy configuration D, is
either 1 (if d < 3) or infinite (if d > 3) [19]. In the first
case, the SLOCC classes can be unambiguously denominated
by the degeneracy configuration of the states they gather. In
particular, the SLOCC classes Dy gather all N-qubit separable
states and the SLOCC classes Dy_xx (k=1,...,[N/2))
gather for each k all states that are SLOCC equivalent to the
Dicke states |D}) [19].

Nonexistence criterion. SLOCC classes of D,-type sym-
metric states with £ containing a multiplicity m > N /2 do not
contain any MES states, except for the Dy, y/2» SLOCC class

when N is even, in which case |D§VN/ 2)) is such a state.
Indeed, any symmetric state with m identical single-qubit
states |¢;) in the Majorana representation (24) can be mapped
through local unitaries to a symmetric state with m |¢;)
equal to |0) (the local unitaries U®N with U|¢;) = |0) are
convenient for this purpose). Such a transformed state is a
linear superposition of multiqubit states with at most N — m
excitations |1) and has thus no components d; on any Dicke
states |D)) with k > N —m. If m > N/2, d; = 0, for all
k > N /2, and the left-hand side of Eq. (8) is strictly positive,
unless dy, is the only coefficient to be nonzero, in which
case both Eqgs. (8) and (9) are satisfied. In the first case, Eq.
(8) can never be satisfied and the symmetric state can never
be maximally entangled. This ends the proof. For all SLOCC
classes not addressed by our criterion, a general statement
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about the existence of MES states remains an open problem
and each case must be considered individually.

As a consequence of our criterion, and as can also be
inferred from the recent work of Walter et al. [32] on
entanglement polytopes, the balanced Dicke state SLOCC
class Dy ny2 (N even) is the only Dicke state class that
contains a MES state (up to local unitary); all others, i.e.,
the classes Dy_xx (k=1,...,[N/2] — 1), do not contain
any. With the exception of the balanced Dicke state case, this
statement generalizes to arbitrary N and k in the symmetric
subspace the result of Verstraete et al. [8], according to which
the 3-qubit W SLOCC class (i.e., the Dicke state | D{") class)
does not contain any maximally entangled states. Incidentally,
our criterion also states that the Dy SLOCC classes do not
contain any MES states, but this case is obvious since these
classes correspond for each N to the separable state classes.

Specifically for N = 2, there are only the 2 SLOCC classes
D, (separable states) and D) ; (entangled states) [19]. Accord-
ing to our criterion, the D, class does not contain any MES
states, while in D, ; the Bell state | D\") = (|10) + |01))/+/2is
such a one. Both cases are obvious. For N = 3, there are only
the 3 SLOCC classes D3 (separable states), D, ; (W class),
and D; 1, (GHZ class) [19]. According to our criterion, D3
and D, ; cannot contain any MES states. In the first case, this
is obvious; in the second case, this was shown by Verstraete
et al. [8]. The last class D; 1 ; contains the 3-qubit GHZ state,
which is known to be maximally entangled independently of
the number of qubits [2]. The Majorana representation of the
GHZ state consists of 3 points angularly equally spaced on the
equatorial plane of the Bloch sphere.

For N = 4, we have the 4 SLOCC classes D, (separable
states), D31 (class of the W state |Df11) ), D2 (class of the

balanced Dicke state |Di2))) and D, 1 1, as well as the infinite
number of SLOCC classes of the D; ;1 state family [19].
According to our criterion, the classes Dy, D31, and D; | | do
not contain any MES states, contrary to the D,  class where the
balanced Dicke state |Df‘2) ) is a representative. In the D; ;|
state family, all symmetric states are SLOCC equivalent to one
of the states (see Appendix D)

1

V2H P

with @ a c-number in the bounded domain

V) = (I8")+ w|DP)+ D) @3)

S ={n e C:Re(n) >0, Im(u) = 0,

I — /2731 < 24/2/3, u < /2/3 if Tm(p) = 0}.
(26)

In particular, [{,—0) = |GHZ4). In Eq. (25) states with
different u € S are SLOCC inequivalent (see Appendix D). All
SLOCC classes of the Dy ;.1 state family can thus be unam-
biguously identified by this c-number and denoted accordingly
by C;!! with |4,) as arepresentative. All these classes admit
MES states since so are the representatives |, ) which verify
Egs. (8) and (9). The Majorana representation of these states
consists of 4 distinct points on the Bloch sphere with polar
and azimuthal coordinates (0,¢), (0,7 + ¢), (T — 6, — @),
(m — 0, — @), such that u = —(z2 + 1/22)/4/6 with z =
cot(9/2) e~¢ (see Appendix D). This Majorana representation
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FIG. 1. (Color online) Majorana representation of the MES states
[¥,.) [Eq. (25)] belonging to the 4-qubit SLOCC classes ;""" [u €
S,(0,9) € 5]

is shown in Fig. 1. It exhibits interestingly the dihedral D, point
group symmetry. The domain of the angular coordinates (6,¢)
in bijection with the domain S of the c-numbers u is given by

§" =17 /4,7/2] X [@min(0),7/2( 27

with ¢nin(0) = max (;r /4, arcsin(cot 6)). On the Bloch sphere,
this restricted domain is delimited by the meridian planes
¢ = /4 and ¢ = 7 /2, the equatorial plane 6 = /2, and the
oblique plane passing through the points (1r/2,0), (7w /4,7 /2),
and (w/2,m).

The two-qubit reduced density matrices of the states |v,,)

read explicitly
2
\@ Re(n)

ul? 0 . (28)

1+ LE 9

1

S Fa:

JiRew 0 14l

Only the state |v/,) with u =i+/2 is anticoherent to order
2. This is even the only 4-qubit state to be so since the

1/3

1/6

FIG. 2. (Color online) Density plot of the Husimi function (17)
associated with the tetrahedron state |74) = [,,_, /3) (black dots are
the Majorana points of the state, two being only visible in the picture).
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two-qubit reduced density matrix of the balanced Dicke state
|D{?) is equal to diag(1/6,2/3,1/6) # 13/3. The state |T) =
|¥,,—i ©3) 1s the 4-qubit tetrahedron state (the 4 Majorana points
draw a regular tetrahedron) [5]. Figure 2 shows a density plot
of the Husimi function associated with this state, which is
characterized by vanishing dipole and quadrupole moments.

IV. ENTANGLEMENT CONTENT OF MAXIMALLY
ENTANGLED SYMMETRIC STATES

Maximally entangled symmetric (MES) states as defined
in this work maximize many measures of entanglement
(see Introduction) but not all. In particular, the geometric
and barycentric measures of entanglement [20,21], or the
generalized N-tangle [22], to cite a few, are not maximized
for all MES states. In this section, we address in more details
this question of the entanglement content of MES states with
respect to these entanglement measures.

A. Geometric measure of entanglement
The geometric measure of entanglement (GME) Es of a
state |1) is defined as [20]

Ec(y)y=1-— max

DY) |2 29
\¢>:|¢1»¢2,¢3,-~>|< WH 29

If |¥) is a symmetric state, the optimization can be done on
the limited set of symmetric separable states |®) = |¢, ... ,p)
[33]. The geometric measure of entanglement Es of any N-
qubit MES state is ensured to be larger than or equal to 1/2,
the equality only holding for Bell states (N = 2), GHZ states
(N > 2), and their local unitary (LU) equivalents:

Eg(Ymes) = 3,V MES state [{vgs). (30)

Indeed, any symmetric separable states can be obtained from
the action of a local unitary U®Y on the separable state

|0,...,0) = |D§8)). We thus have

max (@) = max (DO )P 3D
@) UeU(2)

When |) is a MES state, sois U®Y |4/), and it follows from Eq.
(6) that |dp|? < 1/2 where dy = (D$)|U®N|1//). This shows
that the geometric entanglement of U®N|y) and hence |v/)
is necessarily larger than or equal to 1/2. When |dy|* = 1/2,
Eq. (6) shows that all d; must vanish for0 < k < N — 1 and
normalization imposes |dy|*> = 1/2, which eventually leads
to the Bell state (N = 2) or GHZ states (N > 2), up to local
unitaries.

Equation (30) can be generalized to higher order of
anticoherence. The geometric measure of entanglement of any
anticoherent state to order ¢, |1//X)), is larger than or equal to
t/(t+ 1)

Eo(w) > ——. V|uy) (32)

t+1’

Indeed, from the condition (vfo)|vr(o)) = 1/(¢t + 1), we find that
the modulus of dy must satisfy the equation

N—t
1 1
—— = do* + = Y _ 1’ Cly . (33)
t+1 Cy P
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Ta)
/s 2/3
Im (y2) s
=
1/2

0
|GHZ4)

FIG. 3. (Color online) Density plot of the geometric measure of
entanglement Eg of the 4-qubit MES states [y,) [Eq. (25)] as a
function of the real and imaginary parts of u € S [Eq. (26)], the only
region where distinct u define SLOCC-inequivalent D, ;;; states
(see text). The geometric entanglement is constant along the dashed
curves. These curves cross the region boundaries at right angles.
Particular values of u are highlighted: |,,—0) = IGHZ4), |¥,,_; ) =
|T,) (tetrahedron state). The dash-dotted arc of circle separates two
regions I and II where the density plots of Es are just the image
of each other through the conjugated Moebius transformation p —

[2(v/6 — w)/(+/61 + 2)1* (see text).

which immediately leads to |do|> < 1/(t +1) and Eg >
t/(t+1).

For N = 2, the only MES state (up to LU) is the Bell state
with a GME of 1/2. This is the maximal value that can be
obtained for 2-qubit states [20]. For N = 3, the only MES
state is the GHZ state and its GME is also 1/2 [20]. However,
in this case it does not maximize the GME since the maximal
value for 3-qubit states is obtained for the Dicke state |D;1))
with a GME of 5/9 [34]. The GHZ state does not maximize
either the GME within its SLOCC class since this maximal
value is also 5/9 as can be inferred from [35] (the Dicke state
|D§1)) can be approached as closely as desired by GHZ-class
states).

For N =4, the only MES states are the balanced Dicke
state |Df‘2)) and the states |v,,) given by Eq. (25). The GME of
the balanced Dicke state is 5/8 [20] while it can be expressed
for the states |y,) as

lo* + uv6 B + 41
24 |uf?

E =1- ma
(W) 6el0,71,0el0,27]

(34)

with o =cos(0/2) and B =sin(@/2)e'¥. The GME of
the states [y,) is represented in Fig. 3 for all peS§
[Eq. (26)], the only region where distinct p define SLOCC-
inequivalent D;;;; states (see Sec. III). For p such
as || < V273, Ec(,) = (14 |[ul*)/Q2 + |ul*) and |@) =
|0Y®N is a separable state maximizing the squared over-
lap in Eq. (29). For p such that Re(x) =0 and |u| >
V273, EcW) =1—Q2+3[ul*)?/24|nl*2 + )] and
@) = (u]0) + B 1) with a, = [1/2 4 1/(V/6]u)]"/?
and B, = e"™/*[1/2 — 1/(v/6]|11])]'/? is a separable state max-
imizing the squared overlap in Eq. (29). For any u in region
I of Fig. 3, |¢,,) and |¢,,) with &' = 2(+/6 — 1)/ (v/6 + 2)
are LU-equivalent and the transformation p’()* maps region
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I to region II and vice versa (see Appendix D). Since the
geometric entanglement is invariant through LU and complex
conjugation, we have Eg(Y,) = Eg(,~) and the density
plot of region II is just the image of region I's through
the anticonformal transformation ©'(u)*. The boundary be-
tween regions I and II is defined by the arc of circle of
radius 2./2/3 centered in —./2/3. Along this arc, the GME
reads Eg(,) = 1 — 2+ 3|u"1%)*/[24|11" 122 + |1 1»)] with
W' =2(v6 + 1)/(+/6u —2). The maximal GME of the 4-
qubit MES states [, ) is reached for u = i+/2 (tetrahedron
state) with Eg = 2/3. This is actually the maximum GME
that can be achieved for 4-qubit symmetric states [5,6]. This
is also incidentally the only 4-qubit state that is anticoherent
to order 2 (see Sec. III).

B. Barycentric measure of entanglement

The barycentric measure of entanglement (BME) Ep of a
symmetric state |g) is defined as [21]

Eg(¥s) = 1 — dy(¥s), 35)

where dg(s) is the Euclidian distance from the Bloch sphere
center to the barycenter of the Majorana points of |g). All
MES states up to 4 qubits (see Sec. III) have Majorana points
with a barycenter that coincides with the Bloch sphere center.
These states are therefore maximally entangled with respect to
the BME (Ep = 1). This is no longer true when considering
states of more than 4 qubits. Still MES states with maximal
BME of 1 can be found for any numbers of qubits (such as the
GHZ states |GHZy) whose Majorana points draw a regular
N-sided polygon in the equatorial plane [19]), but MES states
with smaller BME can also be identified for any N > 4. Some
were already pointed out for N =5 and N =7 in [29] as
anticoherent states whose Majorana points do not define a
spherical 1 design. We identify here a series of such MES
states for any numbers of qubits larger than 4. The states

1
|Py) = ﬁ(w —2|DY)+VN|DF™")  (36)

are MES for any N > 2 [they indeed verify Eqgs. (8) and (9)].
Their Majorana representations are formed with one point at
the north pole of the Bloch sphere and N — 1 points at the
vertices of a regular polygon contained in a plane parallel to
the equatorial plane but slightly displaced towards the south
pole, with a polar angle 6 = 2 "/cot~I[(N — 2)/N2]. The
BME of the states | Py) reads accordingly

2N — 1) ?
—1|. @D
N+ "J(N —2)/N?)

It is illustrated in Fig. 4 as a function of N. The curve is
slightly below 1 for any N > 4 and displays a minimum for
N = 15. For very large N, Eg(Py) tends again to 1 while
staying smaller. For N < 4, the states | Py) identify to the Bell
state (N = 2), or to LU-equivalent states to the |GHZ3) state
(N = 3) or to the tetrahedron state |T4) = Wﬂziﬁ) (N =4).
Incidentally, the geometric entanglement of the states | Py) is
equal to N/(2N — 2) for N > 4 and 1/2 otherwise.
Conversely, states that maximize the barycentric measure
of entanglement (Ep = 1) are not necessarily MES states. For

Ep(Py) =1~ [
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FIG. 4. (Color online) Barycentric measure of entanglement E
of the MES states | Py) (blue dots) and the SLOCC equivalent non-
MES states | Py o) (@ = —/27/25) (orange triangles) as a function
of the number of qubits N.

instance, the states (N > 2)
c? (-DHN N=3
=N [ =2|DY) - V3|DQ) + ——=|Dy
[xn) 3 | N) | N>+ m| N )

+ (—1)N+‘,/—3N2_ ’ |D§§V“)>

have maximal BME but are not MES for N > 4. Indeed, their
Majorana representations correspond to 3 points at the vertices
of an equilateral triangle in the meridian plane ¢ = 0and N —
3 points at the vertices of a regular polygon contained in the
equatorial plane, such that dg = 0 and Ep = 1. Furthermore,
the first element of their one-qubit reduced density matrix
reads

©) @__N4—3N“+ENQ—9WV+1%
(”1 |v1 > =

N(N 4+ 1)(N2+5N —12)
This element is equal to 1/2 only for N =3 and N =4 and
according to Eq. (6) the state cannot be a MES state for N > 4.

MES states do not generally maximize the BME within their

SLOCC classes. For instance, the |Py) SLOCC-equivalent
states (o € Cy)

|Py o) = Ndiag(a,1)]®V | Py)
= N'("'VN=2|DP)+ VN[DY ") (39

are non-MES states as long as |«| # 1 [since diag(e,1) is
nonunitary in this case] and though they exhibit a larger BME
than the |Py) states for N > 4 and several values of «, in
particular for « = —¥27/25 as is illustrated in Fig. 4.

(38)

C. Generalized N-tangle

The generalized N-tangle ty of a state |¢) was introduced
in [22] as a measure of multipartite entanglement. For all even
N, it is equal to the square of the concurrence:

|4
() = [(YloEV )| (40)
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with o, the second Pauli matrix. For N = 3, it corresponds
to the usual 3-tangle [18]. The MES states of 2 and 3 qubits
have maximal N-tangle Ty = 1. From N = 4, the N-tangle
of MES states can span values between 0 and 1. We have in
particular for the 4-qubit states |/,,) of Eq. (25)

[l + 4Re(u?) + 412
= . 41
) C+ PP @D

For uw =0 (|JGHZ,) state), Ty = 1, while for u:iﬁ
(tetrahedron state), Ty = 0. For any even N > 4, we have
tny(GHZy) = 1 [22], while Ty (Py) = 0.

V. CONCLUSION

As a conclusion, in this paper we have formalized a
general criterion to identify whether a symmetric state
is maximally entangled or not in terms of the maximal
mixedness of its one-qubit reduced density operator. This
criterion is straightforwardly checked if the symmetric states
are expressed in the symmetric Dicke state basis. We then
have given two physical interpretations of these maximally
entangled symmetric (MES) states: they are the only states
for which the expectation value of the associated collective
spin vanishes, as well as in corollary the dipole moment of the
Husimi function. We have identified that MES states actually
coincide with anticoherent spin states to order 1 [25] as well
as with unpolarized light states to order 1 [26,27]. More
generally, anticoherent states to order ¢+ > 1 are symmetric
states with maximally mixed 7-qubit reduced density operators
in the symmetric subspace (and incidentally maximally mixed
pr, ¥ t' < t) and are the only states characterized by a Husimi
function with vanishing multipolar moments up to order 2’
[28]. We have then given a general nonexistence criterion
of MES states within SLOCC classes. We have shown in
particular that the symmetric Dicke state SLOCC classes never
contain MES states, with the only exception of the balanced
Dicke state class for even numbers of qubits. We have analyzed
exhaustively the 4-qubit case and identified all MES states for
this system. These states are the Dicke state |D§2)) as well
as all states |¥,,) of Eq. (25). Among these states, only the
tetrahedron state |/, _; 53) is also anticoherent to order 2. We
finally have studied the entanglement content of MES states
with respect to the geometric and barycentric measures of
entanglement, as well as to the generalized N-tangle. This
entanglement content has been exhaustively analyzed in the
4-qubit case. We have shown that MES states do not maximize
necessarily these entanglement measures, especially when
the number of qubits exceeds 4. The geometric measure of
entanglement of MES states is ensured to be larger than or
equal to 1/2, the equality being only met, up to local unitaries,
for GHZ states (the Bell state for the 2-qubit system).
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APPENDIX A: REDUCED DENSITY MATRICES
OF SYMMETRIC STATES

In this Appendix, we provide a compact expression for
the 7-qubit reduced density matrices p; = tr—,(|¥s) (¥s]) (t =
1,...,N — 1) of any N-qubit symmetric states |{s). We start
by noting that the symmetric N-qubit Dicke states |D§\I,{)) can
be written as a sum of tensor products of symmetric Dicke
states with smaller number of qubits. We have for every ¢ =
I,....N —1

with
|D(k)> /Ck |D(k)) (A2)

where C]’i, is the binomial coefficient (IZ ) with the usual
convention C 5‘\, =0if k <0or k > N. Any symmetric state
|¥rs) = Z/ILO dk|D§\1,‘)) can thus be written as

k=0 g=0 C,’i,
t
D" ® [v”), (A%)

q=0
where we have introduced the (N — f)-qubit states (¢t =
I,....N—1;g=0,....,0)

N—t

o) ditq
=V L s

The ¢-qubit reduced density matrices in the Dicke state basis
then follow from Eq. (A4) to correspond to the (r + 1) x (¢ +
1) Gram matrix of the vectors [v\?),

(1)

|D§,). (AS)

(1)

= (A6)
( l)|v(0)> ( [)|U(t)>
with
N—t
(Wi?lf?) = dg,, i T (A7)
k=0
where
rq‘——\/c ck_citt  ck (A8)
Nek—qC g N—k—eChre-

APPENDIX B: DECOMPOSITION OF SYMMETRIC
OPERATORS AS POLYNOMIAL IN COLLECTIVE
SPIN OPERATORS

In this Appendix, we show that any symmetric operator
O acting on the (N + 1)-dimensional symmetric subspace of
an N-qubit system can always be written as a multivariate
polynomial in the collective spin operators S, and Si of
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degree at most N and we present a procedure to determine this
polynomial. We start by decomposing an arbitrary symmetric
operator O onto the symmetric Dicke states basis as

N N-—k
0=>"3" Owex| DY) DY (B1)
k=0 t=—k

with Oppox = (DST010|1DY). Next, we show that any
operator of the form |D§(,‘+€))(DX,‘)| with £ > 0 appearing in
the decomposition (B1) of 0 is equal to S’ﬁ P,(fiz(S’Z) with
Plf,kle(S‘z) some polynomial in §, of degree at most N — £.
The case of operators of the form |D§(,‘H))(Dg\l,‘)| with £ < 0
follows directly by Hermitian conjugation. The N — ¢ + 1
operators S fr S‘;“ form =0, ...,N — £ form an operator basis
for operators whose nonzero entries in the Dicke state basis
lie on the ¢ diagonal (i.e., whose nonzero entries are O,,,, with
m = n + £). It follows that any operator |D§\’,(+K)) (DE\I,C)| can be
written (for £ > 0) as

‘D(k+£) D(k)’ SZ Z Ol(k Z)Sm (B2)

m=0

where the coefficients a**) obey the linear system of equations

ZA,,,,, o) = (B3)
withn,k =0,...,N — £ and
n+€—1
A = l_[ (N=p)p+1)(n—N/2)". (B4)
p=n

Whenever ¢ = 0, the square root in Eq. (B4) should be replaced
by 1. Equation (B3) is obtained by taking the matrix elements
of (B2) between the Dicke states IDE\’,’M)) and IDE\’,’)) for
n=20,...,N — ¢ and using the fact that Dicke states are
simultaneous eigenstates of S and S.. The matrix A defined
by its entries (B4) is invertible because it is the product of
an invertible diagonal matrix with an invertible Vandermonde
matrix with evenly spaced set of ordinates {(n — N/2) : n =
0,...,N — £} [36]. Since A is invertible, the linear system of
equations (B3) has a unique solution, which yields the desired
decomposition (B2).

APPENDIX C: COMPONENTS OF THE REDUCED
DENSITY MATRICES p,; IN TERMS OF EXPECTATION
VALUES OF COLLECTIVE SPIN OPERATORS

In this Appendix, we show that the matrix elements of
the 7-qubit reduced density matrices p; can be written as
expectation values of polynomials of degree ¢ in the collective
spin operators.

The p, matrix elements (D\?|p,|D") [see Eq. (A7)] can
be written in the form

(D[] Di") = tr (3| D7) D)) €
= tr(ps Of") = (w10 1yrs)  (C2)
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with
O = Ps(|D")(DI”| @ Ty_.) Ps, (C3)

which follows from the definition of the partial trace [7] and
where Pg is the projector onto the symmetric subspace. Upon
using the decomposition of Appendix B to the operator O ¢
given in Eq. (C3), this proves that every matrix element of a
t-qubit reduced density operator can always be expressed as
the expectation value of a polynomial of degree at most N in
the collective spin operators. Actually, a polynomial of degree
t is even sufficient. Indeed, O,q % is the symmetrization of the
tensorial product of a symmetric operator acting on the #-qubit
Hilbert space (hence it can be written as a polynomial of degree
t in the #-qubit collective spin operators) and of the identity in
the (N — ¢)-qubit Hilbert space (hence a polynomial of degree
zero in the collective spin operators). The conclusion then
follows from the definition of the collective spin operators.
Indeed, the symmetrization of the tensorial product of two
polynomials of degree r and s in collective spin operators
acting in the subspaces H, and Hy_,, respectively, can be
written as a polynomial of degree r + s in collective spin
operators acting in the global Hilbert space Hy = H, @ Hy_;.

APPENDIX D: SLOCC REPRESENTATIVES OF ALL
4-QUBIT Dy 1., STATES

In this appendix, we show that any D ;1 i-type 4-qubit
symmetric state is SLOCC equivalent to one of the MES states:

(0) (@) (C))
(1D7) + u| D) + [ D)),

V) = (D1)

1
Ny
with @ a c-number in the bounded domain

S ={u € C:Re(u) = 0,Im(n) > 0,

I —/2/3] < 24/2/3,10 < /2/3 if Im(p) = 0.
(D2)

These states were introduced in [19] in the context of the
classification of the 4-qubit symmetric states, but the restricted
domain S where distinct u define SLOCC inequivalent states
was not discussed and too quickly shortcut. In Ref. [37],
SLOCC representatives in the D; ; 1 state family were also
identified, but with states not cumulating the property of being
MES. Here we show that this is possible with the states (D1).

We first note that the Majorana representation (24) of
any symmetric state expressed in the Dicke basis |g) =
Z,I{VZO dk|D§\],()) is obtained by finding the M < N roots z,
of the polynomial

N
P(z) =) (—"/C} diz*
k=0

(D3)

and applying the (inverse) stereographic projection from the
complex plane onto the Bloch sphere through the relation z,,, =
cot(,,/2)e~ %", with (6,,,¢,,) the Bloch sphere coordinates of
the Majorana points. The remaining N — M points are all
located at the north pole of the Bloch sphere (6,, = 0) [19].
Equivalently, the “roots” z,, (M < m < N) can be formally
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set to oo. For the states |v,,) of Eq. (D1), setting

-5 (°+3)

makes the roots z,, (im =1, ...,4) take the simple form +z
and +1/z. They are all distinct as long as z2 # =+1, i.e., as
long as 1 # 4+/2/3. For these two specific values of u, the
states |y,,) are LU equivalent to the Dicke state |Df)) and are
not of the D ;1.1 type.

Applying a SLOCC transformation on a symmetric state is
equivalent to applying a Moebius transformation (MT) M(z)
on its polynomial roots [37,38]. The most general MT reads

az+b
cz+d’

where a,b,c,d € C and ad — bc # 0. Moebius transforma-
tions form a group, such that the composition of two or more
MT is also an MT.

A symmetric local unitary transformation applied on a
symmetric state has the effect of a rigid rotation of the
corresponding Majorana points on the Bloch sphere. It is
thus always possible to take by LU a Majorana point of any
symmetric states to the north pole of the Bloch sphere. Doing
so for any D; ;1,1 4-qubit symmetric states yields a state with
one root of the polynomial P(z) equal to oo, such that the four
distinct roots are now given by z1, 22, 23, 00. We then apply a
first Moebius transformation,

(D4)

M(z) = (D5)

Z—21

Mi(z1,22,2) = (D6)

22 — 21
to take z; to O and z, to 1. After this SLOCC transformation,
the four roots associated with the stateare 7; = 0,7, = 1,%3 =
(z3 — z21)/(z2 — z1), and Z4 = co. We then apply a second
Moebius transformation M;(zg,z) in order to take Z; to zo,
Z» to —z0, and Z4 to 1/z¢ with zg € C \ {0, £1, £i}. This
transformation is explicitly given by

2z — z0(z0 + 1/20)
220z — (20 + 1/20)

In order to put the state to the desired form (D1), it suffices to
choose z( such that

M>(z0,23) = —1/z0.

This is the case if zp is a square root of 273 — 1 + 24, with
8 a square root of Z3(Zz — 1). In summary, the composi-
tion M»(z0(Z3),z) o M1(z1,22,2) is a state-dependent Moebius
transformation that can be applied to any D) ; ; -type states in
order to put it to the form (D1), after an LU has been applied
to take one point at the north pole of the Bloch sphere. At this
stage, the obtained state |1/, is not yet ensured to be such that
u € S. We show hereafter how to get to this final step.

All states [,) of Eq. (D1) with arbitrary u € C are not
SLOCC inequivalent to each other. This is only the case for
u in the restricted domain S and all states with u out of
this domain are LU equivalent to one of these states with
n € S. To prove this, we first note that if two arbitrary
states |y,) and |y,/) are SLOCC equivalent, then they are
also necessarily LU equivalent. This is because MES states
are unique up to local unitaries within their SLOCC classes
[8] and so are all states |y,) (see Sec. III). LU-equivalent

M>(z0,2) = D7)

(D8)
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symmetric states can be transformed into each other using an
identical local unitary for each qubit [39]. Considering the
most general expression of single-qubit unitary operations U,
one can identify all local unitaries that transform a state |, )
into a state of the same type, |,), i.e., that implement in
the complex plane u — /() transformations. Up to a global
phase and to the identity operation, these LUs are exhaustively
given by the Pauli matrices oy, oy and o, (1’ = ) [40], by the

matrices
1 0 1 /1 1
u=(o 1) ”27(1 )

U—lli D9
A ACERIA (%)

and by any composition of these unitaries. The symmetric LUs
U 1®4, Uf’“, and U§34 implement the Moebius transformations
w=—p, w=2+6-1)/(6u+2), and ' =26+
w)/ (W6 —2), respectively. Each of these transformation

PHYSICAL REVIEW A 90, 032314 (2014)

coincides with its inverse and maps the upper part of the
complex plane to the lower part and vice versa [Im(u’) and
Im(u) have opposite signs]. For U2®4, the right part of the
complex plane [Re(w) > 0] is mapped into the closed disk of
radius 24/2/3 and centered on +/2/3 (the single point —/2/3
excluded), while the right-upper part of the disk [where Re(x)
and Im(w) > 0] is mapped into its right-lower part and vice
versa. It also maps region II of Fig. 3 to the complex conjugate
of region I and vice versa. For real s, the interval 1/2/3,+/6]
is mapped into [0,4/2/3[ and vice versa. For U2* and real
w, the interval [0,4/2/3[ is mapped into ] —oo, —+/6]. As
a consequence of all this, a right sequence of the local
unitaries U®* and U$* applied alternatively and at most twice
on any states |y,) with p ¢ S transform the state into an
LU-equivalent state |y,/) with i’ € S. We are finally ensured
that all states with € S are SLOCC inequivalent; otherwise
they would be LU equivalent and this is impossible since all
LUs connecting |y, )-type states together are exhaustively
listed here above and none of them keeps w inside the
domain S.
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