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Bell-inequality violation with entangled photons, free of the coincidence-time loophole
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In a local realist model, physical properties are defined prior to and independent of measurement and no
physical influence can propagate faster than the speed of light. Proper experimental violation of a Bell inequality
would show that the world cannot be described with such a model. Experiments intended to demonstrate a
violation usually require additional assumptions that make them vulnerable to a number of “loopholes.” In both
pulsed and continuously pumped photonic experiments, an experimenter needs to identify which detected photons
belong to the same pair, giving rise to the coincidence-time loophole. Here, via two different methods, we derive
Clauser-Horne- and Eberhard-type inequalities that are not only free of the fair-sampling assumption (thus not
being vulnerable to the detection loophole), but also free of the fair-coincidence assumption (thus not being
vulnerable to the coincidence-time loophole). Both approaches can be used for pulsed as well as for continuously
pumped experiments. Moreover, as they can also be applied to already existing experimental data, we finally
show that a recent experiment [Giustina et al., Nature (London) 497, 227 (2013)] violated local realism without
requiring the fair-coincidence assumption.
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I. INTRODUCTION

When attempting to provide a conclusive answer to the
question by Einstein, Podolsky, and Rosen (EPR), “Can
[the] quantum-mechanical description of physical reality be
considered complete?” [1], it is important that assumptions
concerning the physical reality are kept to an absolute
minimum.

The usual assumptions underlying Bell inequalities are
those of local realism(namely that properties of physical
systems are elements of reality, and that these cannot be
influenced faster than the speed of light) and freedom of choice
(namely that the measurement-setting choices are independent
of the hidden variables and vice versa) [2,3]. However, all
experimental demonstrations that attempt to violate a Bell
inequality to date have needed additional assumptions to claim
the invalidity of local realism. In principle, such a violation
could be caused by the failure of these additional assumptions,
rather than the more fundamental assumptions of local realism.

In experiments involving photons, a well-known problem
is that not all photons emitted by the source actually are
registered in the detectors. The problem is usually referred to
as the “fair-sampling” or “detection” or “detector-efficiency”
loophole, but really concerns the efficiency of the entire
experimental setup since there can be various causes for
missing detections. The outcomes that are registered might
display correlations that violate the Bell inequality even though
the experiment can be described by a local realist model [4].
The “fair-sampling” assumption is often used in this situation,
often motivated by the assumption that successful photon
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detection depends only on the hidden variable and not the
measurement setting. Fair sampling means that the observed
outcomes of detected photons faithfully reproduce the outcome
statistics of all emitted photons, if they all had been detected.
This assumption is not needed in high-efficiency experiments
using, e.g., atoms or superconducting qubits [5,6] and the
detector-efficiency loophole has only recently been avoided in
photonic violations of the Clauser-Horne (CH) inequality [7]
(or Eberhard inequality [8]), which can be derived without the
fair-sampling assumption [9,10].

Other common assumptions include “locality” [11,12]
and “freedom of choice” [13]; assumptions may also refer
to properties of decaying systems [14] or properties of
photons [15,16], and the list continues. Any of these makes
an experiment vulnerable to explanation by a local realist
model. Avoiding all these assumptions simultaneously in one
experiment, usually called a “loophole-free” or “definitive”
Bell test, remains an open task. Loophole-free Bell tests are not
only important from the perspective of quantum foundations,
but are also crucial in quantum information protocols such as
device-independent quantum key distribution [17,18] as well
as randomness expansion [19,20] or amplification [21].

One less-known but equally serious problem is that of
identifying which outcomes belong together [22], sometimes
referred to as the “coincidence-time” loophole. Both the EPR
paradox and the Bell inequality concern pairs of outcomes at
two remote sites. In an experiment, it is therefore necessary to
identify which outcomes make up a pair, which may be a non-
trivial task. Commonly, in photon experiments, relative timing
is used to identify pairs: if two clicks are close in time they are
“coincident,” otherwise they are not. The problem of pair iden-
tification is especially pronounced in continuously pumped
photonic experiments, but is in principle present in all exper-
iments that have rapid repetition in the same physical system.
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In this situation, it may happen that some pairs are not
identified correctly. For example, if the detector jitter is large
and the coincidence window small, some pairs will not register
as coincident. Loss of coincidences would reduce the subset
of registered pairs, and the remaining coincidences might
display correlations that enable a Bell violation even though
the experiment can be described by a local realist model [22].
When coincidences are lost, a “fair-coincidence” assumption
is needed: that the observed outcomes of all identified pairs
faithfully reproduce the outcome statistics of all detected pairs
of photons, if they all had been correctly identified. This can
be motivated by the assumption that the time of an individual
photon detection depends only on the hidden variable, and not
the measurement setting.

The identification of the coincidence-time loophole in
2004 [22] was accompanied by an assessment of the Clauser-
Horne-Shimony-Holt (CHSH) inequality [23] as it relates to
the loophole. A decade later, as technology slowly approaches
the demands of a loophole-free experiment, the CH or
Eberhard inequality has arguably become the more relevant
inequality since it, unlike CHSH, is immune to the fair-
sampling assumption. Thus it is necessary, with regard to both
current and future Bell tests, to evaluate the CH or Eberhard
inequality with respect to the coincidence-time loophole.

Historically, only the fair-sampling assumption has been
explicitly made, and identification of pairs within the available
measurement data has not been thought of as a problem. In
fact, until 2003–2004 [22], it was thought to be trivially true
that coincidence determination, or timing, had no detrimental
effect on Bell tests of local realism whatsoever. But since this
is not the case, the fair-coincidence assumption must have been
tacitly made in every experiment to date, with only a few recent
exceptions [10,24]. Although these experiments considered
the coincidence-time loophole, the community lacks a rigorous
discussion of this loophole; the authors of Ref. [10] mentioned
the loophole only briefly while the result in Ref. [24] suffers
from low detection efficiency and uses the CHSH inequality.

Thus the remainder of this paper includes a rigorous
examination of the CH or Eberhard inequality as it relates
to the coincidence-time loophole. We present and prove the
validity of two analysis methods that can be applied to
already recorded experimental data, enabling after-the-fact
determination of whether or not an experiment was vulnerable
to the coincidence-time loophole. (This is especially elegant
considering that most approaches to avoiding loopholes
require some kind of adjustment to the physical construction.)
Finally, we apply these methods to data from the continuously
pumped experiment [9], which in contrast to Refs. [10,24] was
not designed explicitly with the coincidence-time loophole in
mind. We then show that the results found in Ref. [9] also did
not need the fair-coincidence assumption since the experiment
is actually not vulnerable to the loophole.

II. AVOIDING THE COINCIDENCE-TIME LOOPHOLE

In a typical Bell-type experiment based on photon pairs (see
Fig. 1), the usual way to determine if two events belong to the
same pair is to compare the two detection times and conclude
that a coincidence has happened if the two times are close.

Alice

a2a1

A1 = 1

A2 = 1

undetected

Bob

b2b1

B1 = 1

B2 = 1

undetected

Source

FIG. 1. (Color online) Principle of the experiment. Violation of
the Clauser-Horne inequality needs an EPR source of entangled pairs
and two-setting measurement devices. Here polarization entangle-
ment and measurement is used. Each measurement device can rotate
the photon’s polarization according to one of two settings (a1 or a2

and b1 or b2) before checking if a photon arrives at the “ordinary”
output of a polarizing beam splitter. This is recorded as the event
A1 = 1, A2 = 1, B1 = 1, or B2 = 1, depending on site and setting,
as appropriate.

More precisely, there is a coincidence for setting a ∈ {a1,a2}
at the first site (Alice) and b ∈ {b1,b2} at the second (Bob) if
their detection times TA and TB are close enough so that

|TA(a) − TB(b)| < 1
2τ. (1)

Here, the chosen coincidence window width τ is the total
possible deviation in a detection time at one site, given the
detection time at the other. To the experimentalist, this is the
event “there is a coincidence,” and the probability of such an
event is well defined even without reference to hidden variables
[see Fig. 2(a)].

In a local realist model, the detection times TA and TB

at the two sites would be random variables that depend on
the local settings a and b, with the hidden variable λ as the
argument: TA(a,λ), and TB(b,λ). Here, the locality assumption
ensures that the detection times do not depend on the remote
setting, just as is assumed for the outcomes. Coincidences (of
outcomes A ∈ {A1,A2} for Alice and B ∈ {B1,B2} for Bob,
where the subscript denotes the setting used for measurement)
now occur on a subset of the hidden-variable space that can be
written as

�Aj Bk
= {

λ : |TA(aj ,λ) − TB(bk,λ)| < 1
2τ

}
, (2)

with j,k = 1,2. This is the mathematical, or rather, the
probabilistic formalization of the coincidence event, and the
mathematical term for such a subset of the sample space is
“event.”

The structure of the above coincidence set is very different
from the structure of the set of coincidences when only
missing outcomes (and possibly unfair sampling) are taken
into account. If clicks occur on the sets �Aj

and �Bk
, and all

coincidences are correctly identified, the coincidence set has
the factorizable structure

�Aj Bk
= �Aj

∩ �Bk
. (3)

This leads to an experimental efficiency requirement of at
least ≈82.84% to achieve a violation of local realism (in
the CHSH inequality) free of the fair-sampling assumption.
Because the set (2) cannot be factored, the bound to avoid the
fair-coincidence assumption will be higher, ≈87.87% [22].

In this paper, we are interested in the CH inequality, which
holds under the assumptions of realism, locality, and freedom
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FIG. 2. (Color online) Comparison of the three different methods
to identify coincidences. At the top is an example of a possible
assignment to the detection times for a given λ, chosen to illustrate the
key features of the different pair identification methods. In method (a),
a coincidence is identified if detection times are close enough (with
difference of at most half the coincidence window τ ), here for settings
a2,b1; a1,b1; and a1,b2 but not for a2,b2. The a2,b2 events would
then be misidentified as not being coincident. The fair-coincidence
assumption implies that this, on average, happens equally often for
all combinations, which is a substantial restriction on possible local
realist models. Method (b) uses fixed time slots of size τ to avoid the
coincidence-time loophole by ensuring that if a2,b2 would not give a
coincidence, at least one of a2,b1; a1,b1; or a1,b2 would also not do
so (in the figure, this is a1,b1). Above, the time slots are separated
as is appropriate for a pulsed experiment, while adjacent slots is the
best choice for a continuously pumped experiment. Method (c) uses
a different approach, namely a longer time window for the a2,b2

settings, to ensure that if all the others (a2,b1; a1,b1; or a1,b2) would
give a coincidence, so would a2,b2. The two new methods are opposite
in the sense that in method (b) coincidences are lost as compared to
method (a) while in method (c) coincidences are gained; both avoid
the coincidence-time loophole.

of choice

P (A1 = B2 = 1) + P (A2 = B1 = 1) − P (A2 = B2 = 1)

� P (A1 = 1) + P (B1 = 1) − P (A1 = B1 = 1). (4)

See the Appendix for formal definitions and proofs.
This inequality avoids the detector-efficiency loophole so

that experimental violation does not need the fair-sampling
assumption. However, it does not take into account how pairs
are identified, e.g., how coincidences are determined by timing
data in the experimental output. We would want to establish
a similar inequality that includes restricting to a subset of
pairs, P (Aj = Bk = 1 ∩ �Aj Bk

), and detection, e.g., P (Aj =
1 ∩ �Aj

). Fortunately, this is not too difficult.

There are two alternative methods. The first uses fixed
nonoverlapping time slots

Si = {t : ti � t < ti + τ }, (5)

for detection and coincidence determination (we use the
same τ for time slot size and time window size because
that gives a similar rate of accidental coincidences, making
the two methods easily comparable). This enables a CH-
type inequality that avoids the coincidence-time loophole,
making experiments that use the new inequality independent
of the fair-coincidence assumption. The reason is that a fixed
time slot border treats long and short delays equally, see
Fig. 2(b). In pulsed photonic experiments, there is a natural
time-slot structure because of the pulse timing. However, also
for continuously pumped experiments fixed time slots for
coincidence identification can be easily enforced.

A detection is only counted if it occurs in one of the time
slots, in a local realist model corresponding to

�Aj
(i) = {λ : TA(aj ,λ) ∈ Si},

�Bk
(i) = {λ : TB(bk,λ) ∈ Si},

(6)

and for all the time slots we have the disjoint union

�Aj
=

⋃
i

�Aj
(i), (7)

and similar for �Bk
. A coincidence occurs in slot i if both

detections occur there, and this happens on the set �Aj
(i) ∩

�Bk
(i). A coincidence in any slot occurs on the disjoint union

�Aj Bk
=

⋃
i

(
�Aj

(i) ∩ �Bk
(i)

)
. (8)

This is not the factor structure we have in the detector efficiency
case, but it will enable us to recover the appropriate inequality.
It is important that time slots are assigned locally, so that no
remote influence is present; such influence would result in a
set structure similar to that in Eq. (2). We can now include
coincidence determination in the inequality, and arrive at

P
(
A1 = B2 = 1 ∩ �A1B2

) + P
(
A2 = B1 = 1 ∩ �A2B1

)
−P

(
A2 = B2 = 1 ∩ �A2B2

)
� P

(
A1 = 1 ∩ �A1

) + P
(
B1 = 1 ∩ �B1

)
−P

(
A1 = B1 = 1 ∩ �A1B1

)
. (9)

The key observation here is that the inequality avoids the
coincidence-time loophole and can be properly violated by
experiment, as soon as disjoint fixed time slots are used. It
does not matter how the time slots are chosen (as long as they
are locally assigned), or if they have a natural counterpart in
the experiment. This is especially important in continuously
pumped photonic experiments.

We should point out that the event Aj = 1 does not neces-
sarily mean a single click in a detector in one time slot. It is a
label for some event we are interested in. In the data analysis,
one can choose the event Aj = 1 to correspond to at least one
detection for setting aj at the first site, and similarly for Bk = 1
(setting bk at the second). Note that this choice must be made
entirely from the locally available information. A coincidence
(the event �Aj Bk

) would then correspond to (any number of)
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detections in two equal-indexed time slots, using information
from both sites. Operationally, this means to coarse-grain
all detector clicks on each side and for every time slot to
dichotomic values: “0” = “no detections,” “1” = “one or more
detections.” This coarse-graining method allows no switching
of settings within time slots, but this can be handled also.

The alternative method does not need fixed time slots. The
intuition for this method is that all proposed local realist
models that exploit the loophole put some of the A2B2

detection events more than 1
2τ apart, so that they are not

identified as a coincidence. It therefore makes sense to increase
the window for the A2B2 events. With

�A1B1 = {
λ : |TA(a1,λ) − TB(b1,λ)| < 1

2τ1
}
,

�A1B2 = {
λ : |TA(a1,λ) − TB(b2,λ)| < 1

2τ2
}
,

(10)
�A2B1 = {

λ : |TA(a2,λ) − TB(b1,λ)| < 1
2τ3

}
,

�A2B2 = {
λ : |TA(a2,λ) − TB(b2,λ)| < 1

2

∑
i τi

}
,

we obtain

�A1B1 ∩ �A1B2 ∩ �A2B1 ⊂ �A2B2 . (11)

In other words, if the A1B1, A1B2, and A2B1 detection events
that are separated by at most τi are identified as coincidences,
then the A2B2 detection events separated by at most

∑
i τi are

also identified as coincidences [see Fig. 2(c)]. This gives the
inequality

P
(
A1 = B2 = 1 ∩ �A1B2

) + P
(
A2 = B1 = 1 ∩ �A2B1

)
−P

(
A2 = B2 = 1 ∩ �A2B2

)
� P (A1 = 1) + P (B1 = 1)

−P
(
A1 = B1 = 1 ∩ �A1B1

)
. (12)

We remark that, in contrast to the “fixed-time-slots method”
[Fig. 2(b)], no coarse-graining of multiple clicks is applied in
the “window-sum method” [Fig. 2(c)].

III. VIOLATION FROM THE EXPERIMENT

The CH inequality is not vulnerable to the detector-
efficiency loophole, and therefore free of the fair-sampling
assumption. As shown above, similar inequalities that are not
vulnerable to the coincidence-time loophole can be derived
by two methods [Eqs. (9) and (12)], both therefore free of
the fair-coincidence assumption. Both statements also hold
for the Eberhard inequality, where all probabilities in the CH
inequality are replaced by the corresponding number of counts.
Applying the fixed-time-slots or window-sum method leads
to Eberhard-type inequalities similar to Eqs. (9) and (12),
free of the fair-coincidence assumption as well as the fair-
sampling assumption. Collecting all terms on one side creates
inequalities of the form

J � 0. (13)

Since the fixed-time-slots method removes coincidences as
compared to the moving windows method [compare Figs. 2(a)
and 2(b)], it comes at a cost in a continuously pumped
experiment: because of the inherently random emission times
and the timing jitter of the detectors, two photons close in
time that would be coincident in the moving-window method

N
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[μs]1 2

J

100000
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FIG. 3. (Color online) Experimental J values plotted as a func-
tion of coincidence window or time slot size τ . The three alternatives
are (a) the dotted yellow line that uses the moving-windows method
and the fair-coincidence assumption; (b) the green dashed line that
uses the fixed-time-slots method; and (c) the blue continuous line
that uses the window-sum method (with all τi equal to τ ). The latter
two are not vulnerable to the coincidence-time loophole. The shading
corresponds to plus or minus three estimated standard deviations.
Negative J values cannot be explained by local realist models.

may belong to different time slots and fail to register a
coincidence in the fixed-time-slots method. To minimize the
loss, long adjacent slots (much longer than the timing jitter
of the detectors used) are desirable, and the earlier-mentioned
coarse-graining should be used because multiple generated
pairs can appear in the same slot. Coarse-grained coincidences
may not show quantum correlations, and can prohibit or
hamper a violation of the tested Bell inequality. Therefore,
depending on experimental parameters such as timing jitter,
overall efficiency, background counts, and rate of generated
pairs, there will be an optimal size for the locally predefined
time slots, see Fig. 3(b).

For the experiment [9], choosing adjacent predefined time
slots with size τ = 980 ns, yields J = −38803 ± 2020. This
corresponds to a violation, free of the fair-coincidence as-
sumption, by more than 19 σ (estimated standard deviations).
The standard deviation is estimated analogously to Ref. [9],
by dividing the data set into 30 subsets and using standard
unbiased point estimates, adjusting these to apply to the sum
of the 30 samples rather than the mean.

Finally, we also analyze the data of Ref. [9] using the
window-sum method [Figs. 2(c) and 3(c)] with all three τi

being equal to τ and the window for A2B2 being 3τ . For
τ = 180 ns, one obtains J = −96988 ± 2076, a 46 σ violation
(estimated standard deviations). The window-sum method
typically leads to a larger violation than the fixed-time-slots
method since it evades the trade-offs encountered in choosing
a slot size. The only “penalty” is an increase of the accidental
coincidences for the A2B2 events. Therefore, the window-sum
method can be a valuable tool in situations where unfavorable
experimental parameters (such as high timing jitter and dark
counts of the detectors) do not allow a violation using the
fixed-time-slots method.

For the above J values we calculated the singles counts as
follows: Alice’s singles counts for outcome A1 were taken to
be the mean of her singles when she and Bob applied settings
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a1,b1 and when they applied a1,b2. Similarly, Bob’s singles
counts for outcome B1 were taken to be the average obtained
from the setting combinations a1,b1 and a2,b1. In an ideal
experiment, the J value should not depend on whether this
averaging is employed or individual combinations are taken.
However, due to the residual drifts discussed in Ref. [25] the
above-reported J values for the data of Ref. [9] do depend
on the procedure, albeit not in any way that would alter the
conclusion, namely a significant violation of CH- or Eberhard-
type inequalities that are not vulnerable to the coincidence-
time loophole.

IV. CONCLUSION

In their original form, the CH and Eberhard inequalities
are derived without using the assumption of fair sampling.
Here, we have derived CH- and Eberhard-type inequalities
that are also free of the coincidence-time loophole, through
two different approaches. One is to use fixed time slots
for the local measurement results and identify coincidences
if detections occur in equal time slots, while the other is
to choose a key coincidence window as long as the sum
of the others. Both methods can be used in continuously
pumped experiments as well as in pulsed experiments, and
in particular, both can be used to show that the experiment
reported in Ref. [9] violates local realism and is not vulnerable
to the coincidence-time loophole, therefore not needing the
fair-coincidence assumption.

Note added. Recently, it has come to our attention that the
window-sum method has been discovered independently by
Knill and coworkers in the context of an extended statistical
analysis [26].
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APPENDIX: FORMAL PROOFS

Realist models (or hidden variable models) are probabilistic
models that use three building blocks. The first building block
is a sample space �, which is the set of possible hidden variable
values. The second is a family of event subsets E ⊂ �, e.g.,
the sets of hidden variable values where specific measurement
outcomes occur. The third and final building block is that these
event sets must be measurable using a probability measure P ,
so that each event has a well-defined probability. If the sample
(hidden variable) λ is reasonably well behaved, its distribution
ρ can be constructed from this. Below, we will use determin-
istic realism without loss of generality since stochastic realist
models are equivalent to mixtures of deterministic ones [27].
We can now prove the following theorems.

Theorem 1 (Clauser-Horne). The following three prerequi-
sites are assumed to hold except at a null set.

(i) Realism. Measurement results can be described by two
families of random variables (A for Alice with local setting a,
B for Bob with local setting b):

A(a,b,λ) and B(a,b,λ). (A1)

The dependence on the hidden variable λ is usually
suppressed in the notation.

(ii) Locality. Measurement results are independent of the
remote setting

A(a,λ)
def= A(a,b1,λ) = A(a,b2,λ),

B(b,λ)
def= B(a1,b,λ) = B(a2,b,λ).

(A2)

For brevity we define Aj (λ) = A(aj ,λ) and Bk(λ) =
B(bk,λ).

(iii) Freedom of choice. The measurement setting distri-
bution does not depend on the hidden variable, or equivalently,
the probability measure P does not depend on the measure-
ment settings; this is sometimes formulated as independence
between the distribution ρ of λ and the measurement settings

P (E|a,b) = P (E) or ρ(λ|a,b) = ρ(λ). (A3)

Then,

P (A1 = B2 = 1) + P (A2 = B1 = 1) − P (A2 = B2 = 1)

� P (A1 = 1) + P (B1 = 1) − P (A1 = B1 = 1). (A4)

Proof. A proof of this theorem is as follows:

P (A1 = B2 = 1) + P (A2 = B1 = 1) − P (A2 = B2 = 1)

� P (A1 = B2 = 1) + P (A2 = B1 = 1)

−P (A1 = B2 = 1 ∩ A2 = B1 = 1)

= P (A1 = B2 = 1 ∪ A2 = B1 = 1)

� P (A1 = 1 ∪ B1 = 1)

= P (A1 = 1) + P (B1 = 1) − P (A1 = B1 = 1). (A5)

�
Using the notation for fixed nonoverlapping time slots from

the main text, we have the following theorem.
Theorem 2 (Clauser-Horne inequality with disjoint time

slots). If the prerequisites from the Clauser-Horne inequality
are assumed to hold except at a null set, and also

(i) Disjoint time slots. Detections are obtained on subsets
�Aj

; �Bk
with j,k = 1,2 of � that are disjoint unions of the

form

�Aj
=

⋃
i

�Aj
(i), (A6)

and coincidences are obtained on subsets �Aj Bk
of � that are

disjoint unions of the form

�Aj Bk
=

⋃
i

(
�Aj

(i) ∩ �Bk
(i)

)
. (A7)

Then

P
(
A1 = B2 = 1 ∩ �A1B2

) + P
(
A2 = B1 = 1 ∩ �A2B1

)
− P

(
A2 = B2 = 1 ∩ �A2B2

)
� P

(
A1 = 1 ∩ �A1

) + P
(
B1 = 1 ∩ �B1

)
− P

(
A1 = B1 = 1 ∩ �A1B1

)
. (A8)
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Proof. Define new time-slot-indexed random variables, e.g.,
A

(i)
j that indicates that Aj = 1 in time slot i

A
(i)
j = 1 ⇔ (

Aj = 1 ∩ �Aj
(i)

)
. (A9)

Since the sets are disjoint unions, we have, for example,

P
(
A1 = 1 ∩ �A1

) = P

[
A1 = 1 ∩

(⋃
i

�A1 (i)

)]

=
∑

i

P
(
A

(i)
1 = 1

)
, (A10)

and

P
(
A1 = B2 = 1 ∩ �A1B2

)
= P

[
A1 = B2 = 1 ∩

(⋃
i

�A1 (i) ∩ �B2 (i)

)]

=
∑

i

P
(
A

(i)
1 = B

(i)
2 = 1

)
. (A11)

The inequality now follows from using the original CH
inequality in each time slot. �

Finally, for the window-sum method we have the following.
Theorem 3 (Clauser-Horne inequality with a subset prop-

erty). If the prerequisites from the Clauser-Horne inequality
are assumed to hold except at a null set, and also

(i) Subset property. Coincidences are obtained on subsets
�A1B1 ; �A1B2 ; �A2B1 ; and �A2B2 , of �, and the last coincidence
set contains the intersection of the other three

�A1B1 ∩ �A1B2 ∩ �A2B1 ⊂ �A2B2 . (A12)

Then

P
(
A1 = B2 = 1 ∩ �A1B2

) + P
(
A2 = B1 = 1 ∩ �A2B1

)
−P

(
A2 = B2 = 1 ∩ �A2B2

)
� P (A1 = 1) + P (B1 = 1)

−P
(
A1 = B1 = 1 ∩ �A1B1 ). (A13)

Proof. We need to treat the A2B2 events separately,

P
(
A2 = B2 = 1 ∩ �A2B2

)
� P

(
A2 = B2 = 1 ∩ �A1B1 ∩ �A1B2 ∩ �A2B1

)
� P

{[(
A1 = B2 = 1 ∩ �A1B2

)
∩(

A2 = B1 = 1 ∩ �A2B1

)] ∩ �A1B1

}
. (A14)

The proof of Theorem 1 now applies on the subset �A1B1 so
that

P
(
A1 = B2 = 1 ∩ �A1B2 ∩ �A1B1

)
+P

(
A2 = B1 = 1 ∩ �A2B1 ∩ �A1B1

)
−P

(
A2 = B2 = 1 ∩ �A2B2

)
� P

(
A1 = 1 ∩ �A1B1

) + P
(
V1 = 1 ∩ �A1B1

)
−P

(
A1 = B1 = 1 ∩ �A1B1

)
. (A15)

Since

P
(
A1 = B2 = 1 ∩ �A1B2 \ �A1B1

)
� P

(
A1 = 1 \ �A1B1

)
,

P
(
A2 = B1 = 1 ∩ �A2B1 \ �A1B1

)
� P

(
B1 = 1 \ �A1B1

)
,

(A16)

the result follows. �
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