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Quantum traversal time through a double barrier
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The generalized Hartmann effect (GHE) predicts a strict inequality between the traversal times across a
contiguous and a separated double-barrier system. This is compared to the implications of the time-of-arrival
(TOA) operator approach to barrier traversal time [E. A. Galapon, Phys. Rev. Lett. 108, 170402 (2012)]. It is
shown that, for initial wave packets with compact supports in the far incident side of the barrier system, the
expectation value of the traversal time is independent of the separation between the barriers. On the other hand,
for wave packets with supports extending inside the first barrier, the contribution of the barrier separation to the
traversal time exponentially increases with the barrier height. Our result shows that if the support of the incident
wave packet is far from the barrier region, the GHE inequality is violated. However, if the support of the wave
packet extends inside the barrier region, the GHE inequality is consistent with the TOA operator approach, but
only when the particle’s incident energy is very small.
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I. INTRODUCTION

The problem of predicting the duration of a quantum
particle to tunnel through and emerge from a potential barrier
is known as the quantum tunneling time problem [1–4]. The
problem remains one of the most contentious and unresolved
fundamental problems of quantum mechanics [5–12]. While
there are diverse approaches and contradicting opinions on
the tunneling time, there is a consensus that tunneling time
is the phase time itself, which is the energy derivative of
the phase of the transmitted wave packet through the barrier
[13,14]. Consideration of the phase time predicts the pres-
ence of superluminal or greater-than-the-speed-of-light tun-
neling velocities. This superluminality arises from the linear
asymptotic behavior of the phase time with the barrier length.
This implies that tunneling time becomes independent of the
barrier length as the barrier becomes spatially opaque, so that
a tunneling particle is superluminal for a sufficiently thick
barrier. This phenomenon is the well known Hartman effect.

The analysis of Hartman has been applied to multiple bar-
riers separated by free space [15–17]. It has been determined
that the traversal time across the barrier and the intervening
free space is not only independent of the barrier widths but
also independent of the barrier separation. That is, while
current is finite and the wave function is oscillatory in the
interbarrier separation, the group velocities there are infinite.
The phenomenon is referred to as the generalized Hartman
effect (GHE) [15]. However, recent analyses of the stationary
phase method (SPM) used in the derivation of the GHE
[18,19] have shown that the GHE holds only for wave packets
with sufficiently small energy widths [20] or equivalently
for sufficiently small interbarrier separations [21]. These
imply that for wave packets with sufficiently broad energy
distributions or for sufficiently well-separated barriers the
GHE disappears. Moreover, a more rigorous use of SPM yields
a subtle dependence of the phase time on the the barrier width
[22]. However, there are claimed strong theoretical [23,24] and

*eagalapon@up.edu.ph

experimental [25] confirmations of the generalized Hartman
effect; but there are equally strong theoretical arguments that
deny the correctness of the interpretation of the experiments
purportedly supporting the GHE [26,27].

In this paper we investigate quantum traversal time across
two potential barriers using the theory of quantum first time of
arrival operators developed in [28–31] and compare its results
with the predictions of the GHE. In [32] the theory was applied
to quantum traversal time across a single potential barrier.
There it was found that only the above-barrier components
of the momentum distribution of the incident wave packet
contribute to any measurable barrier traversal time, and that
below-the-barrier components are transmitted without delay.
In simple terms, the theory predicts that tunneling occurs
instantaneously. This is consistent with the recent experiments
on quantum tunneling which yielded vanishing tunneling time
within experimental accuracy [33,34]. The TOA operator
approach to quantum tunneling already does not jibe with the
Hartmann effect in which the tunneling time is nonvanishing
and finite, albeit the tunneling is superluminal according to
the effect for sufficiently opaque barriers. In this paper we
apply the TOA operator approach to quantum traversal across
two barriers. For incident wave packets with support away
from the barriers, we find that instantaneous tunneling occurs
only across the barriers, with the quantum particle essentially
behaving as a free particle in the interbarrier region. On the
other hand, for wave packets with support extending inside the
barrier, the traversal time can be exponentially large. We will
find these results not consistent with the expectations from the
GHE.

II. BARRIER TRAVERSAL TIME

Before we proceed we recall from [32] the operational
definition of the barrier traversal time that is theoretically
described through TOA operators: A detector DT to announce
the arrival of a particle is located at the origin. A similar
detector DR is located at the far left of DT . A potential barrier
V (q) with length L is placed between DT and DR . A localized
wave packet ψ(q) is prepared between DR and V (q) and
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launched at t = 0 towards the barrier. The TOA is recorded
when DT clicks; otherwise, no data are collected when DR

clicks. This is repeated a large number of times, with ψ(q) as
the initial state for every repeat and the average TOA τ̄B at
DT is computed. The same experiment is performed without
the barrier, and the average free time of arrival τ̄F at DT is
computed from the new TOA data. The quantities τ̄F and τ̄B

are then compared. (What we have just described coincides
with the operational definition of the tunneling delay time
by Steinberg, Kwiat, and Chiao in their well-known photonic
tunneling experiment [35] except that they measured −�τ .)

The comparison between τ̄F and τ̄B is made by means of
the difference of the expected TOAs given by

�τ = τ̄F − τ̄B . (1)

When �τ > 0 the particle that passed through the barrier
arrived earlier than the free particle or is advanced otherwise,
it arrived later or is delayed. �τ is not the traversal time
across the barrier, but the traversal time can be deduced from
it. If δτf is the expected traversal time across the length
of the barrier for a free particle, then the barrier traversal
time is given by �τtrav = δtf − �τ . Note that �τtrav is not
necessarily the tunneling time �τtun because the wave packet
ψ(q) may have an incident kinetic energy distribution that
has components both above and below the maximum barrier
height. Only the incident kinetic energy component that is
below the barrier height contributes to the tunneling time
�τtun. The traversal time approaches the tunneling time as the
above-barrier incident energy components become arbitrarily
negligible. We assume that this condition is satisfied so that
the traversal time is the tunneling time.

III. GENERALIZED HARTMAN EFFECT

Now let us see how the generalized Hartman effect may
manifest itself in the above operational definition of the
barrier traversal time as applied to the system of two barriers
depicted in Fig. 1. The key assumption of the GHE is that the
phase time, as calculated by the application of the stationary

FIG. 1. The total traversal time for a quantum particle to reach
the arrival point for the contiguous τ̄CB and the separated τ̄SB barrier
system. The GHE claims that the tunneling time from the leftmost
to the rightmost edges of the barrier region for the contiguous and
separated cases are the same, i.e., τS = τC .

phase method on a localized wave packet, is the traversal
time or tunneling time across the barrier system [15,16]. Of
course, not everyone agrees with this interpretation of the
phase time [1,11], but let us assume for the moment that
the phase time is the traversal time and let us see where it
leads us. The GHE predicts that the traversal time across
a system of two barriers is asymptotically independent of
the total width of the barriers plus the separation between
them as the barrier’s width becomes arbitrarily large. This
implies that there is a difference between the configurations
when the two barriers are contiguous and when they are
separated.

To demonstrate this, consider the illustration in Fig. 1
where we measure the time for a quantum particle to arrive
at the detector’s location as it encounters the barrier system.
Let τ̄CB and τ̄SB be the respective expected arrival times for
the contiguous and separated barriers, which are ensemble
averages in accordance with the previous paragraph. Moreover,
let τC and τS be the respective traversal times (the phase times)
across the barrier system when the barriers are contiguous
and separated. In the asymptotic regime where the widths of
the barriers become arbitrarily large, the GHE implies the
equality τC = τS . Then it follows that τ̄SB < τ̄CB since the free
region outside the barrier system for the separated case is
now smaller than that of the contiguous case. Let τ̄F be
the expected TOA at the detector in the absence of the two
barriers, and �τC = τ̄F − τ̄CB > 0 and �τS = τ̄F − τ̄SB >

0, with the positivity of the TOA difference due to the
superluminality of the GHE. Then GHE predicts the strict
inequality

0 < �τC < �τS. (2)

The above experimental setup involving a system of two
barriers falls within the purview of the TOA operator approach
to the barrier traversal time. The approach gives definite
predictions on the quantities �τC and �τS , and questions arise
whether its predictions square with inequality (2) or not. We
now devote the rest of the paper in showing that the TOA
operator approach predicts a set of relations between �τC and
�τS that generally exclude inequality (2).

IV. TIME-OF-ARRIVAL OPERATOR

The theory of TOA operators as developed in [28–32,36–
40] requires constructing the TOA operator T for a given
arrival point in the configuration space, for a given interaction
potential. It postulates to model the situation where at time
t = 0 a wave packet ψ(q) is launched in the presence of
a potential V (q) toward a detector located at x. Then the
average time elapsed between the launching of the wave packet
and a successful registration of the particle at the detector
is given by the expectation value 〈ψ |T|ψ〉, where T is the
TOA operator corresponding to V (q). Now let TB be the TOA
operator in the presence of the barrier system and TF the
TOA operator in the absence of the barrier. We then make the
identifications τ̄B = 〈ψ |TB |ψ〉 and τ̄F = 〈ψ |TF |ψ〉. The time
of arrival difference is given by

�τ = 〈ψ |TF |ψ〉 − 〈ψ |TB |ψ〉. (3)
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FIG. 2. The double barrier with potential height of V1 and V2 and
width of w1 and w2, respectively. The barriers are separated by a
distance of s2, with s1 being the distance of the rightmost barrier edge
to the arrival point at η = 0. The different regions of integration are
labeled using Roman numerals.

Equation (3) is postulated to be the theoretical value of
Eq. (1) [32]. The TOA differences �τC and �τS can then
be computed from Eq. (3) with the appropriate TOA operators
corresponding to the separated and contiguous configurations
of the two barriers.

Given an analytic or piecewise constant potential V (q), a
TOA operator can be constructed by quantization. Without
loss of generality we will fix the arrival point at the origin. The
quantized TOA operator for arrival at the origin is the integral
operator

(T0ϕ)(q) =
∫ ∞

−∞

μ

i�
T0(q,q ′)sgn(q − q ′)ϕ(q ′)dq ′, (4)

where sgn(x) is the sign function and T0(q,q ′) = T̃0(η,ζ ), with

T̃0(η,ζ ) = 1

2

∫ η

0
dη′

0F1

(
; 1;

μ

2�2
ζ 2{V (η) − V (η′)}

)
(5)

in which 0F1(; 1; x) is a specific hypergeometric function, and
ζ = (q − q ′) and η = (q + q ′)/2. From Eq. (5) we obtain the
free particle TOA operator TF by substituting V (q) = 0 and
using the value 0F1(; 1; 0) = 1. We obtain T̃F (η,ζ ) = η/2 or

TF (q,q ′) = 1
4 (q + q ′). (6)

The substitution of Eq. (6) back into Eq. (4) gives the free
TOA operator.

We now construct the TOA operator TB across the double
potential barrier depicted in Fig. 2. By inspection, the potential
V (q) in configuration space is mapped into the same potential
in the η coordinate, i.e., a system of barriers with the same
potential heights and supports. To obtain T̃0(η,ζ ), we divide
the η coordinate into five nonoverlapping regions demarcated
by the edges of the barriers. The kernel T̃0(η,ζ ) will then have
five pieces corresponding to the five regions where η may fall.
Use is made of the following identity 0F1(; ,1,x) = I0(2

√
x)

for x > 0 and 0F1(; ,1,x) = J0(2
√|x|) for x < 0, where I0(x)

and J0(x) are Bessel functions.
The five pieces corresponding to the five regions are given

by

T̃I (η,ζ ) = η

2
,

T̃II (η,ζ ) = η

2
− s1

2
[I0(κ1|ζ |) − 1],

T̃III (η,ζ ) = η

2
− w1

2
[J0(κ1|ζ |) − 1],

T̃IV (η,ζ ) = η

2
− (s1 + s2)

2
[I0(κ2|ζ |) − 1)]

− w1

2

[
0F1

(
; 1; κ2

21ζ
2/4

) − 1
]
,

T̃V (η,ζ ) = η

2
− w1

2
[J0(κ1|ζ |) − 1]

− w2

2
[J0(κ2|ζ |) − 1] ,

where κn = √
2μVn/� for n = 1,2, and κ2

21 = 2μ(V2 −
V1)/�

2. Notice that T̃IV has two possible behaviors de-
pending on the arrangement of the two barriers or on the
sign of (V2 − V1). The pieces can be written in the form
T̃r (η,ζ ) = η/2 − Fr (ζ ); we have in particular, FI (ζ ) = 0.
Taking all the regions simultaneously, we write T̃ (η,ζ ) =
η/2 − F (η,ζ ) such that F (η,ζ ) = Fr (ζ ) whenever η is in
region r .

We now show that the classical limit of the TOA operator TB

is the classical TOA at the origin when the classical TOA is de-
fined. The limit is obtained by taking the inverse Weyl-Wigner
transform of the kernel 〈q|T0|q ′〉 = (μ/i�)T0(q,q ′)sgn(q −
q ′). It is given by t0 = ∫ ∞

−∞〈q0 + v
2 |T0|q0 − v

2 〉e−ip0v/�dv,
where q0 and p0 are now the respective classical position and
momentum at t = 0. Explicitly the classical limit assumes the
form

t0(q0,p0) = μ

i�

∫ ∞

−∞
T̃0(q0,ζ )sgn(ζ ) e−ip0ζ/�dζ, (7)

where the integral should be understood in the distributional
sense.

The classical limit will depend on where the initial position
q0 lies in the five possible regions. The classical limit for
an initial position q0 in region r is obtained from Eq. (7).
Explicitly it is given by

tr (q0,p0) = μ

i�

∫ ∞

−∞
T̃r (q0,ζ )sgn(ζ )e−ip0ζ/�dζ. (8)

Integrals involving the Bessel functions are obtained by
expanding them in their series representations and then
performing a term by term integration using the integral
identity∫ ∞

−∞
vm−1sgn(v)e−ixvdv = 2(m − 1)!

imxm
, m = 1,2, . . . (9)

(the inverse Fourier transform of [41, p. 360, no. 18]) to obtain
the classical limit. The resulting series is summed by analytic
extension.

Performing the required operations, the classical limit
corresponding to the five possible locations of q0 is

tI (q0,p0) = − μ

p0
q0,

tII (q0,p0) = − μ

p0
(q0 + s1) + μ√

p2
0 + 2μV1

s1,

tIII (q0,p0) = − μ

p0
(q0 + w1) + μ√

p2
0 − 2μV1

s1,
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tIV (q0,p0) = − μ

p0
(q0 + s1 + s2 + w1)

+ μ√
p2

0 + 2μV2

(s1 + s2) + μ√
p2

0 ± 2μ�V

w1,

tV (q0,p0) = − μ

p0
(q0 + w1 + w2) + μ√

p2
0 − 2μV1

w1

+ μ√
p2

0 − 2μV2

w2,

where �V = |V2 − V1| and the sign in
√

p2
0 ± 2μ�V takes

the sign of (V2 − V1).
Clearly tI is just the free classical TOA across a free region

in s1. On the other hand, the first term of tII is the traversal time
on top of the first barrier and the second term is the traversal
time across the free segment s1, so that tII is the TOA at the
origin. For tIII the first term is the traversal time in the free
region before and after the barrier whose length is (q0 + w1),
on the other hand, the second term is the traversal time on top
of the entire length of the first barrier. For tIV the first term
is the traversal time on top of the second barrier, the second
term is the traversal time for the free regions s1 and s2, and the
third term is the traversal time across the first barrier. For tV
the first term is the traversal time across the free region, the
second term the traversal time across the first barrier, and the
third term is the traversal time across the second barrier. Hence
the traversal time operator has the correct classical limit.

V. TWO-BARRIER TRAVERSAL TIME CALCULATIONS

Now let the incident wave packet be ψ(q) = ϕ(q)eik0q with
a momentum expectation value of �k0 and ϕ(q) satisfying∫ +∞
−∞ dqϕ(q)ϕ′(q) = 0. The condition on ϕ(q) is necessary

to have the desired momentum expectation value �k0. The
expectation value of the TOA operator for this given incident
wave packet is given by

〈ψ |T |ψ〉 =
∫ +∞

−∞

∫ +∞

−∞
dq ′dqψ̄(q)ψ(q ′)

μ

i�

× T0(q,q ′)sgn(q − q ′). (10)

Changing the variables from (q,q ′) to (η,ζ ), one can show that
〈ψ |T |ψ〉 = Im(τ ∗) where τ ∗ is the complex-expected TOA
given by

τ ∗ = −2μ

�

∫ ∞

0
dζ

∫ +∞

−∞
dηϕ̄

(
η − ζ

2

)
ϕ

(
η + ζ

2

)

× T̃0(η,ζ )eik0ζ . (11)

Given that the free and the two-barrier kernels are given by
T̃F (η,ζ ) = η/2 and T̃B(η,ζ ) = η/2 − F (η,ζ ), we obtain the
complex TOA difference

�τ ∗ = −2μ

�

∫ ∞

0
dζ

∫ +∞

−∞
dηϕ̄

(
η − ζ

2

)

×ϕ

(
η + ζ

2

)
F (η,ζ )eik0ζ . (12)

The measurable TOA difference is given by �τ =
Im(�τ ∗).

A. Vanishing support inside the barrier region

We now consider the case when the support of ϕ(q) lies
entirely to the left of the barrier system, which is the typical
situation for a tunneling particle. Under this condition, only re-
gion V will contribute in the expectation value. We let 
(ζ ) =∫ +∞
−∞ dηϕ̄(η − ζ/2)ϕ(η + ζ/2) and 
r (ζ ) = ∫

r
dηϕ̄(η −

ζ/2)ϕ(η + ζ/2), where the integration is performed only
in region r . Performing the η integration in Eq. (12) gives

V (ζ )FV (ζ ). We can extend the integration to +∞ since the
integrand will just vanish beyond region V . Thus,

�τ ∗
V =

2∑
n=1

wn

v0
k0

∫ +∞

0
dζeik0ζ
(ζ )[1 − J0(κnζ )] (13)

where v0 = �k0/μ is the initial velocity of the incident wave
packet, and the subscript V is to emphasize that the support of
the incident wave packet is entirely in region V . Notice that
the obtained complex traversal time difference in Eq. (13) has
no dependence on the barrier spacing s2 nor on the distance of
the barrier system to the arrival point s1. We can attribute this
to the cancellation of the s2 term in the interbarrier traversal
time with that of the free TOA, this implies that the quantum
particle is behaving as a free particle in this region. Only the
barrier widths w1 and w2 and their respective potential heights
affect the traversal time. This implies that the contiguous and
separated barrier system will give the same TOA difference,
that is, �τC = �τS , so that GHE is not observed in this
particular configuration.

Let us consider the physical content of Eq. (13). Similar to
the single barrier case with L = w1 + w2, we can write

�τ ∗
V = (L/v0)Q∗ −

2∑
n=1

(wn/v0)R∗
n, (14)

where Q∗ = k0
∫ +∞

0 eik0ζ
(ζ )dζ and R∗
n =

k0
∫ +∞

0 eik0ζ
(ζ )J0(κnζ )dζ . For arbitrarily large k0 or
for high incident energy k2

0�
2/2m, the first term of Eq. (14)

reduces to the free traversal time across a region with length
L. Also, if we let � → 0 we will get (wn/v0)ImR∗

n ∼ wn/vn

where vn is the velocity of the particle on top of the
barrier with width wn. It follows that in the classical limit
Rn = ImR∗

n ∼ v0/vn identifies Rn as the effective index of
refraction of the nth barrier with respect to the incident wave
packet and the quantity (wn/v0)Rn lends to the interpretation
as the quantum traversal time across the barrier. This is just
an extension of our results in [32] for the single barrier case.
Furthermore, if ψ̃(k) is the Fourier transform of the incident
wave packet ψ(q), then the index of refraction can be cast
into the form

Rn = k0

∫ +∞

κn

|ψ̃(k)|2√
k2 − k2

0

dk − k0

∫ +∞

κn

|ψ̃(−k)|2√
k2 − k2

0

dk. (15)

Equation (15) shows that only above-barrier energy compo-
nents contribute in any measurable traversal time in keeping
with the original result in [32]. If the distribution |ψ̂(k)|2 has
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a compact support in 0 < k < min{κ1,κ2}, then �τV > 0, that
is, the tunneling particle arrives earlier compared to the particle
traveling freely in space. This result is consistent with the
observation made by the authors of [35].

B. Nonvanishing support inside the barrier region

The equality of the contiguous and separated-barrier arrival
time difference is due to the absence of the separation param-
eter s2 in the relevant kernel T̃V (η,ζ ). To obtain a traversal
time with possible dependence on the separation distance
s2, the incident wave function should have a nonvanishing
component inside the barrier system. This can be done if
we assume that the support of the incident wave packet
extends inside the barrier (in region IV). Upon inspection
of the barrier system’s kernel it is clear that the expected
TOA acquires dependence on the barrier separation. The
piecewisely defined F (η,ζ ) compelled us to split the η

integration in Eq. (12) into five integrals. This means that
for the rth region we have 
r (ζ )Fr (ζ ). Our analysis can be
facilitated if we let our incident wave be a Gaussian packet,
i.e., ϕ(q) = (2πσ 2)−1/4e−(q−q0)2/(4σ 2) where σ 2 is its initial
position variance. This will give us 
(ζ ) = e−ζ 2/(8σ 2) and

r (ζ ) = pr
(ζ ) where

pr = (2πσ 2)−
1
2

∫
r

e−(η−q0)2/(2σ 2)dη, (16)

which we recognize as the probability of finding the particle
in region r at time t = 0.

To guarantee that only below-the-barrier energy compo-
nents contribute in the traversal time, we will let V1 = V2 = V

and take V to go arbitrarily large. In this regime, we have
0F1(; 1; κ2

21ζ
2/4) = 1 and the dependence of FIV (ζ ) on w1

vanishes. It follows that the kernel FIV (ζ ) ∝ [I0(κζ ) − 1] ∼
eκζ /

√
2πκζ where κ2 = 2μV/�

2. Under this condition, the
contribution from regions I, II, and III becomes negligible.
Upon neglecting the contributions of pI ,pII , and pIII , which
are also negligible in comparison to pIV and pV , the TOA
difference reduces to

�τ = pV · �τV + pIV · �τIV . (17)

For a large value of κ , we can write

�τIV ∼ (s1 + s2)
μ

κ�
e2σ 2(κ2−k2

0 )

×
[

sin(4σ 2k0κ) − k0

2κ
cos(4σ 2k0κ)

]
(18)

(the asymptotic approximation of �τIV is detailed in the
Appendix.)

Notice that the expression in Eq. (18) has a propensity
to change in sign, and for sufficiently large κ the sign of
�τIV will dominate the full �τ in Eq. (17). Whenever �τIV

vanishes, only the �τV term will contribute to the overall
time of arrival difference and our previous result will hold,
i.e., �τC = �τS . At this point, we just have to consider two
cases, i.e., when �τ is negative and when it is positive. The
case when �τ < 0 means that 〈ψ |TB |ψ〉 > 〈ψ |TF |ψ〉 or the
barrier causes some delay in the arrival time of the incident
particle. No superluminality is observed for this case, and by
setting s2 = 0 in Eq. (18) we will get the inequality �τS <

0.0 0.2 0.4 0.6 0.8 1.0

�2

0

2

4

6

x

lo
g
�R

H
S

or
L

H
S�
�1

0

FIG. 3. (Color online) Comparison of the Eq. (20) left-hand side
(solid line) and Eq. (20) right-hand side (dashed line). Only those
cases where �τ > 0 are shown in the scaled logarithmic plot.
The condition in Eq. (20) is satisfied whenever the dashed line is
above the solid line.

�τC < 0, which contradicts the prediction of GHE in Eq. (2).
On the other hand, the case �τ > 0 implies two possibilities,
that is, the particle arrived earlier upon encountering a barrier
system or the arrival time for the barrier case is negative. The
latter implies that the particle is already at the arrival point
prior to time t = 0 and is now moving away from it. We can
think of it as a particle being reflected away from the barrier
system and moving to the left as if it has already passed the
arrival point.

Whatever the negative arrival time means for the barrier
case, it will be meaningless to compare it to the free arrival
time, which, for our setup, is always positive. Let us look for the
condition such that 〈ψ |TB |ψ〉 > 0 or 0 < �τ < 〈ψ |TF |ψ〉 is
satisfied. This requires the calculation of the free arrival time
using Eq. (10). This was already obtained in [42]

〈ψ |TF |ψ〉 = |q0|μ
�

erfi(
√

2σk0)σe−2σ 2k2
0 . (19)

The comparison between Eqs. (18) and (19) can be simplified
by the following parametrization: let α = κ/k0 > 1, β =
|q0|/(s1 + s2) > 1, and x = √

2σk0. The condition that we
seek translates into[

sin(2αx2)

α
− cos(2αx2)

2α2

]
eα2x2

<
βx√

2
erfi(x). (20)

We plot simultaneously the left- and right-hand sides of
Eq. (20) in Fig. 3 using the following parameters: α = 10
and β = 25.

The condition above is satisfied whenever the solid line
graph is below the dashed line graph. This only happens in the
lowest interval where sin(2αx2) > 0, i.e., x ∈ (0,

√
π/(2α)),

and note that this region becomes smaller as α is increased.
For this small interval where 〈ψ |TB |ψ〉 > 0 holds, we obtain
an inequality that is consistent with GHE. However, the
assumption that κ is large requires a large value for α,
making the region where the inequality of the time differences
consistent with Eq. (2) very small. Outside this region the
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left-hand side (LHS) becomes greater than the right-hand side
(RHS) of Eq. (20), which will result into a negative barrier-case
arrival time. Thus, for the case when the support of the incident
wave packet extends inside the barrier region, the predicted
tunneling phenomenon of the GHE is satisfied only when
k0 < (π/4)(1/κσ 2) for some large finite κ . Otherwise, the
arrival time 〈ψ |TB |ψ〉 is negative and the particle will most
likely be reflected by the barrier.

VI. CONCLUSION

We have applied the TOA approach to the double-barrier
quantum traversal time problem. We find that, for incident (ini-
tial) wave packets with support outside the barrier system, the
expected arrival time is independent of the barrier separation
and that the particle in the interbarrier region is essentially free.
However, for wave packets with support extending inside the
leading barrier, the expected arrival time becomes dependent
on the barrier separation. The former case violates the GHE
strict inequality in Eq. (2) where the TOA difference of the
contiguous and of the separated barrier configurations are the
same. The GHE inequality is observed in the latter case only
when the initial momentum of the incident particle satisfies
k0 < (π/4)(1/κσ 2).
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APPENDIX

Let �τIV = (s1 + s2)(μ/�)I . The factor I is the integral

I =
∫ ∞

0
dζ sin(k0ζ )

e−ζ 2/(8σ 2)+κζ

√
2πκζ

. (A1)

Upon evaluating the integral I for large κ we will get the
asymptotic form of �τIV in Eq. (18). The asymptotic form of
I is outlined as follows. First, completing the squares of the
exponents will give a factor of e2σ 2κ2

. Then, changing variables
from ζ to u = ζ − 4σ 2κ will allow us to rewrite the integral
in the form

I =
∫ 4σ 2κ

0
[f (−u) + f (u)]e−u2/(8σ 2)du

+
∫ +∞

4σ 2κ

f (u)e−u2/(8σ 2)du, (A2)

where

f (u) = 1

2σκ
√

2π

sin(4σ 2k0κ + k0u)√
1 + u/4σ 2κ

.

As κ increases indefinitely, the last integral in Eq. (A2)
becomes negligible. This will give us

I ∝
∫ x

0
du

[
sin(k0x − k0u)

(1 − u/x)1/2 + sin(k0x + k0u)

(1 + u/x)1/2

]
e−yu2

,

(A3)
where we set x = 4σ 2κ and y = 1/(8σ 2). Since 0 < u < x in
the first integral, then we can use

(
1 ± u

x

)−1/2
∼ 1 ∓ 1

2

u

x
+ 3

8

(u

x

)2
∓ 5

16

(u

x

)3
+ · · · .

(A4)

Plug this expansion back to Eq. (A3) and group ac-
cording to powers of (u/x). Using the identity sin(a +
b) = sin(a) cos(b) + cos(a) sin(b), the combination of the
sine functions for the even powers of (u/x) becomes
2 sin (k0x) cos (k0u) and for odd powers of (u/x) we have
−2 cos (k0x) sin (k0u). The integral I can now be evaluated
as I ∼ I1 + I2 where

I1 = 2 sin(k0x)
∫ x

0
du[1 + O(x−2)]e−yu2

cos(k0u)

∼ 2 sin(k0x)
∫ ∞

0
due−yu2

cos(k0u) + O(x−2)

∼
√

π

y
sin(k0x)e−k2

0/(4y) + O(x−2)

and

I2 = −cos(k0x)

x

∫ x

0
du[1 + O(x−2)]e−yu2

u sin(k0u)

∼ −cos(k0x)

x

∫ ∞

0
due−yu2

u sin(k0u) + O(x−3)

∼ −
√

π

y

k0

4xy
cos(k0x)e−k2

0/(4y) + O(x−3).

The second lines in I1 and I2 are obtained by taking x →
∞. The improper integrals are evaluated using the known
identities. Putting all the dropped constants back and using the
original set of variables we will finally get

I ∼ 1

κ

[
sin(4σ 2k0κ) − k0

2κ
cos(4σ 2k0κ)

]

× e2σ 2(κ2−k2
0 )[1 + O(κ−2)] (A5)

and the TOA difference �τIV reads

�τIV ∼ (s1 + s2)
μ

�κ

[
sin(4σ 2k0κ) − k0

2κ
cos(4σ 2k0κ)

]

× e2σ 2(κ2−k2
0 )[1 + O(κ−2)].
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