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We investigate the behavior of genuine multiparticle entanglement, as quantified by the generalized geometric
measure, in gapless-to-gapped quantum transitions of one- and two-dimensional quantum spin models. The
investigations are performed in the exactly solvable one-dimensional XY models, as well as two-dimensional
frustrated J1–J2 models, including the Shastry-Sutherland model. The generalized geometric measure shows
nonmonotonic features near such transitions in the frustrated quantum systems. We also compare the features
of the generalized geometric measure near the quantum critical points with the same for measures of bipartite
quantum correlations. The multipartite quantum correlation measure turns out to be a better indicator of quantum
critical points than the bipartite measures, especially for two-dimensional models.
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I. INTRODUCTION

Recent developments at the interface of quantum informa-
tion science and many-body physics indicate that quantum
correlations, in particular, quantum entanglement [1], can
potentially be a universal physical characteristic to investigate
many-body phenomena. For example, entanglement has been
proposed as a detector of quantum phase transitions (QPTs)
in spin systems [2–4] and as a tool to develop and simplify
efficient numerical simulations such as density matrix renor-
malization group [5]. Of late, the developments involving the
numerical simulations using matrix product states [6], pro-
jected entangled pair states [7], and tensor network states [8]
have established a strong connection between entanglement
and many-body theory. At the same time, the behavior of
entanglement has been investigated in many-body systems
such as cold atomic gases in optical lattices [9] and trapped
gaseous Bose-Einstein condensates [10]. On the other hand,
information-theoretic quantum correlation measures such as
quantum discord [11] have also been used to study critical
phenomena in many-body systems [12]. In this paper, we focus
our attention on multisite entanglement of many-body physical
systems, integrable and nonintegrable.

The characterization of entanglement in physical sys-
tems is mostly restricted to bipartite entanglement due to
the general unavailability of computable measures in the
multipartite scenario. However, in some cases, it turns out
that the bipartite-entanglement measures cannot capture the
cooperative phenomena in the system [13,14], and therefore it
is natural to look out for multipartite-entanglement measures
to investigate such many-body systems [15].

Multipartite-entanglement measures, e.g., the geometric
measure [16] (cf. [17]), global entanglement [18], and some
other measures [19], have been used to describe many-body
phenomena [20]. However, in general, they are hard to
compute and it is therefore not possible to use them for
states of arbitrary many-body systems. Recently, a genuine-
multiparticle-entanglement measure called the generalized
geometric measure (GGM) [21] was introduced which can
be easily computed for pure states in arbitrary dimensions and
of an arbitrary number of particles. It has since been found
to be useful to study the genuine multiparty entanglement

present in systems such as resonating valence bond states
and states of disordered systems [22]. In this paper, we
apply the GGM to study quantum spin models, including
frustrated ones [23,24]. Frustration appears in a many-body
system if it is not possible to simultaneously and independently
minimize all of the interaction terms of the corresponding
Hamiltonian [24]. The characterization of such systems is
typically hard to achieve [24]. We consider the following four
classes of quantum spin systems:

(1) the quantum one-dimensional (1D) transverse XY

model [25],
(2) the 1D antiferromagnetic J1–J2 Heisenberg model

[26–29],
(3) the antiferromagnetic J1–J2 model on a two-

dimensional (2D) lattice [23], and
(4) the Shastry-Sutherland model [30].
The choice of the above models is due to their immense

importance in understanding the different exotic phases in
many-body systems, including high-Tc superconductivity [31].
Moreover, the recent experimental realizations of such spin
models in the laboratories [3,32–34], for example, in optical
lattices [3,35], trapped ions [36], photons [37], and nuclear
magnetic resonance [38], have led to the interesting possibility
of the observation of the many-body effects described here in
the laboratories. Towards the unfolding of such many-body
effects, we apply the multiparty-entanglement measure, i.e.,
the GGM, to study the phase diagrams in these models from a
multipartite-entanglement perspective. It is observed that the
phase diagrams, so obtained, indicate transitions from gapless
to gapped phases, and vice versa, in these models.

The approach chosen in the paper is as follows. Entan-
glement properties have been suspected to be related to a
large variety of cooperative phenomena in many-body physics.
However, the analysis of this suspicion is made difficult
by the intractability of most entanglement measures, espe-
cially in the multiparty domain. The generalized geometric
measure (GGM) is a recently proposed genuine-multiparty-
entanglement measure and is, to our knowledge, the only
measure that can be computed for any pure quantum state
of an arbitrary number of parties in any dimension. We wish
to use this fact to our advantage towards analyzing multiparty
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entanglement in many-body systems. The proposal is to use
the GGM as an order parameter to detect quantum phase
transitions. We first use the GGM to check whether it can
effectively capture the well-known quantum phase transition
in the transverse XY model. It is to be noted that the quantum
transverse XY model can be solved exactly, and it will therefore
be satisfying to find that the GGM detects the quantum
phase transition in this model precisely, without any concern
for finite-size effects. Having obtained this result, we then
look for the possibility of the GGM acting as a detector of
quantum phase transitions in the other models, which are not
exactly solvable and moreover in which the quantum phase
transitions are not precisely known, by considering the other
order parameters used in the literature. For comparison, we
evaluate the bipartite quantum correlation measures towards
detecting the quantum critical points of all the above models.
We find that the GGM is a better indicator of quantum
phase transitions than the bipartite measures, especially for
two-dimensional lattice models.

The paper is organized as follows: In Sec. II, we present
a formal definition of the genuine-multiparty-entanglement
measure, viz., the GGM, and we show that the same can be
expressed in terms of easily computable Schmidt coefficients.
We also discuss the reasons for choosing GGM over bipartite
measures such as concurrence and logarithmic negativity for
the present investigations. Further results are presented in
Sec. III where, in each section, we consider one of the
quantum spin models. Sections III A, III B, III C, and III D
deal, respectively, with the anisotropic XY , the 1D frustrated
J1–J2 model, the 2D frustrated J1–J2 model, and the Shastry-
Sutherland model. In Sec. IV, we compare the GGM with
other bipartite quantum measures of shared quantum systems
in terms of detecting QPTs. Finally, we draw our conclusions
in Sec. V.

II. GENERALIZED GEOMETRIC MEASURE

In this section, we present a brief description of the GGM
and show that it is efficiently computable for pure quantum
states of an arbitrary number of parties. A pure quantum state
|ψ〉A1,A2,...,AN

, shared between N parties, A1,A2, . . . ,AN , is
said to be genuinely N -party entangled if it is not a product
across any bipartite partition. The GGM of a pure quantum
state |ψ〉A1,A2,...,AN

is defined as

E
(|ψ〉A1,A2,...,AN

) = 1 − �2
max

(|ψ〉A1,A2,...,AN

)
. (1)

Here, �max(|ψ〉A1,A2,...,AN
) = max |〈φ|ψ〉A1,A2,...,AN

|, where
the maximization is taken over all pure states |φ〉 which are
not genuinely N -party entangled.

Let us enumerate some of the properties of GGM.
(1) E is nonvanishing for all genuine-multiparty-entangled

states, and vanishing for others.
(2) E is monotonically nonincreasing under local (quantum)

operations and classical communication. (The proof follows
from the theorem stated below and Ref. [39].)

We now prove a theorem, where we show how the GGM
can be expressed in terms of Schmidt coefficients.

Theorem. The generalized geometric measure (GGM) can
be expressed as

E(|ψ〉)
= 1 − max

{
λ2
A:B|A ∪ B = {A1, . . . ,AN },A ∩ B = ∅}

,

(2)

where λA:B is the maximal Schmidt coefficient of
|ψ〉A1,A2,...,AN

in the A : B bipartite split.
Proof. The maximization involved in the definition of

GGM, given in Eq. (1), is over all N-party pure quantum
states |φ〉A1,A2,...,AN

that are not genuinely multiparty entan-
gled. The square of �max(|ψ〉A1,A2,...,AN

) can be interpreted
as the Born probability of an outcome in some quantum
measurement on the multiparty quantum state |ψ〉A1,A2,...,AN

.
Since entangled quantum measurements are, in general,
better than the product ones for any set of the subsystems
involved, the maximization needs to be carried out only in
a partition of A1,A2, . . . ,AN into two parts. In other words,
the maximization in max |〈φ|ψA1,A2,...,AN

〉| is performed over
the |φ〉A1,A2,...,AN

that are the product across some bipartition,
say, A : B. This is exactly the maximal Schmidt coefficient,
λA:B, of the state |ψ〉A1,A2,...,AN

in the A : B bipartite split.
Note that λA:B are increasing under local operations and
classical communication (LOCC) [39]. This immediately
implies that GGM (E) is nonincreasing under LOCC. And,
�max(|ψ〉A1,A2,...,AN

) is the maximum of all such maximal
Schmidt coefficients in all possible bipartite splits of the N
parties. Hence, the theorem. �

The theorem makes it possible to calculate the GGM for
any pure state of an arbitrary number of parties in arbitrary
dimensions. This is due to the fact that the definition of GGM,
given in Eq. (1), reduces to the calculation of squares of the
maximal Schmidt coefficients across all bipartitions, as given
in Eq. (2). So, for example, for calculating the GGM of a
four-party symmetric state |ψ〉ABCD , we have to consider |ψ〉
in the A:BCD and AB:CD partitions, and find the maximal
Schmidt coefficients in these partitions. The GGM of |ψ〉ABCD

is then 1 − λ2, where λ is the highest of these maximal Schmidt
coefficients.

There are a large number of concepts that can be used to
quantify entanglement. The reasons that we use the GGM here
are as follows. It is widely believed that entanglement of many-
body systems has an important bearing on the cooperative
physical phenomena in those systems. Since a large number
of particles (subsystems) is necessary for generating such
effects, it is plausible that it is the multiparty entanglement that
would better reveal the positions and characteristics of these
cooperative phenomena. This belief is reinforced by the recent
results demonstrating that bipartite-entanglement measures
such as concurrence and logarithmic negativity cannot reliably
capture the position of quantum phase transitions in some
systems [13,14]. It is therefore all the more natural to look
out for multipartite-entanglement measures to investigate
such cooperative phenomena in many-body systems. The
generalized geometric measure is, to our knowledge, the only
measure of genuine multiparty entanglement that can be
computed for any pure quantum state of an arbitrary number
of parties in any dimensions. This led us to use it to study
transitions in important many-body systems.
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The scaling of the von Neumann entropy is a way to
understand the multiparty-entanglement properties of quantum
many-body states. In this case, the corresponding state |ψN 〉
of, say, N spin- 1

2 particles, is first divided into two parts, one
of which consists of L particles while the other consists of
the rest. Then the von Neumann entropy SL of the subsystem
of L particles corresponds to the entanglement of |ψN 〉 in
the L : N − L bipartition. Note here that the entropy has to
be found by using all the Schmidt coefficients of the density
matrix of the subsystem.

In a path-breaking series of papers, a change in the scaling
law, i.e., the behavior of SL versus L, has been proposed to be
an order parameter to detect quantum phase transitions [4,40].
The scaling of local von Neumann entropy, however, has
important drawbacks. First, local von Neumann entropy is
not a measure of entanglement for mixed quantum shared
states. Second, and perhaps more important, is the fact that
while scanning over a system parameter to “pin down” a
phase transition, it is difficult, practically, to detect a change
in the scaling law, especially for systems where finite-size
calculations are essential, due to analytical intractability. This
is because at every point in parameter space, we obtain a
function. Scanning over the parameter space, we get a family of
functions. Detecting phase transitions by looking for changes
in the functional form is a mathematically difficult problem,
especially if the functional forms are all approximate to begin
with.

Both of these drawbacks are overcome by considering the
GGM. The GGM is well defined for both pure and mixed
states. Moreover, scanning over the parameter space, we obtain
a surface defined on the parameter space because for every
point of the parameter space, the GGM at that point is a real
number. We then identify phase transitions with some drastic
change in behavior of this surface.

Furthermore, to calculate the GGM, one should consider all
possible bipartitions of the N -partite state [in the maximization
given in Eq. (2)], which include bipartitions whose parts are
not separately connected. On the other hand, in consideration
of the scaling of von Neumann entropy, one usually considers
connected clusters of lattice sites. However, there are important
exceptions [41] where researchers have gone beyond this usual
practice.

III. BEHAVIOR OF GGM NEAR GAPLESS-TO-GAPPED
QUANTUM TRANSITIONS

In this section, we consider a series of paradigmatic
quantum spin systems. They are taken up one by one in the
different sections. Each section begins with a brief description
of the Hamiltonian corresponding to the quantum system
under study. Subsequently, we study the behavior of the
ground state of these models, and investigate the advantage of
considering the genuine-multipartite-entanglement measure in
these models.

A. Anisotropic XY model

The Hamiltonian for the one-dimensional anisotropic quan-
tum XY model of N quantum spin-half particles, arranged in

an 1D array, is given by [25]

HXY = J

2

(
N∑

i=1

(1 + γ )σx
i σ x

i+1 + (1 − γ )σy

i σ
y

i+1

)

+h

N∑
i=1

σ z
i , (3)

where J , which has the units of energy, is of the same order
as the coupling constant for the nearest-neighbor interaction,
γ ∈ (0,1] is the (dimensionless) anisotropy parameter, σ ’s are
the Pauli spin matrices, and h, which again has the units
of energy, represents the external transverse magnetic field
applied across the system. In all of the models considered in
this paper, we impose the periodic boundary condition. The
quantum XY Hamiltonian can be diagonalized by applying
Jordan-Wigner, Fourier, and Bogoliubov transformations [25].
At zero temperature, it undergoes a quantum phase transition
driven by the transverse magnetic field at λ ≡ h/J = 1.
Moreover, it is also known that the model is gapped for all
field strengths except at the point where the quantum phase
transition occurs. Such transitions have been detected by
using bipartite-entanglement measures such as concurrence
and multipartite-entanglement measures such as geometric
measure [20,42]. We investigate the behavior of the genuine-
multipartite-entanglement measure, viz., the GGM, of the
ground state when it crosses from one gapped phase to another,
through the gapless point.

The ground state of the system represented by the quantum
XY Hamiltonian, as given in Eq. (3), can be analytically
obtained by using Majorana fermions and it is also possible to
get the eigenvalues of the local density matrices corresponding
to the ground state, in different bipartitions [4,25]. The local
density matrix corresponding to L consecutive sites can be
obtained by calculating their correlators and magnetizations.
The largest eigenvalue of the local density matrix correspond-
ing to L sites, where 1 � L � N/2, when subtracted from
1, gives the GGM. We have assumed here that the density
matrices corresponding to nonconsecutive sites do not produce
significant eigenvalues to contribute to the GGM. We have
checked that this assumption remains valid for moderate-sized
finite XY chains. The assumption is intuitively satisfactory as
we are dealing with a nearest-neighbor interaction model. In
Fig. 1, we have plotted the GGM and the derivative of the
GGM for the ground state of the XY model with respect to
the driving parameter, λ, for different values of the anisotropic
constant γ . The divergence of the derivative of GGM captures
the presence of the quantum phase transition at λ = 1. When
γ = 1, which corresponds to the Ising model, the genuine
multipartite entanglement is maximum when compared to the
systems with lower values of γ .

B. 1D frustrated J1– J2 model

We will now consider the frustrated one-dimensional J1–J2

Heisenberg model, in which the nearest-neighbor couplings
J1 and the next-nearest-neighbor couplings J2 are both
antiferromagnetic. It was found that solid-state systems such
as Sr CuO2 can be described by this model [43]. Moreover,
advances in the field of cold atomic systems promise to create
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FIG. 1. (Color online) GGM of the transverse XY model. The
GGM and its derivative (both dimensionless) are plotted on the
vertical axis for the anisotropic transverse XY model for different
anisotropy parameters γ , against the dimensionless system parameter
λ on the horizontal axis. The plots are for the Ising (γ = 1), γ = 0.8,
and γ = 0.2 models. The derivatives of the GGM diverge at the
quantum critical point λ = 1. The cluster of three upper curves are
for the GGM, while the lower ones are for their derivatives. For the
purpose of the figure, we have used the eigenvalues corresponding to
the single, two-, and three-site density matrices of the ground state.

and control such models in the laboratory [3]. The Hamiltonian
of this model, with N lattice sites on a chain, can be written as

H1D = J1

N∑
i=1

	σi · 	σi+1 + J2

N∑
i=1

	σi · 	σi+2, (4)

where J1 and J2 are both positive. In the parameter space,
α ≡ J2/J1 = 0.5 is known as the Majumdar-Ghosh point, and
the system is highly frustrated there. For an even number of
sites, the ground state at the Majumdar-Ghosh point is doubly
degenerate, and the ground-state manifold is spanned by the
two dimers |ψ±

MG〉 = 	
N/2
i=1 (|0〉2i |1〉2i±1 − |1〉2i |0〉2i±1). Note

that the model is gapped at this point [26]. For α = 0, the
Hamiltonian reduces to the spin- 1

2 Heisenberg antiferromagnet
and, hence, the ground state, which is a spin fluid state having
gapless excitations [44], can be studied by Bethe ansatz [45].
At other points, the ground state and the energy gap of this
model were considered by using exact diagonalization, the
density matrix renormalization group method, bosonization
technique, etc. [29]. It is known that at α ≈ 0.2411, a phase
transition from fluid to dimerization occurs [46]. In the weakly
frustrated regime, 0 < α � 0.24, the system is gapless, and
therefore critical [26,27]. The system enters a dimerized
regime, and is gapped, for higher values of the coupling
parameter.

We perform exact diagonalization of the Hamiltonian using
TITPACK (version 2) developed by Nishimori [47] to find the
ground state and then compute the GGM. In Fig. 2, the GGM
is almost constant with respect to the driving parameter in
the region when the system is gapless. It begins to increase
with respect to the driving parameter near the phase transition
point. However, due to the small system size that is accessible
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FIG. 2. (Color online) GGM for the 1D frustrated J1–J2 model.
The GGM (dimensionless) is plotted on the vertical axis and system
parameter α (dimensionless) is plotted along the horizontal axis. Note
that the GGM starts to increase from its almost constant value of ∼0.3
in the gapless region, around α ≈ 0.3. We take a closer look at the
figure in Sec. IV.

to study, it is difficult to locate the exact QPT point from the
figure. Our investigation nevertheless reveals the behavior of
multisite entanglement in the relevant parameter space of the
finite-size 1D frustrated J1–J2 model.

The discontinuities in the GGM curves are arguably due to
the finite and small system sizes. Note that the amounts of the
discontinuities in Fig. 2 decrease with increase in the system
size from N = 12 to N = 20 and it is plausible that they will
disappear for larger systems. These discontinuities appear at
avoided level crossings of the two lowest eigenvalues of the
system Hamiltonian. Note that the behavior of entanglement
entropy is also similar for this model (see Fig. 7 of Ref. [28]).
Also, note that the GGM curves asymptotically go to zero for
very high values of the driving parameter α, as then the spin
chain decouples into two spin chains with nearest-neighbor
interaction couplings, J2.

C. 2D frustrated J1– J2 model

We now consider an arrangement of quantum spin- 1
2

particles on a 2D square lattice, where nearest-neighbor spins
(both vertical and horizontal) on the lattice are coupled by
Heisenberg interactions, with coupling strengths J1, and where
all diagonal spins are coupled by the same interactions, with
coupling strengths J2. Both J1 and J2 are considered to
be positive. The model has attracted a lot of attention [48]
due to its connection with high-Tc superconductors and its
similarity with magnetic materials such as Li2VOSiO4 and
Li2VOGeO4 [49]. Although the different phases of the ground
state of this model have been predicted by different numerical
as well as approximate analytical methods [50], some debate
remains. The Hamiltonian of the system is given by

H2D = J1

∑
〈NN〉

	σi · 	σj + J2

∑
〈diagonals〉

	σi · 	σj , (5)

where J1 and J2 are antiferromagnetic.
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FIG. 3. (Color online) GGM for the 2D frustrated J1–J2 model.
The GGM (vertical) is plotted against the system parameter α

(horizontal). Both of the quantities are dimensionless.

In the classical limit, only a first-order phase transition
from Néel to collinear at α ≡ J2/J1 = 0.5 is exhibited by
this model. The nature of the phase diagram changes when
quantum fluctuations are present and, in this case, the exact
phase boundaries are not known. Based on exact diagonal-
ization, series-expansion methods, field-theory methods [50],
etc., one expects that there are two long-range ordered (LRO)
ground-state phases in the system, which are separated by
quantum paramagnetic phases without LRO. These investiga-
tions predict that the first transition from Néel to dimer occurs
at α = αc

1 ∈ (0.3,0.45), while the dimer to collinear transition
happens at α = αc

2 ∈ (0.6,0.7). There are proposals to detect
these phases in the laboratory and they demand a precise quan-
tification of the low-temperature phase diagram of this model.

We investigate the behavior of genuine multipartite en-
tanglement of the ground state and study its effectiveness
to detect the transitions present in the system. To obtain the
ground states, we use the exact diagonalization technique, as
mentioned in the preceding section. In Fig. 3, we plot the GGM
as a function of the driving parameter α. The nonanalyticity
of the GGM with respect to the driving parameter α indicates
that a Néel (gapless) to dimer (gapped) transition occurs at α ≈
0.27 for N = 16 and α ≈ 0.25 for N = 24, while the dimer
to collinear transition point is in the range α ∈ (0.61,0.62) for
N = 16 and α ≈ 0.81 for N = 24. In the case of the second
transition, the N = 24 case predicts a transition at a point that
is somewhat away from previous predictions. We believe that
this is due to the fact that 24 is not a perfect square. The
results indicate that the second transition is more sensitive to
the lattice structure for such small systems. Just like in the 1D
case, the GGM curves asymptotically go to zero for high α.
This is because the spin lattice decouples into two spin lattices
with nearest-neighbor interaction couplings, J2, for very high
values of the driving parameter α.

D. The Shastry-Sutherland model

In this section, we study the entanglement properties of sys-
tems where the interaction between particles can be modeled

FIG. 4. The Shastry-Sutherland lattice. The solid lines represent
the nearest-neighbor interactions with coupling strength J1 between
the lattice sites and the ones joined by the dashed lines represent
next-nearest-neighbor interactions with coupling strength J2.

by the Shastry-Sutherland Hamiltonian [30]. In the insulators
such as Sr Cu2(BO3)2, the low-energy spin excitations reside
on the spin-half copper ions which lie in two-dimensional
layers decoupled from each other. The antiferromagnetic
exchange couplings between the Cu ions are identical to the
Shastry-Sutherland Hamiltonian. The lattice with schematic
interactions, for this model, is given in Fig. 4 and the
Hamiltonian is given by

HSS = J1

∑
NN

	σi · 	σj + J2

∑
NNN

	σi · 	σj . (6)

Here, J1 (>0) corresponds to the nearest-neighbor interaction
(indicated by solid lines in Fig. 4) and J2 (> 0) corresponds to
the specific next-nearest neighbors (indicated by broken lines
in Fig. 4). It is known that a simple product of singlet pairs, on
the diagonal links, is the ground state of HSS for sufficiently
large α ≡ J2/J1. It has been previously reported [51,52] that
the system undergoes two quantum phase transitions driven by
the quantum fluctuations: one is from Néel to an intermediate
phase and the other one is from that intermediate phase to
dimer. The nature of the intermediate phase is not yet clearly
understood [53].

In Fig. 5, we plot the GGM as a function of α for
16 particles on a square lattice interacting via the Shastry-
Sutherland Hamiltonian. There are clear signatures of these
phase transitions in the figure at α ≈ 1.05 and for α ≈ 1.53, as
have been predicted by other methods [51,52]. For very high
J2, the system consists of isolated dimers and the multisite
entanglement vanishes. In Fig. 5, we find that the GGM
becomes zero at α � 1.53. The GGM curve is nonanalytic
at the phase transition points in this model as well. Due to the
computational constraints, we are able to report our finding
only for N = 16. More specifically, we expect that studying the
Shastry-Sutherland model requires an exact square structure
with even numbers of spins on each side, and hence the next
relevant lattice size is N = 36.
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FIG. 5. (Color online) GGM for the Shastry-Sutherland antifer-
romagnet. GGM (on vertical axis) is plotted with respect to the system
parameter α (on horizontal axis) for 16 spins. Both of the quantities
are dimensionless.

IV. COMPARISON OF GGM WITH BIPARTITE
QUANTUM MEASURES

Let us now compare the efficiency to detect the critical
points by the genuine-multipartite-entanglement measure,
GGM, with those by bipartite quantum characteristics in
shared states of quantum spin models. We focus on the N = 16
case in all of the nonintegrable models considered in this paper.
We calculate the concurrence [54], logarithmic negativity [55],
quantum discord [11], and the shared purity [56] for the
nearest-neighbor density matrices in these models.

The bipartite quantum correlation measures can be broadly
classified into two classes: (i) the entanglement-separability
paradigm and (ii) the information-theoretic paradigm. The
concurrence and logarithmic negativity are measures of bipar-
tite entanglement belonging to the entanglement-separability
paradigm of quantum correlation measures, while quantum
discord, which quantifies bipartite quantum correlation, be-
longs to the information-theoretic paradigm. The shared purity
is a quantum characteristic of shared multipartite quantum
systems which is different from quantum correlations. We
briefly discuss the measures below.

Concurrence. For any two-qubit state, ρAB , the concur-
rence [54] is given by C(ρAB) = max{0,λ1 − λ2 − λ3 − λ4},
where the λi’s are the square roots of the eigenvalues of
ρABρ̃AB in decreasing order and ρ̃AB = (σy ⊗ σy)ρ∗

AB(σy ⊗
σy), with σy being the Pauli spin matrix.

Logarithmic negativity. The negativity of a bipartite quan-
tum state ρAB , denoted by N (ρAB), is defined as the sum
of the negative eigenvalues of ρ

TA(TB )
AB , where ρ

TA(TB )
AB denotes

the partial transpose of ρAB with respect to A(B). Then the
logarithmic negativity [55] of ρAB is defined as

EN (ρAB) = log2[2N (ρAB) + 1]. (7)

The positivity of logarithmic negativity guarantees that the
state is entangled.

Quantum discord. Quantum discord [11] for a bipartite state
ρAB is defined as the difference between the total correlation

and the classical correlation of the state. The total correlation,
defined as the quantum mutual information of ρAB , is given by

I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (8)

where S(σ ) = −tr(σ log2 σ ) is the von Neumann entropy of
the quantum state σ . The classical correlation, based on the
conditional entropy, is defined as

←−J (ρAB) = S(ρA) − S(ρA|B). (9)

Here,

S(ρA|B) = min
{Bi }

∑
i

piS(ρA|i) (10)

is the conditional entropy of ρAB , conditioned on a measure-
ment performed by B with rank-one projection-valued opera-
tors {Bi}, producing the states ρA|i = 1

pi
trB[(IA ⊗ Bi)ρ(IA ⊗

Bi)], with probability pi = trAB[(IA ⊗ Bi)ρ(IA ⊗ Bi)]. I is
the identity operator on the Hilbert space of A. Hence the
discord can be calculated as [11]

←−D (ρAB) = I(ρAB) − ←−J (ρAB). (11)

Here, the superscript “←−” on J (ρAB) and D(ρAB) indicates
that the measurement is performed on the subsystem B of
the state ρAB . Similarly, if measurement is performed on the
subsystem A of the state ρAB , one can define a quantum discord
as

−→D (ρAB) = I(ρAB) − −→J (ρAB). (12)

In our case,
←−D (ρAB) = −→D (ρAB), which is a consequence of

the periodic boundary condition used for our analysis.
Shared purity. Shared purity [56] is the difference between

the “global” and “local” fidelities of an arbitrary (pure or
mixed) state ρ. The global fidelity is a measure of the minimum
distance of the state ρ from a globally pure state, while
the local fidelity is a measure of the minimum distance
of ρ from a locally pure state. The “global fidelity” of an
N -party arbitrary (pure or mixed) quantum state, ρ1,...,N , on
H = Cd1 ⊗ · · · ⊗ CdN , is defined as

FG = max
{|φ〉1,...,N ∈H} 1,...,N 〈φ|ρ1,...,N |φ〉1,...,N , (13)

where the maximization is performed over all elements (pure
states) ofH. And the “local fidelity” of the same state is defined
as

FL = max
{|φ〉1,...,N ∈S} 1,...,N 〈φ|ρ1,...,N |φ〉1,...,N , (14)

where the maximization is carried out over a certain set S of
pure product states. For bipartite systems, the set S consists
of all pure product states. The shared purity denoted by SP is
defined as

SP = FG − FL. (15)

Comparison. In Fig. 6, we compare the concurrence,
logarithmic negativity, quantum discord, and shared purity
with the GGM, calculated for the ground state of the 1D
J1–J2 Hamiltonian consisting of 16 spins, with respect to the
driving parameter α. The GGM is calculated for the 16-spin
ground state, while the other quantities are calculated for the
nearest-neighbor two-spin reduced density matrix of the same

032301-6



GENUINE-MULTIPARTITE-ENTANGLEMENT TRENDS IN . . . PHYSICAL REVIEW A 90, 032301 (2014)

 0.1

 0.2

 0.3

 0.4

 0  0.1  0.2  0.3  0.4  0.5

α

E
N

C
D
S

P

ε

FIG. 6. (Color online) Logarithmic negativity, concurrence,
quantum discord, shared purity, and GGM, with respect to the
driving parameter α, for the 1D J1–J2 Hamiltonian consisting of
16 spins. Note that all quantities begin to deviate from their α = 0
values above α � 0.25. The horizontal axis is dimensionless. For the
vertical axis, logarithmic negativity and concurrence are measured
in ebits, quantum discord in bits, while shared purity and GGM are
dimensionless. We have denoted the quantum discord as D here,
underlining the symmetric nature of the two-spin state.

16-spin state. The system remains in the gapless phase for
α � 0.24. It can be seen from the figure that all of the quantities
begin to deviate from their α = 0 values when α � 0.25. Note
that the α = 0 case corresponds to the isotropic Heisenberg
nearest-neighbor antiferromagnetic chain. Although there is
no definite signature of a QPT from any of the quantum
measures, the critical point can be estimated to lie at α ≈ 0.25
by comparing with the α = 0 case. Note that entanglement
entropy was also used to estimate the quantum critical point
by exact diagonalization in Ref. [28]. The quantity plotted
there begins to deviate from its value at α = 0 when α � 0.25.
Here too, there is no clear signal at the QPT. However, the
critical point was estimated to be at α ≈ 0.25. In Ref. [57], a
multipartite-entanglement measure, the global entanglement,
was used to study the 1D J1–J2 Hamiltonian. There was no
clear signature of the QPT there either. It should be added,
however, that the studies, despite not pinning down the QPT
in the 1D J1–J2 model, do serve the important purpose of
studying quantum correlation properties around this elusive
QPT.

In Fig. 7, we plot the concurrence, logarithmic negativity,
quantum discord, and shared purity, along with GGM, calcu-
lated for the ground state of the 16-spin 2D J1–J2 Hamiltonian,
with respect to the driving parameter α. Again we compare the
GGM with the bipartite measures. The GGM clearly signals
both of the QPTs present in this model by virtue of the
discontinuity of the derivative of the GGM with respect to
α at the quantum critical points. The bipartite entanglement
measures, viz., concurrence and logarithmic negativity, signal
the second QPT at around α ≈ 0.58, where these quantities
vanish. Quantum discord and shared purity also signal the
second critical point at α ≈ 0.6, where the derivatives of
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FIG. 7. (Color online) Logarithmic negativity, concurrence,
quantum discord, shared purity, and GGM, with respect to the
driving parameter α, for the N = 16 2D J1–J2 Hamiltonian. A
magnified portion of the GGM curve signaling a QPT is plotted in
the inset. The horizontal axis is dimensionless. All other dimensions
and notations are as in Fig. 6.

these quantities with respect to α are minimum. The bipartite
measures do not conclusively detect the first quantum critical
point. However, all of these bipartite measures begin to deviate
from their values at α = 0, when α � 0.3. It is clear that
the multiparty measure is more efficient in this case than the
bipartite measures in identifying quantum critical points.

In Fig. 8, we again plot the same bipartite measures and
compare with the GGM, calculated for the ground state
of the 16-spin Shastry-Sutherland Hamiltonian, with respect
to the driving parameter α. The derivative of the GGM is
discontinuous at both the quantum critical points, while the
bipartite measures can only signal the second quantum critical
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FIG. 8. (Color online) Logarithmic negativity, concurrence,
quantum discord, shared purity, and GGM, with respect to
the driving parameter α, for the N = 16 Shastry-Sutherland
Hamiltonian. A magnified portion of the GGM curve signaling a
QPT is plotted in the inset. The horizontal axis is dimensionless. All
other dimensions and notations are as in Fig. 6.
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point at α ≈ 1.5, above which they vanish. There is only a
slight indication of the first QPT at α ≈ 1 above which the
bipartite measures begin to deviate from their values at α = 0.
We therefore again find that the multiparty-entanglement
measure is a better detector of quantum phase transitions than
the bipartite measures.

V. CONCLUSIONS

An important classification scheme for multipartite-
entangled quantum states is according to their separability
in different partitions. The complexity of such a classification
makes it difficult to obtain a unique multiparty-entanglement
measure, even for pure quantum states. A comparison with
the situation for mixed bipartite states is relevant here. While
the entanglement of pure bipartite states can be uniquely
characterized by a single entanglement measure, a variety
of different measures exist for mixed bipartite states. In the
case of multiparty quantum states, one can analogously have
“pure” and “nonpure” forms of entanglement, corresponding,
respectively, to genuine multiparty entanglement and ones that
are not genuine. In this sense, the generalized geometric mea-
sure, which is a measure of genuine multiparty entanglement,
quantifies the pure form of multiparty entanglement that is
present in a multiparty quantum state.

We employed this measure to predict phase diagrams
in quantum many-body systems. We began by using the
measure to detect the quantum-fluctuation-driven phase tran-
sition in an exactly solvable model, viz., the quantum XY

model. We subsequently applied the generalized geometric
measure to prototype frustrated quantum spin models, in
the one-dimensional antiferromagnetic J1–J2 model, the two-
dimensional antiferromagnetic J1–J2 model, and the Shastry-
Sutherland model. The ground states and the corresponding
phase diagrams, for the frustrated models, are not known
exactly, although there have been several predictions by
different methods. We use exact diagonalization techniques
to investigate the multipartite entanglement of the ground
states of the frustrated models. The GGM is nonanalytic or
its derivative is divergent at the quantum phase transition
points in all of the models except the one-dimensional J1–J2

model. For the one-dimensional J1–J2 model, the fluid-dimer
transition there is accompanied by a steep increase in the GGM.
We have compared and contrasted the GGM with a number
of bipartite measures of quantum correlation. The GGM
appears to have an advantage in detecting the quantum critical
points, particularly in the 2D frustrated quantum many-body
systems.
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[24] M. Rasolt and Z. Tesanović, Rev. Mod. Phys. 64, 709 (1992);
M. Sigrist and T. M. Rice, ibid. 67, 503 (1995).

[25] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961);
E. Barouch, B. M. McCoy, and M. Dresden, Phys. Rev. A 2, 1075
(1970); E. Barouch and B. M. McCoy, ibid. 3, 786 (1971); B. K.
Chakrabarti, A. Dutta, and P. Sen, Quantum Ising Phases and
Transitions in Transverse Ising Models (Springer, Heidelberg,
1996).

[26] C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1388
(1969); ,10, 1399 (1969).

[27] S. R. White and I. Affleck, Phys. Rev. B 54, 9862 (1996); S.-J.
Gu, H. Li, Y.-Q. Li, and H.-Q. Lin, Phys. Rev. A 70, 052302
(2004).

[28] R. W. Chhajlany, P. Tomczak, A. Wójcik, and J. Richter, Phys.
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