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Time evolution of decay for purely absorptive potentials: The effect of spectral singularities
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We consider an analytical approach that involves the complex poles of the propagator to investigate the effect
due to the lack of time-reversal invariance on the time evolution of decay for purely absorptive potentials. We find
that the choice of the initial state may change the exponential decaying regime into a nonexponential oscillatory
behavior at time scales of the order of a lifetime of the system. We illustrate this effect for a spectral singularity
corresponding to a purely imaginary δ-shell potential.
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I. INTRODUCTION

One finds in the literature a great deal of work dealing with
complex absorbing potentials as discussed in a recent review
by Muga et al. [1]. Of particular interest in studies involving
these potentials are spectral singularities which correspond to
points in the continuous spectra of quantum systems where
a continuous solution to the Schrödinger equation of the
problem becomes singular [2]. They were mainly studied
by mathematicians in the 1950s and 1960s [3–5], but in
recent years they have attracted the attention of investigations
on the properties of PT -symmetric and non-PT -symmetric
scattering potentials [2,6,7], and more recently, in laser optics
[8–13]. A common feature of these recent works is that they
consider systems which are open and hence may be described
by imposing purely outgoing boundary conditions on the
corresponding wave equations. In the above context we have
recently extended the formalism of resonant states to complex
potentials [14].

The purpose of this work is to investigate the effect of
absorptive potentials, i.e., purely imaginary potentials, on the
time evolution of quantum decay. We find a general condition
on the initial state that leads to a nonexponential oscillatory
behavior of the survival probability at time scales of the order
of the lifetime of the system. Our findings are illustrated by
considering an exactly solvable model.

In Sec. II, we review the formalism of resonant states for
complex imaginary potentials and provide the corresponding
expressions for the decaying wave function and the survival
probability. Section III applies the formalism to an attractive
purely imaginary δ-shell potential to calculate the survival
probability. Finally, Sec. IV provides some concluding re-
marks.

II. FORMALISM

Let us consider the time evolution of decay of an initial
wave function ψ(r,0) confined initially, at t = 0, along the
internal region of a spherically symmetric absorptive potential
of finite range, namely,

V (r) = −iW (r), (1)
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with W (r) a positive function that vanishes exactly for r > a.
For the sake of simplicity, we restrict the discussion to s waves,
and the units employed are � = 2m = 1, m being the mass of
the decaying particle. As a consequence, the energy of the
particle is denoted by E = k2, with k the corresponding wave
number and hence the Hamiltonian to the system reads

H = − d2

dr2
− iW (r). (2)

As is well known, the time-evolved wave function ψ(r,t) may
be written in terms of the retarded Green’s function of the
problem g(r,r ′; t) and the initial state ψ(r,0) as

ψ(r,t) =
∫ a

0
g(r,r ′; t)ψ(r ′,0) dr ′. (3)

Moreover, the retarded Green’s function g(r,r ′; t) may be
written, using Laplace transform techniques, as [15–17]

g(r,r ′; t) = 1

2πi

∫
C0

G+(r,r ′; k) e−ik2t 2k dk, (4)

where G+(r,r ′; k) corresponds to the outgoing Green’s func-
tion of the problem and the integration contour C0 goes along
the first quadrant of the complex k plane as indicated in Fig. 1.

Our approach exploits the analytical properties of
G+(r,r ′; k) in the complex k plane. There, for finite-range
potentials, it is well known that this function possesses an
infinite number of complex poles. For real potentials the
complex poles are located on the lower half of the k plane
and as a consequence of time-reversal invariance, they are
distributed symmetrically with respect to the imaginary k axis.
Hence, for a given pole at kp = αp − iβp, with αp and βp

positive quantities, there corresponds a pole at k−p = −k∗
p

[18]. Bound and antibound poles correspond, respectively, to
purely imaginary positive and negative values of k. However,
for complex potentials, time-reversal considerations no longer
apply [14,19]. For absorptive potentials, causality prevents the
appearance of poles that sit on the first quadrant of the k plane;
however, they might appear on the other quadrants. We denote
by kp the poles on the fourth quadrant and by k−p the poles
that are located on the second and third quadrants of the k

plane. A somewhat surprising feature of absorptive potentials
is that they do not support bound or antibound poles [14,19].
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FIG. 1. (Color online) Deformation of the contour C0 in the
complex k plane. See text.

Resonant states, also known as quasinormal modes [20–22],
follow from the residues at the poles of the outgoing Green’s
function to the problem [15–17,23], that is,

ρp(r,r ′) = up(r)up(r ′)

2kp

{∫ a

0 u2
p(r)dr + i

u2
p(a)
2kp

} , (5)

which allows us to write a normalization condition for these
states as ∫ a

0
u2

p(r)dr + i
u2

p(a)

2kp

= 1. (6)

It may be shown analytically that both the normalization
condition proposed by Zel’dovich [24] and that corresponding
to the complex scaling method [25] coincide exactly with the
condition given by Eq. (6) [26]. Resonant states satisfy the
Schrödinger equation of the problem with outgoing boundary
conditions, namely, using Eq. (2) one may write[

k2
p − H

]
up(r) = 0, (7)
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FIG. 2. (Color online) Distribution of poles for an intensity of the
δ-shell potential b = 9π/2 of radius a = 1.

with up(0) = 0 and u′
p(a) = ikpup(a), the prime denoting

the derivative with respect to the variable r . Notice that the
energy eigenvalues k2

p appearing in Eq. (7), which follow
from the vanishing of the coefficients of the incoming waves,
correspond, as mentioned above, to the poles of the outgoing
Green’s function G+(r,r ′; k).

A convenient form to evaluate Eq. (4) is to close the contour
indicated in Fig. 1, where the path CL corresponds to a straight
line 45◦ off the real k axis that passes through the origin, and
apply Cauchy’s theorem [15]. Taking the limit of the semicircle
radii CR to infinity, and noting that the factor exp(−ik2t) in
the corresponding integrands guarantees that the contribution
of these contours vanish in that limit, allows us to rewrite
Eq. (4), using Eqs. (5) and (6), as a sum over exponentially
decaying terms plus an integral contribution along the path
CL. Moreover, by performing in the integral contribution the
change of variable k = γ z, with γ = √−i, we may write the
resulting expression for g(r,r ′; t) as

g(r,r ′; t) =
∞∑

p=1

up(r)up(r ′)e−ik2
pt

+ 1

π

∫ ∞

−∞
G+(r,r ′; γ z)e−z2t z dz. (8)

The poles kp = αp − iβp that appear in the exponentially
decaying sum in Eq. (8) are all located on the fourth quadrant
of the k plane. They are named proper poles and satisfy
αp > βp. The corresponding complex energies k2

p = Ep =
Ep − i	p define the resonance positions Ep = (α2

p − β2
p) and

the decaying widths 	p = 4αpβp.
The outgoing Green’s function G+(r,r ′; k) may be ex-

panded as an infinite sum over the full set of resonant states to
the problem along the internal interaction region, r < a and
r ′ < a [27–29] and also when either r or r ′ are evaluated at
a but not when r = r ′ = a [16,17,30]. We denote the above
circumstance with the notation (r,r ′)† � a. The validity of the
above expansion is independent of whether the potential is real
or complex [30,31]. Hence we may write

G+(r,r ′; k) =
∞∑

p=−∞

up(r)up(r ′)
2kp(k − kp)

; (r,r ′)† � a. (9)

The outgoing Green’s function satisfies the equation

[k2 − H ]G+(r,r ′; k) = δ(r − r ′), (10)

with boundary conditions G+(0,r ′; k) = 0 and G′+(a,r ′; k) =
ikG+(a,r ′; k). Substitution of Eq. (9) into Eq. (10) yields the
closure relation [16,17]

1

2

∞∑
p=−∞

up(r)up(r ′) = δ(r − r ′); (r,r ′)† � a, (11)

and the sum rule
∞∑

p=−∞

up(r)up(r ′)
kp

= 0; (r,r ′)† � a. (12)

Moreover, using the identity 1/[2kp(k − kp)] =
(1/2k)[1/kp + 1/(k − kp)] in Eq. (9), in view of Eq. (12),
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allows us to write the alternative expansion

G+(r,r ′; k) = 1

2k

∞∑
p=−∞

up(r)up(r ′)
k − kp

; (r,r ′)† � a. (13)

Then substituting Eq. (13) into Eq. (10) leads to the additional
sum rule

∞∑
p=−∞

up(r)up(r ′)kp = 0; (r,r ′)† � a. (14)

Substitution of Eq. (9) into the integral term of Eq. (8)
leads to the representation of the retarded Green’s function
g(r,r ′; t) as a sum of exponentially decaying terms plus a linear
combination of resonant states and Moshinsky functions,
which becomes relevant at very short or very long times
compared with the lifetime of the system [16,17]. In particular,
the long-time behavior of g(r,r ′; t) may be obtained by
expanding the Moshinsky functions at long times, which go
as a/(kpt1/2) + b/(kpt3/2) + · · · , with a and b constants. This
requires using the sum rule given by Eq. (12) to eliminate the
t−1/2 contribution to yield the well-known t−3/2 asymptotic
long-time behavior. Clearly this may become cumbersome
in numerical calculations, since one has to either take out
explicitly the term t−1/2 in the above expansions or perform
the calculations with a very large number of poles.

Here we follow a similar approach to that of Ref. [32], which
addressed real potentials, to obtain the behavior of g(r,r ′; t) at
long times. This procedure does not rely on using the above
sum rules and leads directly to the correct long-time asymptotic
behavior. It exploits the fact that at long times compared with
the lifetime of the system τ , the integrand over the integral term
in Eq. (8) oscillates widely and hence it may be evaluated, to a
very good approximation, by the steepest descent method [33].
One sees that the saddle point of the exponential in Eq. (8) is
at z = 0 and hence one may perform a Taylor expansion of
G+(r,r ′; γ z) around that value, namely,

G+(r,r ′; γ z) = G+(r,r ′; 0) + γ z

[
∂

∂γ z
G+(r,r ′; γ z)

]
z=0

+ · · · . (15)

Substitution of Eq. (15) into the integral term in Eq. (8) leads
to an expression where one sees that the term proportional to
G+(r,r ′; 0) vanishes exactly because the integrand is an odd
function of z. The z integral for the next term in the Taylor
expansion may be evaluated by making the change of variable
u = zt1/2, which gives the leading term as the inverse power
in time t−3/2. Consequently, at long times compared with the
lifetime τ of the system, Eq. (8) may be written approximately
as

g(r,r ′; t) ≈
∞∑

p=1

up(r)up(r ′)e−iEpt e−	pt/2

+ η

{
∂

∂k
G+(r,r ′; k)

}
k=0

1

t3/2
; (r,r ′)† � a,

(16)

where η = 1/(4πi)1/2 and the exponentially decaying terms
are written explicitly in terms of the proper poles Ep and 	p

defined previously. In general it is difficult to obtain a closed
analytical expression for the factor [∂G+(r,r ′; k)/∂k]k=0. One
may use, however, the expansion of the outgoing Green’s
function given by Eq. (9) to evaluate this factor and write
Eq. (16) as

g(r,r ′; t) ≈
∞∑

p=1

up(r)up(r ′)e−iEpt e−	pt/2

− η

∞∑
p=−∞

up(r)up(r ′)
2k3

p

1

t 3/2
; (r,r ′)† � a.

(17)

A. Decaying wave function and survival probability

Then, inserting Eq. (17) into Eq. (3) yields the expression
for the time-dependent wave function

ψ(r,t) ≈
∞∑

p=1

Cpup(r)e−iEpt e−	pt/2

− η

{ ∞∑
p=−∞

Cpup(r)

2k3
p

}
1

t 3/2
; r � a, (18)

where the overlap coefficients Cp are defined as

Cp =
∫ a

0
ψ(r,0)up(r)dr. (19)

Assuming that the initial state ψ(r,0) is normalized to unity,
we may use the closure relation given by Eq. (11) to write,

1

2

∞∑
p=1

{CpC̄p + C−pC̄−p} = 1, (20)

where

C̄p =
∫ a

0
ψ∗(r,0)up(r) dr. (21)

Equation (18) provides the time evolution of the decaying
wave function for an absorptive potential as an expansion in
terms of resonant states along the exponentially decaying and
long-time regimes.

The survival amplitude gives the probability amplitude that
at time t the decaying particle remains in the initial state,

A(t) =
∫ a

0
ψ∗(r,0)ψ(r,t) dr. (22)

Hence, the corresponding survival probability is given by the
expression

S(t) = |A(t)|2. (23)

Substitution of Eq. (18) into Eq. (22) yields

A(t) ≈
∞∑

p=1

CpC̄pe−iEpt e−	pt/2

− η

∞∑
p=1

{
CpC̄p

2k3
p

+ C−pC̄−p

2k3−p

}
1

t 3/2
. (24)
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FIG. 3. (Color online) Plot of ln[S(t)] as a function of the time
t for the imaginary δ-shell potential with parameters b = 9π/2 and
a = 1 and initial infinite box states with q = 1,2,6 which exhibit,
respectively, maximum overlap with the resonant states with p =
1,2,6, which correspond to poles sitting on the fourth quadrant of the
k plane. See text.

Equation (24) has some resemblance to an expression of the
survival amplitude derived by Longhi for a non-Hermitian
Friedrichs-Fano-Anderson model [34]. Our approach, how-
ever, provides an explicit resonant expansion for the nonexpo-
nential contribution.

It is worth recalling that for real potentials

k−p = −k∗
p, u−p(r) = u∗

p(r), (25)

and as a consequence, the survival amplitude corresponding to
real potentials reads [32]

A(t) ≈
∞∑

p=1

CpC̄pe−iEpt e−	pt/2 − iη Im
∞∑

p=1

{
CpC̄p

k3
p

}
1

t 3/2
.

(26)
Similarly, for real potentials, since in view of Eq. (25),
C−pC̄−p = (CpC̄p)∗, Eq. (20) becomes

Re
∞∑

p=1

{CpC̄p} = 1. (27)

One may associate to each decaying width 	p, a time
scale τp = 1/	p. The longest of these times scales, which
corresponds to the shortest decaying width, defines the lifetime
τ of the system. For single-particle potentials, the shortest
decaying width is usually that with the lowest resonance
energy, this is for p = 1, and hence,

τ = 1

	1
. (28)

As a result of the above considerations, after a few lifetimes,
using Eq. (24) in the definition of the survival probability S(t)
given by Eq. (23), one sees that the only term that survives in
the sum of the exponentially decaying terms is that correspond-
ing to the longest lifetime, i.e., S(t) ≈ |C1C̄1|2 exp(−	1t). As
time evolves, that exponentially decaying term becomes of the
same order of magnitude as the corresponding nonexponential
t−3 long-time contribution of S(t). The time ttr at which
the exponential-nonexponential transition occurs depends on
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FIG. 4. (Color online) Plot of ln[S(t)] as a function of the time
t in units of the lifetime τ = 1/	1 for the purely imaginary δ-shell
potential with parameters b = 9π/2 and a = 1 for the initial state
given by Eq. (34) with kc = 9π/2, which exhibits first a transition
to the lowest decaying state with decaying width 	1 (solid line),
which arises, respectively, from the exponential decaying contribution
(dotted line) followed by a transition to an inverse power t−3 behavior
at long times (dashed line). See text.

each specific system. Clearly, a similar argument holds for
the case of real potentials. Here, it has been found that the
exponential-nonexponential long-time transition depends on
the value of the quantity R = Er/	r [35,36]. Commonly, since
the poles are proper, R > 1, and hence the above transition
occurs after a number of lifetimes. In the numerical example
discussed below, the transition occurs around ttr ≈ 27τ as
shown in Fig. 4. For times smaller than the transition time ttr,
the time inverse power t−3 contribution is much smaller than
the exponential ones due to the multiplying factors that go as
1/k6

r , with r = ±p, which appear in the former contribution,
as exemplified in Fig. 5.
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FIG. 5. (Color online) Plot of ln[S(t)] as a function of the time
t in units of the lifetime τ = 1/	1 for the purely imaginary δ-shell
potential considered in Fig. 4, which exhibits an oscillatory behavior
at short times which arises as a consequence of the strong overlap
of the initial state with a spectral singularity resonant function (solid
line) and a negligible inverse power of time contribution (dashed
line). See text.
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A point worth emphasizing refers to Eqs. (20) and (27),
which follow, respectively, for complex and real potentials,
from the closure relationship (11). The coefficients Cp cannot
be interpreted as probability amplitudes, since the sum of
the their square moduli does not add up to the norm of
the expanded function. However, although CpC̄p might be
negative, for real potentials its real part adds up to unity,
and if the “strength” value of, say, CrC̄r ≈ 1, then that term
dominates the expansion of the exponential terms of the
survival amplitude. A more involved situation may occur
for the terms [CrC̄r + C−r C̄−r ]/2 appearing in Eq. (20), as
discussed in the model calculation of the next section.

We illustrate in the next section that choosing an initial
state which overlaps strongly with a state corresponding to a
pole located on the second or third quadrants of the k plane,
specifically with a spectral singularity resonant state [14],
may lead to a modification of the values of the coefficients
corresponding to the proper poles located on the fourth
quadrant. This in turn leads to interference contributions that
change the exponential decaying behavior of the survival
probability into an oscillating contribution at time scales of
the order of a lifetime of the system. Such a behavior is a
consequence of the lack of time-reversal symmetry in the
position of the poles kp and k−p for absorptive potentials.
It involves consideration only of the exponentially decaying
terms appearing in Eq. (24), since at those time scales the
nonexponential t−3/2 contribution is negligible, as pointed out
previously.

III. MODEL

We consider a purely absorptive δ-shell potential of radius
a. Then, in view of Eq. (1), we may write

V (r) = −ibδ(r − a), (29)

with b > 0. As discussed in detail in Ref. [14], the solutions
to Eq. (7) obeying outgoing boundary conditions read

up(r) = Ap sin(kpr), r � a, (30)

and

up(r) = Bp eikpr , r � a, (31)

from which one readily obtains, using the continuity of the
solutions at r = a and the discontinuity of the corresponding
derivatives due to the δ interaction, the equation for the poles

2kp − b (e2ikpa − 1) = 0. (32)

The solution to Eq. (32) yields the set of poles to the
problem as a function of the potential parameters [14]. Figure 2
exhibits the distribution of the first 40 poles for b = 9π/2
and a = 1. We have chosen that value of the intensity to
guarantee that there is a spectral singularity located precisely
at k−5 = −9π/2. Notice, as pointed out in Sec. II A, and
shown explicitly in Table I, that the absence of time-reversal
invariance implies that the poles {k−p} sitting on the second
and third quadrants of the k plane are nonsymmetrical with
respect to those located on the fourth quadrant. Moreover the
real part of the poles k−p located in the third quadrant of the
k plane tend to values proportional to π/2 as p increases,
whereas the real part of the poles on the second quadrant tend

TABLE I. Poles k−p and kp for the imaginary δ-shell potential
with the same parameters as in Fig. 2.

n α−p β−p αp βp

1 −3.10532 0.28798 3.13260 −0.18350
2 −5.96420 0.81871 6.27128 −0.31770
3 −8.17293 0.81868 9.41193 −0.42343
4 −11.03184 0.28796 12.55336 −0.51067
5 −14.13717 0.00001 15.69512 −0.58492
6 −17.26976 −0.18351 18.83702 −0.64956
7 −20.40845 −0.31770 21.97898 −0.70679
8 −23.54910 −0.42343 25.12097 −0.75813
9 −26.69053 −0.51067 28.26295 −0.80469
10 −29.83228 −0.58493 31.40492 −0.84728

to be proportional to π as p decreases. On the other hand,
the real parts of the poles located on the fourth quadrant are
proportional to π .

Using the solution for up(r) along the internal region r �
a given by Eq. (30) allows us to obtain, using Eq. (6), the
expression for the normalization coefficient

Ap =
[

2(−iba − 2ikpa)

a(1 − iba − 2ikpa)

]1/2

. (33)

This allows us to obtain the full set of resonant solutions
{up(r)} along the internal region r � a, which is necessary
to evaluate the expansion coefficients Cp and C̄p, given, re-
spectively, by Eqs. (19) and (23). To calculate these coefficients
one needs to specify the initial state ψ(r,0).

A frequent choice is an initial state that may overlap
strongly with a given resonant state of the system. In this
sense, an appropriate choice is the wave function along the
internal interaction region,

ψ(r,0) = Nc sin(kcr), r � a, (34)

with kc, an arbitrary real parameter. Imposing the normaliza-
tion condition ∫ a

0
|ψ(r,0)|2dr = 1, (35)

one obtains [37]

Nc =
√

2/a

[1 − (2kca)−1 sin(2kca)]1/2
. (36)

The initial state given by Eq. (34) represents the decaying
portion of a state that in addition possesses an external portion
that initially is outside from the interaction region and therefore
will not be considered here. Using Eqs. (31), (33), (34), and
(36) into Eq. (19) yields

Cp = NcAp

−kp sin(kca) cos(kpa) + kc sin(kpa) cos(kca)

k2
p − k2

c

.

(37)
A common choice for the initial state is the infinite box

model state, which requires us to have kc = qπ/a with
q = 1,2, . . . , and hence, in view of Eq. (36), it yields the
well-known normalization Nc = √

2/a [32,38]. Using the
potential parameters b = 9π/2 and a = 1, one may readily
obtain the corresponding survival probabilities S(t) using
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Eqs. (24) and (23). This is shown in Fig. 3 for q = 1,2,6. For
these choices the decay is initially dominated, respectively,
by the exponential decay widths 	1, 	2, and 	6. This follows
because the corresponding expansion coefficients in Eq. (24)
are dominated, in view of Eq. (20), respectively, by Re{C2

1} =
1.0129, Re{C2

2} = 1.0355, and Re{C2
6} = 1.1494, all of them

of the order of unity. The above quantities follow because
there is a maximum overlap with the corresponding resonant
states defined by Eq. (30) with p = 1,2,6. As shown in
Fig. 3, eventually the cases with q = 2 and q = 6 suffer
a transition to the state with the smallest width, 	1, and
finally, all cases exhibit a transition to the inverse power
long-time behavior as t−3 as follows from Eq. (24). In this case
E1 = 9.7795 and 	1 = 2.2993 and hence R = E1/	1 = 4.25
and the exponential-nonexponential transition time ttr occurs
at roughly ttr ≈ 27τ .

It is worth mentioning that the above behavior of the
survival probability for the imaginary potential with the
choice of an initial state having maximum overlap with states
corresponding to poles located on the fourth quadrant of the
k plane is qualitatively similar to that of a real potential,
namely, it exhibits an exponential decaying regime followed
by a nonexponential contribution at long times [32].

However, the choice of an initial state with maximum
overlap with a resonant state corresponding to a pole on the
second or third quadrants of the k plane, in particular with
a spectral singularity, leads to a novel effect which follows
from the lack of time-reversal symmetry of the distribution
of poles. Let us illustrate this by considering the imaginary
δ-shell potential with the same parameters as in the previous
case, namely, b = 9π/2 and a = 1. This yields a spectral
singularity pole located at k−5 = −9π/2, as shown in Table I.
Figure 4 exhibits a plot of ln[S(t)] as a function of the
time t . Apparently, the behavior of the survival probability
looks similar to the cases displayed in Fig. 3. However, on
close scrutiny at times of the order of a lifetime, where
the exponential contribution dominates, namely, where the
survival amplitude is given by the first term on the right-hand
side of Eq. (24), one obtains the unexpected behavior shown
in Fig. 5, which corresponds to a nonexponential oscillatory
dependence with time. This behavior may be understood by
inspection of Table II. One sees that a maximum overlap is
exhibited by the coefficient Re C2

−5 = 0.99502. This favors

TABLE II. Coefficients C2
−p and C2

p for the imaginary δ-shell
potential with the same parameters as in Fig. 4 and an initial state
with kc = 9π/2. See text.

p Re
(
C2

−p

)
Im

(
C2

−p

)
Re

(
C2

p

)
Im

(
C2

p

)
1 0.00108 −0.00039 0.00111 −0.00020
2 0.00357 −0.00644 0.00662 −0.00131
3 −0.00817 −0.00757 0.03260 −0.00914
4 −0.00663 −0.00112 0.31311 −0.26619
5 0.99502 0.07038 0.44151 0.33393
6 −0.00419 −0.00017 0.08426 0.01809
7 −0.00370 −0.00001 0.03770 0.00464
8 −0.00335 −0.00006 0.02282 0.00195
9 −0.00308 −0.00004 0.01595 0.00105
10 −0.00286 −0.00002 0.01212 0.00064

a large overlap for the coefficients Re C2
4 = 0.31311 and

Re C2
5 = 0.44151. In fact these three coefficients almost satisfy

the relationship (20). This means that the initial state with
kc = 9π/2, which overlaps strongly with the state u−5(r),
shares also its strength with the states u4(r) and u5(r). The
reason is that the value kc = 9π/2 of the initial state is
approximately halfway between α4 and α5, as follows by
inspection of Table I. As a consequence the survival amplitude
given by Eq. (24) may be written approximately as

A(t) ≈ C2
4e

−iE4t e−	4t/2 + C2
5e

−iE5t e−	5t/2, (38)

and hence, one sees that the interference contribution to
the corresponding survival probability exhibits an oscillatory
behavior that disappears gradually as time evolves. An accurate
description requires, however, taking several pole terms into
account. It is worth mentioning that for real potentials,
time-reversal invariance implies, as pointed out above, that
C−pC̄−p = (CpC̄p)∗, and therefore the above situation does
not occur, except when the complex poles lie very close
together as in one-dimensional multibarrier resonant tunneling
systems [39,40].

IV. CONCLUDING REMARKS

The main result of this work is to show that the time
evolution of decay for absorptive imaginary potentials may
lead, due to the lack of time-reversal invariance, to an
unexpected behavior that originates in the choice of the initial
state. We find for an exactly solvable model, that if the initial
state overlaps strongly with a state corresponding to a pole
on the fourth quadrant, then the survival probability is not
qualitatively different from that of a real potential. However,
if the initial state overlaps strongly with a resonant state
corresponding to poles located on the second or third quadrants
of the k plane, such that α−p �= αp, as for a spectral singularity,
then the survival probability may exhibit instead of exponential
decay, at time scales of the order of a lifetime of the system, a
nonexponential almost harmonic oscillatory behavior.

In a recent paper [41], the probability density |ψ(r,t)|2 for
propagation along the external interaction region at asymptotic
long distances and times was considered for real potentials.
This refers to an unexplored postexponential regime that
provides the ultimate fate of a decaying particle. We believe
that it would be of interest to investigate that regime for purely
absorptive potentials to find out if the oscillatory behavior in
time found here for the survival probability prevails.

We end by commenting that would be interesting to look
for the possibility of considering the lack of time-reversal
symmetry to design quantum systems that would exhibit the
time evolution of decay described here. We hope the present
work may stimulate further work on this subject.
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