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Quantum systems are invariably open, evolving under surrounding influences rather than in isolation. Standard
open quantum system methods eliminate all information on the environmental state to yield a tractable description
of the system dynamics. By incorporating a collective coordinate of the environment into the system Hamiltonian,
we circumvent this limitation. Our theory provides straightforward access to important environmental properties
that would otherwise be obscured, allowing us to quantify the evolving system-environment correlations. As a
direct result, we show that the generation of robust system-environment correlations that persist into equilibrium
(heralded also by the emergence of non-Gaussian environmental states) renders the canonical system steady state
almost always incorrect. The resulting equilibrium states deviate markedly from those predicted by standard
perturbative techniques and are instead fully characterized by thermal states of the mapped system-collective
coordinate Hamiltonian. We outline how noncanonical system states could be investigated experimentally to study
deviations from canonical thermodynamics, with direct relevance to molecular and solid-state nanosystems.
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I. INTRODUCTION

A quantum system coupled to its macroscopic environment
constitutes a challenging theoretical problem in which the
large number of environmental degrees of freedom can lead
to both conceptual and practical difficulties [1-5]. The master
equation formalism has been developed to offer a simple and
intuitive approach for describing such systems; the complex
dynamical evolution of the many-body environment is not
tracked explicitly, but instead only its effect on the reduced
state of the system of interest is considered, eliminating
all information on the environmental state. In most cases
one must also rely on a series of assumptions in deriving
a tractable master equation [6]. These customarily neglect
the formation of system-bath correlations and lead to the
eventual thermalization of the system with respect solely to
its internal Hamiltonian, resulting in canonical equilibrium
states.

Here, by incorporating a collective coordinate of the envi-
ronment into an effective system Hamiltonian, we develop a
master equation formalism that can overcome such restrictions.
This enables us to straightforwardly determine key environ-
mental properties as well as track the dynamic generation of
correlations between the system and bath. Specifically, we
characterize the departure of the environment from its initial
Gaussian thermal state due to interactions with the quantum
system and show that the resulting correlations—measured
in terms of the mutual information—can have a profound
effect on the system dynamics too, even persisting into the
steady state. We demonstrate that system-bath correlations are
in fact generated on two distinct time scales, with long-lived
correlations leading to a departure of the system steady state
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from canonical equilibrium, as would otherwise be expected
from a perturbative (Born-Markov) treatment, thus heralding
the failure of the accepted statistical mechanics view of
thermalization [5]. Correctly capturing system-environment
correlations is hence shown to be crucial in order to properly
describe both the system transient and equilibrium behavior.
As a further, and unique, aspect of our approach we illustrate
how noncanonical equilibrium states can still be characterized
in terms of thermal states, but now with respect to the
effective system-collective coordinate Hamiltonian. This also
reveals simple experimental signatures by which deviations
from canonical thermodynamics can be observed in real
physical systems, for example through measurements of
system populations.

II. REACTION COORDINATE MAPPING AND
MASTER EQUATION

Our method relies on keeping track of a collective envi-
ronmental degree of freedom, and to do so we make use of
the reaction coordinate mapping [7-16]; we take a quantum
system coupled to a bosonic environment and map to a model
in which a collective mode of the environment, known as the
reaction coordinate (RC), is incorporated within an effective
system Hamiltonian. We then treat the residual environment
within a full second-order Born-Markov master equation
formalism. By comparing the RC master equation to the
numerically exact hierarchical equations of motion (HEOM)
[17,18] we demonstrate essentially perfect agreement in the
dynamics across all time scales (see below). Thus, all important
system-bath, and indeed intrabath [19,20], correlations are
incorporated into the system-RC Hamiltonian in the regimes
we study.

Though our approach may be applied quite generally, we
shall focus in this work on a two-level system (TLS) described
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FIG. 1. (Color online) Upper: A TLS interacting with a bosonic
environment (left) is mapped to a TLS coupled only to a collective
mode, which is in turn damped by a residual bath (right). Lower:
TLS population dynamics from the RCME (black, solid curves),
weak-coupling theory (red, dash-dot curves), and converged HEOM
data (points). Parameters: € = 0.5A, w. = 0.05A, BA = 0.95, and
(a) ra = 0.1A and (b) ma = 2.5A.

by the spin-boson Hamiltonian [1-5,21-30] (with 2 = 1):

€ A
H = 56"7' + on + o, Xk: fk(c,t +cr) + Xk: vkclick. (D)

Here, C]T{ (cx) are creation (annihilation) operators for bosonic
modes of frequency v, which couple to the TLS with strength
fx, and o; (i = x,y,z) are TLS Pauli operators defined such
that o, = |1)(1| — |2)(2|. In the absence of the bath, the TLS
splitting is determined by the bias € and tunneling A. The effect
of the system-bath interaction can be completely characterized
by introducing the spectral density [1], Jsg(w) = >, szé(w —
a)k).

We now apply a normal mode transformation to Eq. (1)
to incorporate the most important environmental degrees of
freedom into a new effective system Hamiltonian. We carry
out this procedure by first defining a collective coordinate of
the environment [7], the RC, which couples directly to the TLS,
and is in turn coupled to a residual harmonic environment, as
shown schematically in the upper panel of Fig. 1. This leads
to a mapped Hamiltonian of the form

€ A
Hre = 0. + =0 + hoz(a' +a)+ Qa'la+ ) b bi
2722 -

2
+@ + @)Y s +b)+@ +a Y @)
k K ok

where the collective coordinate is defined such that

Mat+ay="" fule + co), 3)
k

with coupling A? = Y, fZand frequency Q = A~ 'V, vy f2
[8-10]. The residual bath, denoted by creation (annihila-
tion) operators b}: (br), now couples only to the RC and
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is characterized by an effective spectral density, Jrc(w) =
>k g,%S(a) — wy). To describe the action of the residual bath
on the RC mode we need to relate this spectral density to the
original spin-boson Jsg (w). To do so, we follow Refs. [7,10,31]
and replace the TLS with a classical coordinate ¢ moving in
a potential V(g). As outlined in Appendix A, by considering
the Fourier transformed equations of motion for g both before
and after the mapping, we may relate Jrc(w) to the original
Jsp(w).

To give a concrete example we now consider a Drude-
Lorentz form commonly used to describe molecular systems
[32]: Jsp(w) = aw.w/(@* + @?), with cutoff frequency .
and coupling strength «. The mapping we exploit is not limited
to this particular spectral density [14], however it does allow
us to benchmark our results against data attained from the
numerically exact HEOM. By taking the RC spectral density
to be Jrc(w) = ywe /", we find that the equivalent spin-
boson form is given by Jsg(w) = 4y wQ?A?/[(Q? — w?)* +
Q2myQw)?] in the limit A — oo. Hence, we recover the
Drude-Lorentz spectral density by identifying o, = Q2/(2mwy)
ando = 2)?/(71 2), and by choosing y such that w, < €2 [8].

Diagonalizing the first line of Eq. (2) we can account for
the original spin-boson interaction term in Eq. (1) to all orders,
which ensures that our formalism remains nonperturbative
in the system-bath coupling strength «. We thus derive a
Born-Markov master equation for the reduced state of the
composite TLS and RC, p(z), which captures their exact
internal dynamics, while treating the coupling to the residual
bath to second order (see Appendix B). This results in the
Schrodinger picture master equation [5,33]:

dp(t)
ot
where we have assumed that only the residual environment
remains in thermal equilibrium throughout the evolution. Here,
A=a'+a,
oo oo ﬁa) N
=y dt dw w cos(wT) coth - A(—1), (5
0 0

=y /oodr /ooda)cos(a)t)[Ho,A(—r)], (6)
0 0

= —i[Ho,p(1)] — [A, [, o) + [A(E, p(1)}], (4)

>

634

with A(t) = '™ Ae=™" and Hy = So. + 5oy + Ao.(a' +
a) + Qa'a. To solve our master equation we truncate the RC

Space as necessary for convergence.

III. BENCHMARKING

In order to demonstrate the validity of the reaction coordi-
nate master equation (RCME), we benchmark its predictions
for the TLS population dynamics (p;; = (1]|p|1)) against
converged data generated using the numerically exact HEOM
technique (see Appendix C and Refs. [17,18,34]). To give an
illustrative example, in Fig. 1 we have taken parameters that
are typical for excitonic energy transfer in molecular systems
[22,34-36], with a representative value of A = 200 cm™!
setting the other energy scales (i.e., t ~ 1 ps at Ar = 35).
The TLS is initialized in state |1), uncorrelated with both the
RC and residual bath, which are taken to be in their respective
thermal equilibrium states at a temperature 7 = 1/ (=300 K
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for A =200 cm™!). We observe essentially perfect agreement
between the RCME and the HEOM for a slow environment
and for spin-boson coupling strengths [(a) ma =20 cm™!,
(b) ma = 500 cm™'] encompassing the transition from the
coherent to the incoherent regime [37]. In contrast, a standard
weak-coupling approach, treating the interaction term in
Eq. (1) to second order, fails even qualitatively to capture
the correct system behavior for any parameters shown. It is
thus clear that environmental memory and the generation of
correlations with the system—both of which are ignored in the
weak-coupling calculation—are crucial in order to capture the
correct dynamical behavior in this regime. Moreover, their
combined impact on the TLS can be accurately described
simply through the TLS-RC coupling. This is somewhat
remarkable, given that any nonthermal state effects of the
original bath have been reduced solely to the action of a single
mode on the TLS.

IV. ENVIRONMENTAL DYNAMICS AND CORRELATIONS

The most important aspect of our formalism is that the
inclusion of environmental degrees of freedom into the
system Hamiltonian allows us to gain additional insight into
the dynamics of both the environmental state and system-
environment correlations. We do this by calculating two
complementary measures: the RC non-Gaussianity [38,39],
which probes the environmental evolution,

dclpre()] = S(@) — S(pre (1)), )

and the TLS-RC quantum mutual information (QMI) [40],
characterizing the correlations:

Z(ps : prc) = S(ps) + S(prc) — S(p). (®)

Here, prc (p;) is the reduced state of the RC (TLS) and
S(x) = —tr(x In x) is the von-Neumann entropy. The non-
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FIG. 2. (Color online) Dynamics of the RC non-Gaussianity (a,b)
and TLS-RC mutual information (c,d) for weak and strong system-
bath coupling strengths, with steady-state values indicated (dashed
lines). Parameters: € = 0.5A, w. = 0.05A, and BA = 0.95, e.g., for
A=200cm™", T ~ 300K, and ¢ ~ 10 ps at At = 300.
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FIG. 3. Steady-state non-Gaussianity (a) and quantum mutual
information (b) as a function of coupling strength, derived from the
RCME (solid curve) and a thermal state with respect to the TLS-RC
Hamiltonian H, (crosses) [see Eq. (9)]. Parameters: € = 0.5A,
w, = 0.05A, and BA = 0.95 (300 K for A = 200 cm™").

Gaussianity determines the distance from prc to the nearest
Gaussian reference state o and is defined such that §¢ = 0 iff
Prc 18 Gaussian. The QMI quantifies the total classical and
quantum correlations shared between the TLS and RC [40].
As detailed in Appendix D, both measures act as rigorous
lower bounds for the original spin-boson environment, which
enables us to explore properties of the multimode bath and its
correlations with the system simply through the single mode
RC. Furthermore, in the limit that the Born approximation
holds between the mapped system and residual environment,
then the additive nature of the von-Neumann entropy implies
that both these measures become exact for the original spin-
boson environment.

Figure 2 shows the dynamics of the non-Gaussianity and the
QMI at both strong and weak system-environment coupling «.
One of the most striking features of these plots is the presence
of two distinct time scales, which is most obvious for weak
couplings, but is also present at stronger coupling strengths. At
short times, the QM1 is oscillatory, an indication of the memory
effects implied by system-environment correlations, which
also push the RC away from its initial Gaussian state. At longer
times, we see that system-environment correlations—and
consequently non-Gaussian environmental states—are also
generated on a second time scale, and in fact persist into
the steady state, with values of both the non-Gaussianity and
QMI dependent on the coupling strength as demonstrated in
Fig. 3. We therefore find a situation in which the Born-Markov
approximation breaks down on all time scales. It describes
neither the short-time transient dynamics, due to the absence
of bath memory effects in the Markov approximation, nor
the long-time behavior, due to the generation of significant
TLS-bath correlations. This leads to non-Gaussian (and hence
nonthermal) environmental states upon tracing out the TLS,
neglected in the Born approximation. Our line of enquiry
also raises an intriguing question: if correlations can so
dramatically affect the Gaussian nature of the environment,
how do they impact upon the state of the TLS?

V. NONCANONICAL EQUILIBRIUM STATES

A clue can already be taken from Fig. 3, where we find
that the steady-state properties of both the RC and TLS-RC
correlations may be described by a thermal state with respect
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FIG. 4. (Color online) Steady-state population ratio (0ge/0cc)
and coherence (p,.) in the eigenstate basis of the TLS Hamiltonian
Hg, with |g) (|e)) being the ground (excited) eigenstate: (a) against
temperature (at 7o = 0.5A) and (b) against coupling strength (at
BA =0.95). Shown are predictions from the HEOM (points), a
thermal state with respect to the TLS-RC Hamiltonian Hj (solid), and
a thermal state with respect to Hs (dash-dot). Parameters: € = 0.5A
and w, = 0.05A. Considering A =200 cm™! gives T = 575K for
BA=05,T =288Kfor BA=1,and T = 115K for BA = 2.5.

to Hy, i.e.,
e PHo 1
=—e
z zZ
where Z = tr(e #™). Likewise, in Fig. 4 we show that the
equilibrium behavior of the TLS (after tracing out the mode)
clearly departs from the canonical statistics expected from a
perturbative, weak-coupling treatment of the environmental
influence, which would be given instead by a thermal state
with respect only to the TLS Hamiltonian, Hs = §o. + 5o.
Figure 4(a) explores the temperature dependence of the TLS
equilibrium state in the energy eigenbasis. To emphasize the
departure from canonical statistics we have plotted the popu-
lation ratio on a logarithmic scale. For a canonical distribution
we expect a linear dependence on the inverse temperature,
shown by the dash-dot line, and given by In(0ge/pcc) = —B1,

where n = /€2 + A2 is the TLS splitting. Crucially, however,
the RCME steady state shows a clear deviation from this linear
behavior with decreasing temperature. To provide context, tak-
ing our estimate again of A = 200 cm™! relevant to molecular
systems, we see that deviations from canonical statistics begin
to become apparent around BA = 0.95 =~ 300K, and should
thus be observable even at room temperature in such systems.
Note, from the inset, that a nonzero level of coherence is
also apparent around such temperatures (and lower), again
pointing to the noncanonical nature of the TLS equilibrium
state. These departures demonstrate that we cannot represent
the TLS steady state as a Gibbs distribution over the system
eigenstates. They also quantify relatively simple experimental
signatures of the breakdown of canonical statistics in open
quantum systems. For example, by measuring only the TLS
populations over a reasonable temperature range, we may infer
the emergence of noncanonical equilibrium states simply by
observing a nonlinear temperature dependence as shown.
Finally, in Fig. 4(b) we examine the TLS steady state
as a function of system-bath coupling strength at constant
temperature. We again see significant deviations from the
(unchanging) canonical thermal state, such as the development
of steady-state coherences within the TLS eigenstate basis,
which are apparent for any nonvanishing coupling strength.

O = Bl§o.+ 5o +hro-(af+a)+Qala) , 9)
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Nevertheless, it is evident from all plots in Fig. 4, by
the agreement between Eq. (9) and the HEOM, that the
noncanonical steady state is still extremely well described by
a thermal state across a wide range of parameters, though
now in the mapped TLS-RC representation. This behavior
is a clear result of the TLS-environment correlations; the
TLS cannot be considered merely as being in a product
state with a (thermal) environment. The nonseparability of
the steady state thus implies that the equilibrium behavior of
the TLS cannot be described as a thermal distribution over its
eigenstates either, but rather, one should also consider states
of the environment within the description. This is markedly
different to standard master equation techniques and statistical
mechanics approaches, where steady states are commonly
characterized by the bath temperature and system Hamiltonian
alone, an artifact of applying the Born approximation.

VI. SUMMARY

To summarize, by exploiting a collective coordinate map-
ping, we have derived a master equation valid in the nona-
diabatic regime of the spin-boson model. Notably, besides an
accurate description of the system dynamics, our approach also
allows us to quantify the accumulation of system-environment
correlations with time, as well as probe the dynamic evo-
lution of states of the environment. We have shown that
properly accounting for the generation of system-environment
correlations is essential for describing both the transient
dynamics and equilibrium distributions of open systems in this
regime. In particular, we have demonstrated that long-lived
correlations lead to the emergence of noncanonical system
equilibrium states that can be characterized in a simple and
intuitive way within our formalism, as thermal states of the
system-collective coordinate Hamiltonian. Our approach can
be applied to a number of systems of practical relevance. For
example, in molecular and solid-state (e.g., superconducting)
devices [1-5,7,32,41-51], system-environment coupling can
be strong and memory effects important. Taking parameters
relevant for energy transfer processes in molecular dimers, we
have shown that deviations from canonical statistics could
be observable even at room temperature, which raises the
intriguing question of the role of noncanonical equilibrium
states in larger molecular aggregates [46—48]. Finally, a proper
understanding of equilibrium states is a vital component in
the growing field exploring the thermodynamics of quantum
systems; the full implications of noncanonical steady states
in open quantum systems [52,53] thus constitute a fascinating
topic for future exploration.
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APPENDIX A: REACTION COORDINATE MAPPING

As in the main text, we start by considering a two-level
system (TLS) coupled linearly to a harmonic environment
described by the spin-boson (SB) Hamiltonian (with A = 1):

€ A . .
H=z0.+ 20 +0 ; fule +c) + ; vecler, (A1)

where o; (i = x,y,z) are the standard TLS Pauli operators in
a basis where o, = [1){1] — |2)(2], and ¢ (c,l) are creation
(annihilation) operators for bosonic modes of frequency v,
which couple to the TLS with strength f;. The system-
environment coupling is fully specified by the spin-boson
spectral density, Jsp(w) = Y, f28(w — wy).
We now apply a normal mode transformation to Eq. (A1),

leading to a mapped Hamiltonian of the form [13]

€ A 4 4
Hrc = z0, + —o, + Ao (a' +a)+ Qa'a + Zwkbzbk

2 2 P

f i SCE ¥ 11
b, +b —, (A2

+@' +a)) gl +b) + (@ +a) Zwk (A2)

k k

where we have defined the collective (reaction) coordinate
such that

A +a) (A3)

=Y file} + o).
k

The TLS reaction coordinate (RC) coupling strength is given
by A2 = >k sz, such that the RC creation and annihilation
operators satisfy the canonical commutation relation [a,a'] =
1. This choice of coupling also fixes the RC frequency to
be Q2 = 172", v f2. The RC is now coupled linearly to a
residual harmonic environment characterized by the spectral
density Jre(w) =) g,fé(a) — wy). There is also a quadratic
term in the system operators in Eq. (A2), known as the counter
term, which is used to renormalize the mode frequency and
avoid divergences due to friction [11].

In order to fully specify the mapping described above, we
must relate the RC and SB spectral densities. We do this by
following the procedure first outlined by Garg et al. [7] and
derive the spectral density, both before and after the mapping,
from the classical equations of motion [31]. Since the spectral
density does not contain any information about the system
itself, but rather just the coupling strength between the system
and environment, it then follows that in Eq. (A1) we can swap
the TLS for a continuous classical coordinate ¢ moving in a
potential V(q). This yields a Hamiltonian of the form

P? X 72

H, = §+U<q>+q2fkfk+q222—2
k

+ = Z pi+vizd), (A4)

where, for simplicity, we have written Eq. (A4) in the position
representation, with coordinate and momentum operators of
the environment defined as

f= [——(cl +c) and pe=i =l —c) (A3
2u K 2k
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and the coupling between the TLS and the kth mode of the
environment is given by f; = +/2v; f. From this Hamiltonian,
we attain a set of classical equations of motion:

) - 7
i) =-U@) =) fex)—a)}_ 5,
k ko Tk
~ (A6)
() = = frq () — vix ().
We can eliminate the bath variables from the equation of

motion for the classical coordinate by making use of the
Fourier transform, h(z) = ffooo h(t)e '*'dt. This leads to an

equation of the form K(z)4(z) =
space operator is defined as

2
—2 |1+ e
k Vi (Uk - Zz)
_ 2 *© Jsg(v)
- <1+/0 T 2))

We solve the integral using the residue theorem, making use
of a single pole at v = z, giving K(z) = —z* + in Jsp(z). By
writing 7 = w — i€, it follows that [31]

—U'(q), where the Fourier

K(z) =

(AT)

Jsp(w) = l 11%1 Im[K (w — i€)]. (A8)

We now use the same procedure to write K(z) in terms
of the RC spectral density. Since the mapping at this stage
is exact, then the Fourier transformed operator, K (2), will be
identical before and after the normal mode transformation. If
we once again swap the TLS for a continuous coordinate, and
write the RC Hamiltonian given in Eq. (A2) in position space,
then we have

2 2

[ pye
H, = —+U(q)+qu+292q +—(p

5 +Q°%%)

L +Z Z P2+ o X}),

+ngkxk+x2 7 2

(A9)

where we have scaled the coupling strengths such that k =
V2905 and g, = /2wrgk, and the position and momentum
operators are defined in the usual way. This Hamiltonian leads
to classical equations of motion of the form

. K2 ,
q+/<x+§q =—-U'(g),

( Z’;)f+xzq+2gk>?k=o, (A10)
[ k

Xy + Gk + 02 Re = 0.

By moving to Fourier space and eliminating both the RC and
environment from the equation of motion for the classical
coordinate, we get the expression for the Fourier space
operator:

2 k2 L)

K@) =- @m,
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where, by using the definition of the RC spectral density, we
have

L) =— G+wa Z)
kk_

k
)
__2( 49/ _Jre(@)
Z<+ 0o w(@?—2z2)

Considering the RC to have an Ohmic spectral density of
the form Jrc(w) = ywexp{—w/A}, the integral reduces to
L(z) = —z%> +2inQyz, in the limit A — oo. By plugging
this into Eq. (A8), we get the condition

m>(mn

| ~ .
Jsp(w) = p 61_1)1& Im[K(w — i€)]
1 27 Qy 2
== moiyK © . (A12)
7 (Q% — w?)? + 2 Qy)w?

In order for Eq. (A12) to be consistent with the original spin-
boson spectral density, we identify the relations

222
w,=—— and a=—

, (A13)
2ry 1494

which give us

AWW
Jsp(@) = ——————. (A14)
W + =g + o’

Finally, by assuming w. < €2, we get the spin-boson spectral
density in Lorentz-Drude form:

wew

J. =a—-7.
sB(®) P

(A15)

APPENDIX B: REACTION COORDINATE
MASTER EQUATION

We now wish to use Eq. (A2) to derive a master equation
that treats the TLS-RC coupling exactly (up to some number
of basis states) while the coupling to the residual environment
is treated to second order (within a Born-Markov approxi-
mation). To this end, we define the interaction Hamiltonian
as

=AQB+1 A%, (B1)
where A =af +a, B=Y, gk(b,i +b)and A =Y, g2 /oy
To derive the RC master equation we first move into
the interaction picture using the transformation fl (1) =
exp{i(Ho + Hp)t}Hy exp{—i(Hy + Hp)t} = A(t) ® B(1) +
A A%(t), where Hy= $o0, + S0, + roy(al +a)+ Qa'a is
the TLS-RC Hamiltonian, and Hg =), a)kb,tbk. Tracing
out the residual environment, we then find a master equation
for the reduced TLS-RC density operator p(¢), which in the
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interaction picture may be written as
ap(t)

ar = —i trg[H(1),p(0) ® pj]

_ / dr LA (1), [H(t — 7),5(t) ® psll, (B2)
0
= —i A[A%(1),p(0)]

-2 / dr[A*(1),[A%(t — 1), p(0)]]
0

- / de((AW[AG = 0,50 ()
0

+[A@®) (At — 1), ()T (7).

Here, we have made use of the Born approximation; that is, we
have assumed that the system and residual environment remain
in the product state R(¢) =~ p(t) ® pp for all time, where pp =
exp(—B8 >, wkabk)/tr{exp(—ﬁ > wkb,tbk)}. The correlation
functions are defined as I'* = tr{(B(1)B + B(—1)B)pz}/2.
In the continuum limit we may write them as

(B3)

(o) = / dwJrc(w) coth ;f%w COoS WT (B4)
0

and

I'()= i/oo dwJrc(w) sin wt. (BS)
0

As outlined in the previous section, the RC spectral density
takes the form Jrc(w) = yw exp(—w/A), in the limit that that
the cutoff frequency A — oco. We can simplify Eq. (B2)
further by noticing that

—iA[A%(1), p(1)]
= —iA[A%(t),p(0)] — A2 / dt[A*(t),[A*(t — ©),p(D]1.
0
(B6)

By substituting this into the above master equation and
assuming a Markov limit, that is, by taking the time integrals
to infinity, we acquire the RC master equation:

8~ ~_ A
% — —iA[A2(0), 5]

—/ / drdeRC(w)cothﬁ—wcosa)t
o Jo 2

x[A@),[At — 7),p(0]]

o0 [o¢]
—1i / / dtdwJrc(w) sinwt
o Jo

x[A@),{A(t — 1), p(1)}].

The definition of Jrc(w) assumes an infinite cutoff frequencys;
hence the first and last terms of Eq. (B7) are divergent.
However, we can eliminate the divergent contributions by
integrating the last term by parts, such that

(B7)

o0 A
/ dtsinwtA(t — 1)
0

coswt dA(t — 1)

() [t
=-P + dt——
w 0 w at

(B8)
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Using the principal value part of this integral we can cancel the
counter term, which, after moving back into the Schrodinger
picture, gives the master equation:

0
% = —i[Hy.p(1)]

oo oo ﬂw
— dtdwJrc(w) cos wt coth —
o Jo 2

x[A,[A(=1),p(0)]]
_ / / drdo Jpe(w) 22"
0 0

w
x[A{[A(=7),Hol,p(t)}]. (B9)

In order to derive the interaction picture system operators
we shall diagonalize the TLS-RC system Hamiltonian, Hy, nu-
merically. Let |¢, ) be an eigenstate of the system Hamiltonian,
such that Hyle,) = ¢,|¢,). We can now write the position
operators in this eigenbasis:

A=Y Ajkloi) e,

Jjk

(B10)

where Aj; = (¢ j|A|¢)k). In the interaction picture this be-
comes

Ay =" Aje™ o) pxl.
Jjk

(B11)

where &,,, = ¢, — @, is the difference between the nth and
mth eigenvalues. Using this definition we can include the rates
from Eq. (B9) into the operators, such that

o0 00 ,3(1) .
X = / / dwdt Jre(w) cos wt coth TA(_T)
0 0
T BE ik
~ 3 D IreEpcoth =S Al . (B12)
Jjk
o0 o0
A J R
B = / / dwdr—RC(w) coswr [Hy, A(—1)]
o Jo ®
~ (B13)

% Z JreEjA jklo;) (@l
Jk

where we have neglected the imaginary Lamb shift terms. We
can now write the master equation as

, ) -
_’5(:) = —i[Ho,p()] = [A,[%,p]] + [A{E, p(D)}].

(B14)

APPENDIX C: HEOM

The hierarchical equations of motion (HEOM) are a set
of time-local equations for the reduced system dynamics, gov-
erned by the spin-boson Hamiltonian [Eq. (A1)], which capture
the bath dynamics and system-bath correlations through a set
of auxiliary density matrices. These equations are exact under
the assumption of a Lorentz-Drude spectral density, as given
in Eq. (A15), and an initially separable system-bath state at
t = 0. Here we assume only a single bath such that the HEOM
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can be written as

K K
Pn = — (i[Hs,pn] + an,uvm) Pon— i Z [Q’pnfi]

m=0 m=0

K
—1i Z nm (Cm Qpn,T, - C:woﬂﬁ Q)

m=0

K
a (;Z - i%H -2 C—k[Q,[Q,pnm]]> . (CD)

o Mk

where Q = o, is the system-environment coupling operator,
ay =na, and Hg = %(TZ + %ax. The bath correlation func-
tions for the Lorentz-Drude spectral density are

C =Y cmexp(—nt). (C2)

m=0
Here (o = ., tm>1 = 2rm/pB, and the coefficients are

WAy

co = — —lcot(fwc/2) —il/h (C3)

and

(C4)

20w fhm
Cm>1 = PR

B ul—?
Each density matrix is labeled by an index of positive
integers n. As here we only have a single bath the integers are
defined as n = {ny,n,,...,n,,,...,ng}. For each “Matsubara”
term m each index runs from zero to oco. The null label
n =0 ={0,0,0....} defines the system density matrix, and
any nonzero label refers to an auxiliary density matrix which
encodes the correlations with the bath. The terms in the
equation of motion n refer to an increase or decrease by
1 of the label index m. We take a cutoff in the overall
tier N, = Zm n,, and in the Matsubara terms K which give
convergence in the numerical results.

APPENDIX D: QUANTUM MUTUAL INFORMATION
AND NON-GAUSSIANITY

In this Appendix we show that the mutual information for
the TLS and RC acts as a lower bound to the correlations shared
between the system and the original multimode environment.

Let x be the density matrix describing the state of
both the system and environment in the original spin-boson
representation. We also define the reduced states of the system,
0s = trg x, and the environment, pg = tryx. Letld = 13 ® R
be the unitary transformation that maps the spin-boson model
to the RC model. Applying this unitary to the reduced state of
the system has no effect due to the trace over the environment.
However, on the reduced state of the environment this unitary
transforms the spin-boson basis to that of the RC and residual
bath, that is, RT prR = preys.

The quantum mutual information for the system and the
spin-boson environment is given by

Z(ps : pE) = S(ps) + S(pE) — S(x)
= S(ps) + S(orc+8) — S(X), (D1)
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where S(0) = —tr(oInp) is the von-Neumann entropy and
# =UTxU is the total state in the RC basis. Here we have
used the unitary equivalence of the von-Neumann entropy to
write the quantum mutual information in terms of the RC
basis.

To proceed we shall make use of the strong subadditivity
of the von-Neumann entropy, that is,

S(X) + S(pre) < S(ps4rc) + S(PrC+B), (D2)

where psipc = trg X, with the trace taken over the residual
environment. Using this property in conjunction with Eq. (D1)
gives

Z(ps : pe) 2 S(ps) + S(orc+s) + S(orc) — S(Os4RC)
— S(prc+B)s

= S(ps) + S(prc) — S(ps+re)- (D3)
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Therefore, we have the condition

Z(ps : pE) = Z(ps & PRC)- (D4)

Hence, the mutual information between the system and RC
acts as a lower bound to the mutual information between
the system and spin-boson environment. Furthermore, in the
limit that the Born approximation holds between the composite
system (TLS and RC) and the residual environment, that is,
# ~ psirc ® pp, then the inequality in Eq. (D4) becomes
an equality due to the additive nature of the von-Neumann
entropy.

Similarly, the non-Gaussianity can be shown to be in-
variant under symplectic transformation (i.e., operators that
are quadratic in field operators) and monotonically decreases
under partial trace [38]. This means that the non-Gaussianity of
the RC acts as a rigorous lower bound for the non-Gaussianity
of the original spin-boson environment, that is,

dclpel = dclprcl- (D5)
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