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Coherent-state path integrals in the continuum
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We discuss the time continuous path integration in the coherent-state basis in a way that is free from
inconsistencies. Employing this notion we reproduce known and exact results working directly in the continuum.
Such a formalism can set the basis to develop perturbative and nonperturbative approximations already known
in the quantum-field-theory community. These techniques can be proven useful in a great variety of problems
where bosonic Hamiltonians are used.
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I. INTRODUCTION

The widely known path-integral formalism that was pi-
oneered by Feynman [1,2] almost 70 years ago has been
proven an extremely helpful tool for understanding and
handling quantum mechanics, quantum field theory, statistical
mechanics, even polymer physics and financial markets [3].
The introduction of the overcomplete base of coherent states
[4–9] has expanded the concept of path integration into a
complexified phase space enlarging its range of possible
applications in many areas of physics and chemistry, mainly as
a tool for semiclassical approximations. The path integration
in terms of coherent states has been discussed in detail in many
excellent papers [4–13]. In most of them both the definition
and the calculations are based on lattice regularization and the
continuum limit is taken only after the relevant calculations
have been performed. On the other hand, quantitative differ-
ences with exact results have been reported [14] when attempts
have been made to handle coherent-state path integrals and
perform calculations directly in the continuum. A recent
attempt [15] to solve the problem offers only corrections to
a questionable leading term and does not give a definitive
solution. However, the continuum form of coherent-state-
based path integration has been extensively used in quantum
field theory for perturbative approximations, for resuming
perturbative series or for applying nonperturbative techniques.
In this sense, the time continuous integration in a complexified
phase space is problematic.

When dealing with path-integral expressions in the con-
tinuum we have to take into account that such expressions
must be considered as formal unless a definite regularization
prescription has been given [9]. In this work we undertake
the task of establishing a time continuous formulation of path
integration in the coherent-state basis and a corresponding
time-sliced definition. In the context of the proposed for-
mulation, the path integration can be performed directly in
the continuum without facing inconsistencies and reproduces
the exact results at least for the cases in which the relevant
Hamiltonian is expressed as a polynomial of creation and
annihilation operators. Such bosonic Hamiltonians are used
in a great variety of important physical problems, e.g.,
ultracold atoms in optical lattices [16], cavity optomechanical
systems [17,18], nonequilibrium transport [19,20], and other
phenomena [21–23]. Thus, our formalism may be proven a
powerful tool both for analytical and numerical applications

since it allows the use of the quantum-field-theory toolbox.
These techniques may be proven helpful for extending the
study of many-body dynamics beyond the usual approximate
methods.

The paper is organized as follows. In Sec. II we re-
produce known results, such as the partition function for
the simple case of a harmonic oscillator, using path integration
in the complexified phase space. Then, in Sec. III we calculate
the partition function for the case of the one-site Bose-Hubbard
(BH) model with time continuous coherent-state path integrals,
while in Sec. IV we use this method in order to find the exact
expression for the propagator. Finally, in Sec. V we discuss
the semiclassical calculation for a Hamiltonian that depends
only on the number operator. We summarize our findings and
give an outlook in Sec. VI.

II. A SIMPLE EXAMPLE

To set the stage, we begin with the trivial case of a harmonic
oscillator:

Ĥ0 = p̂2

2
+ q̂2

2
. (1)

The partition function of this system, Z0 = Tre−βĤ0 =∑∞
n=0 e−β(n+1/2), can be expressed as a Feynman phase-space

integral:

Z0 =
∫

Dp

∫
Dq

q(0)=q(β)

exp

{
−

∫ β

0
dτ [−ipq̇ + H0(p,q)]

}

= e−β/2

1 − e−β/2
=

∞∑
n=0

e−β(n+1/2). (2)

The integral in the left-hand side (lhs) of the above expression
acquires a full meaning through its time-sliced definition.
However, in the simple case of the harmonic oscillator, the
result of Eq. (2) can be derived directly in the continuum [3].
In the phase-space path integral that appears in Eq. (2) we can
make the canonical change of variables:

q = 1√
2

(z∗ + z), p = i√
2

(z∗ − z). (3)
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In terms of these complex variables, Eq. (2) is transcribed into
the following form:

Z0 =
∫

D2z

periodic

exp

{
−

∫ β

0
dτ

[
1

2
(z∗ż − ż∗z) + |z|2

]}

=
∞∑

n=0

e−β(n+1/2). (4)

A comment is needed at this point. In the phase-space integral
(2) the integration over q(τ ) is restricted by the periodic condi-
tion q(0) = q(β) while the p(τ ) integration is unrestricted. For
the time-sliced expression that defines the integral, this means
that we are dealing with (q0,...,qN ; q0 = qN ) “position” and
(p1,...,pN ) “momentum” integrations. To arrive at the periodic
conditions accompanying the integral (4), one [3] introduces
a fictitious p0 variable which is set identically equal to pN .

However, the partition function (4) can also be calculated
by using the coherent-state basis:

Z0 =
∫

dzdz∗

2πi
〈z| e−βĤ0 |z〉

= e−β/2
∫

dzdz∗

2πi
〈z|e−βâ†â |z〉 . (5)

Splitting the exponential into N factors and using the following
resolution of the identity operator in terms of coherent states
[10–12],

Î =
∫

d2z

π
|z〉〈z| :=

∫
dzdz∗

2πi
|z〉〈z|

=
∫

dRezdImz

π
|z〉〈z|, (6)

we arrive at the expression

〈z|e−βâ†â|z〉 = lim
N→∞

N−1∏
j=1

∫
dzjdz∗

j

2πi
e−f0(z∗,z), (7)

where the exponent has the form

f0(z∗,z) =
N−1∑
j=0

[
1

2
(zj+1 − zj )z∗

j+1

− 1

2
(z∗

j+1 − z∗
j )zj + εz∗

j+1zj

]
, (8)

and ε = β/N . Note the boundary conditions in Eq. (7) that
follow from the trace operation z∗

N = z∗,z0 = z. The integra-
tions can be explicitly performed [10,11], and comparing the
result with Eq. (4) we conclude that∫

D2z

periodic

exp

{
−

∫ β

0
dτ

[
1

2
(z∗ż − ż∗z) + |z|2

]}

= e−β/2 lim
N→∞

N∏
j=0

∫
dzjdz∗

j

2πi
e−f0(z∗,z). (9)

It is a simple exercise [3] to confirm that the factor appearing
in the right-hand side (rhs) of the last equation can be absorbed

into the discretized expression by symmetrizing the time
slicing of the Hamiltonian from z∗

j+1zj to z∗
j zj :∫

D2z

periodic

exp

{
−

∫ β

0
dτ

[
1

2
(z∗ż − ż∗z) + |z|2

]}

= lim
N→∞

N∏
j=0

∫
dzjdz∗

j

2πi
exp

[−f
(s)
0 (z∗,z)

]
, (10)

where

f
(s)
0 (z∗,z) =

N−1∑
j=0

[
1

2
(zj+1 − zj )z∗

j+1

− 1

2
(z∗

j+1 − z∗
j )zj + εz∗

j zj

]
. (11)

Despite the fact that the two sides in Eq. (10) have
been calculated independently, we consider this relation as
a definition in the sense that it gives a concrete meaning to the
formal integration over paths that go through a complexified
phase space.

As a definition, Eq. (10) can also be read from a different
point of view. Suppose that we are given the normal ordered
Hamiltonian Ĥ1 = â†â and we want to find the relevant time
continuous coherent-state path integral. The previous analysis
dictates that we must begin by finding the position-momentum
expression for the Hamiltonian in hand Ĥ1 = p̂2/2 + q̂2/2 −
1/2. Then, we have to construct the Feynman phase-space
path integral in which this Hamiltonian assumes its classical
version HF

1 = p2/2 + q2/2 − 1/2. Making in this integral the
variable change (3) we get HF

1 = |z|2 − 1/2, thus obtaining
the continuous path integral we are looking for. The discretized
definition of this integral can be read from Eq. (10):

Tre−βĤ1 =
∫

D2z

periodic

e− ∫ β

0 dτ [ 1
2 (z∗ ż−ż∗z)+HF

1 (z∗,z)]

= eβ/2 lim
N→∞

N∏
j=0

∫
dzjdz∗

j

2πi
exp

[−f
(s)
0 (z∗,z)

]
. (12)

In this trivial example it is useful to point out that, although
we began from a normal ordered Hamiltonian, the Hamiltonian
entering into the continuous path integral is the Weyl symbol
HW (z∗,z), which, in the present case, coincides with HF

1 (z∗,z).

III. THE ONE-SITE BOSE-HUBBARD MODEL

As a less trivial example let us consider the one-site BH
model:

ĤBH = −μn̂ + U

2
n̂(n̂ − 1), (13)

where n̂ = â†â denotes the particle number operator, μ is the
chemical potential, and U is the corresponding interparticle
interaction strength. The partition function of this system is
readily seen to be

ZBH = Tre−βĤBH =
∞∑

n=0

e−β[−μn+ U
2 n(n−1)]. (14)
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The same result can be obtained by going directly through
path integration. As the above discussion has shown, the route
begins by using the “position” and “momentum” operators to
rewrite Eq. (13) in the form

ĤBH = −1

2
(μ + U )(p̂2 + q̂2) + U

8
(p̂2 + q̂2)2 + μ

2
+ 3U

8
.

(15)

The partition function of the system can now be expressed as
a Feynman phase-space path integral:

ZBH =
∫

Dp

∫
Dq

q(0)=q(β)

exp
{−ipq̇ + HF

BH(p,q)
}
. (16)

It is obvious that, in the last expression, HF
BH stands for the

classical version of the quantum Hamiltonian (15). Introducing
the complex variables (3), we obtain

ZBH = e−β( μ

2 + 3U
8 )

×
∫

D2z

periodic

e− ∫ β

0 dτ [ 1
2 (z∗ ż−ż∗z)−(μ+U )|z|2+ U

2 |z|4]

= e−β( μ

2 + 3U
8 ) lim

N→∞

N∏
j=0

∫
dzjdz∗

j

2πi
e−f

(s)
BH(z∗,z), (17)

where

f
(s)
BH(z∗,z) =

N−1∑
j=0

[
1

2
(zj+1 − zj )z∗

j+1

− 1

2
(z∗

j+1 − z∗
j )zj − ε(μ + U )|zj |2 + ε

U

2
|zj |4

]
.

(18)

We shall prove that the above integral can be exactly calculated
yielding the result of Eq. (14). Before this, however, a comment
is in order. The Hamiltonian entering in the last expression,

HF
BH(z∗,z) = −(μ + U )|z|2 + U

2
|z|4 + μ

2
+ 3U

8
, (19)

constitutes (apart from a constant) the Weyl-symbol Hamilto-
nian HBH,W for the system under consideration. To understand
this point we must take a closer look at the proposed technique
that follows the route

Ĥ (â†,â) → Ĥ (q̂,p̂) → HF (q,p) , (20)

which is a recipe for associating an arbitrary quantum
Hamiltonian with a classical function. The key observation is
that when the quantum Hamiltonian is a polynomial in â and
â† the respective time slicing of the Feynman path integrals [3]
leads to expressions that differ from the Wigner transformation

HW (p,q) =
∫ ∞

−∞
dseips

〈
q − s

2

∣∣∣∣Ĥ
∣∣∣∣q + s

2

〉
, (21)

which defines the Weyl symbol, by at most a constant.
The calculation of the integral (17) proceeds with the use

of a Hubbard-Stratonovich [24–28] transformation. This can
be realized by the introduction of the collective field ζ = |z|2

and the use of the functional identities

1 =
∫

Dζ δ[ζ − |z|2],

(22)

δ[ζ − |z|2] =
∫

Dσe−i
∫ β

0 dτσ (ζ−|z|2).

In this way the integral under consideration takes the form

ZBH = e−β( μ

2 + 3U
8 )

∫
Dζ

∫
Dσ

× e−i
∫ β

0 dτσζ− U
2

∫ β

0 dτζ 2+(μ+U )
∫ β

0 dτζ

×
∫

D2z

periodic

e− ∫ β

0 dτ [ 1
2 (z∗ ż−ż∗z)−iσ |z|2]. (23)

Here, the last functional integration can be performed directly
in the continuum [3]. The result reads as follows:

∫
D2z

periodic

e− ∫ β

0 dτ [ 1
2 (z∗ ż−ż∗z)−iσ |z|2] = e

i
2

∫ β

0 dτσ

1 − ei
∫ β

0 dτσ
. (24)

Inserting this into Eq. (23), and assuming that a small positive
imaginary part accompanies the field σ , we can immediately
find that

ZBH = e−β( μ

2 + 3U
8 )

∫
Dζ

∫
Dσ

× e−i
∫ β

0 dτσζ− U
2

∫ β

0 dτζ 2+(U+μ)
∫ β

0 dτζ

∞∑
n=0

ei(n+ 1
2 )

∫ β

0 dτσ

= e−β( μ

2 + 3U
8 )

∫
Dζe− U

2

∫ β

0 dτζ 2+(U+μ)
∫ β

0 dτζ

×
∞∑

n=0

∫
Dσe−i

∫ β

0 dτσ (ζ−n−1/2). (25)

The integration over the field σ results in a functional delta
function that forces the field ζ to be a constant: ζ = n + 1/2.
Thus we get

ZBH = e−β 3U
8

∞∑
n=0

e− U
2 β(n+ 1

2 )2+Uβ(n+ 1
2 )+μβn

=
∞∑

n=0

e−β[−μn+ U
2 n(n−1)]. (26)

Before proceeding, a comment is needed. Let us suppose
that one tries to calculate the integral (17) by using polar
coordinates z = √

reiθ [14]. In this case the continuum action
is supposed to have the form

∫ β

0
dτ

[
irθ̇ − (μ + U ) r + U

2
r2

]
= ir(β)θ (β) − ir(0)θ (0)

+
∫ β

0
dτ

[
−iṙθ − (μ + U )r + U

2
r2

]
. (27)
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The measure of the functional integration is taken to be∫
D2z =

∫
DrDθ = lim

N→∞

N∏
j=0

∫ ∞

0
drj

∫ 2π

0

dθj

2π
. (28)

The integral over θ ensures that r is a constant and the first
term in the lhs of Eq. (28) forces this constant to be an integer.
In this manner, one arrives at the wrong conclusion that

ZBH = e−β( μ

2 + 3U
8 )

∞∑
n=0

e−(μ+U )nβ− U
2 n2β. (29)

The problem has nothing to do with the BH path integral (17);
it persists even for the trivial case of the simple harmonic
oscillator in Eq. (4) and the well-known result of Eq. (14) is
not reproduced. The culprit for these wrong results is the fact
that the parameter θ (t), being the phase of z(t), is a multivalued
function: At every instant t it is possible to add an arbitrary
integer multiple of 2π without changing eiθ(t). Thus the use of
the Leibnitz rule that led to the expression (28) was completely
illegal [29]. The problem persists even in the discrete version
of the relevant integral: A calculation based on the use of polar
coordinates fails to reproduce the correct continuum limit.
The proper way to take into account the periodicity of z is by
writing [3]

z (τ ) = 1√
β

∞∑
m=−∞

zme
−i 2πm

β
τ
. (30)

In this way, the correct results emerge in both the continuum
and the discretized versions of the path integral.

IV. CORRELATION FUNCTIONS

As long as we are interested in the partition function of
a system, the measure of integration in terms of the (p,q)
variables can be immediately translated into the measure in
terms of the (z,z∗) variables. The situation changes when
we are interested in calculating path integrals with specific
boundary conditions in the complexified phase space. This
kind of calculation is tightly related with correlation functions
that are the basic tools needed in any actual calculation
pertaining to systems with interactions.

We can express propagators in the coherent-state language
beginning with the definition

〈zb| Û (T ,0) |za〉
=

∫
D2z

z∗(T ) = z∗
b

z(0) = za

e−
ba ei
∫ T

0 dt[ i
2 (z∗ ż−ż∗z)−HF (z∗,z)]. (31)

In this expression we have denoted the time evolution operator
as

Û (tb,ta) = T̂ exp

{
−i

∫ T

0
dtĤ (t)

}
, (32)

and we have used the abbreviation


ba = 1
2 (|zb|2 + |za|2) − 1

2 [z∗
bz(T ) + z∗(0)za]. (33)

The interpretation of Eq. (31) is the following: In the lhs one
begins by dividing the time interval (T ,0) into small pieces

ε = T/N ; inserting in each step the coherent-state resolution
of the identity operator and following the standard [10,11]
procedure leads to the symmetric time-sliced version of
the coherent-state path integral. The limit N → ∞ of this
discretized expression defines the path integral that appears in
the rhs in Eq. (31).

The consequences of the definition (31) can be trivially
checked in the case of a harmonic oscillator with a frequency
ω. Starting from the rhs we solve the classical equations of
motion with the boundary conditions z∗

cl(T ) = z∗
b,zcl(0) = za ,

finding that

zcl = zae
iωt , z∗

cl = z∗
be

−iω(T −t). (34)

Then we perform the replacements z → z + zcl and z∗ →
z∗ + z∗

cl in order to find∫
D2z

z∗
b,za

e−
abei
∫ T

0 dt[ i
2 (z∗ ż−ż∗z)+ω|z|2]

= exp

{
z∗
bzae

iωT − 1

2
(|zb|2 + |za|2)

}

×
∫

D2z

z∗
b=za=0

ei
∫ T

0 dt[ i
2 (z∗ ż−ż∗z)+ω|z|2]. (35)

According to Eq. (31) the functional integral in the rhs of
Eq. (35) is the vacuum expectation value of the time evolution
operator of the harmonic oscillator:

〈0| Û (T ,0) |0〉 = e−iωT /2. (36)

Inserting Eq. (36) into Eq. (35) we can derive the harmonic
oscillator propagator in the coherent-state representation. This
result could also have been produced [10,11] directly from the
lhs of the definition (31).

Another simple case in which the definition (31) can be
used for calculations directly in the continuum is the case of
the BH model of Eq. (13). In this framework, the propagator

Kba = 〈zb| e−iT ĤBH |za〉 , (37)

is immediately seen to have the form

Kba =
∑
n,m

〈zb|n〉〈n|e−iT ĤBH |m〉〈m|za〉

= e− 1
2 (|zb|2+|za |2)

∑
n

(z∗
bza)n

n!
eiT μn− iU

2 n(n−1). (38)

Then, using the identity

e−i T U
2 n(n−1) = ei UT

8 e−i T U
2 (n−1/2)2

= ei UT
8

√
T

2πiU

∫ ∞

−∞
dωei T

2U
ω2+iT ω(n−1/2), (39)

we can rewrite the propagator into the following exact form
[14]:

Kba = ei UT
8

√
T

2πiU

∫ ∞

−∞
dω exp

{
i

T

2U
ω2 − iωT

2

+ z∗
bzae

i(ω+μ)T − 1

2
(|zb|2 + |za|2)

}
. (40)
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We can arrive at the same result starting from the functional
integral

Kba =
∫

D2z

z∗(T ) = z∗
b

z(0) = za

e−
ba ei
∫ T

0 dt[ i
2 (z∗ ż−ż∗z)−HF

BH(z∗,z)], (41)

in which the Hamiltonian has already be defined in Eq. (19).
Once again, the Hubbard-Stratonovich transformation can

be used to recast the integral (41) into the following form:

Kba = e−iT ( μ

2 + 3U
8 )e− 1

2 (|zb|2+|za |2)
∫

Dζ

∫
Dσ

× e−i
∫ T

0 dtσζ−i U
2

∫ T

0 dtζ 2+i(μ+U )
∫ T

0 dtζ K̃ba, (42)

where the kernel reads

K̃ba =
∫

D2z

z∗
b,za

ei
∫ T

0 dt[ i
2 (z∗ ż−ż∗z)+σ |z|2]+ 1

2 (z∗
bz(T )+z∗(0)za )

= exp

{
i

2

∫ T

0
dtσ + z∗

bzae
i
∫ T

0 dtσ

}
. (43)

Note that in order to arrive at the result indicated in the second
line of the above expression we have made the replacements
z → z + zcl and z∗ → z∗ + z∗

cl, where

zcl = zae
− i

�

∫ t

0 dt ′σ , z∗
cl = z∗

be
− i

�

∫ T

t
dt ′σ (44)

are the solutions of the classical equations of motion, and at
the same time we have used the vacuum expectation value
of a harmonic oscillator with a time-dependent frequency [3].
In order to proceed further we expand the second term that
appears in the exponential factor (43) and insert the result into
Eq. (42), where the integration over σ yields the constraint
ζ = n + 1/2. Thus the propagator now reads

Kba = e−iT 3U
8 e− 1

2 (|zb|2+|za |2)

×
∞∑

n=0

(z∗
bza)n

n!
eiT μn−i U

2 T (n+ 1
2 )

2+iUT (n+ 1
2 )

= e−iT 3U
8 e− 1

2 (|zb|2+|za |2)
∫ ∞

−∞
dxe−i UT

2 x2+iT Ux

×
∞∑

n=0

(z∗
bzae

iT μ)n

n!
δ

(
x − n − 1

2

)
. (45)

Moreover, by inserting into this expression the identity

δ (x − n − 1/2) = T

∫ ∞

−∞

dω

2π
e−iωT (x−n−1/2), (46)

we arrive at the exact result

Kba = e−iT 3U
8 e− 1

2 (|zb |2+|za |2) T

2π

∫ ∞

−∞
dωe

iωT
2 +z∗

bzae
iT (μ+ω)

×
∫ ∞

−∞
dxe−i UT

2 x2+iT Ux−iωT x

= ei UT
8 e− 1

2 (|zb |2+|za |2)

×
√

T

2πiU

∫ ∞

−∞
ωei T

2U
ω2− iωT

2 +z∗
bzae

i(ω+μ)T
. (47)

V. SEMICLASSICAL CALCULATIONS

To probe in a transparent way the classical limit, one can
introduce [12,14] the dimensionless parameter h through the
rescaling (â,â†) → (â,â†)/

√
h. In this notation [â,â†] = h

and |z〉 = e−|z|2/2h
∑∞

n=0
(z/h)n√

n!
|n〉 while the classical limit is

achieved at the limit h → 0. The quantum BH Hamiltonian
(13) is written as ĤBH = −μn̂ + U

2 n̂(n̂ − h) and the exact
propagator (47) assumes the form

Kba = ei hUT
8

√
T

2πihU

∫ ∞

−∞
dω exp

{
1

h
�ω − iωT

2

}
, (48)

where

�ω = i
T

2U
ω2 + z∗

bzae
i(ω+μ)T − 1

2
(|zb|2 + |za|2). (49)

At the limit h → 0 the integral (48) can be evaluated [14] by
finding the stationary points of �ω . At the same result one can
arrive starting from the path integral (41) expressed in terms
of the rescaled variables:

Kba =
∫

D2z

z∗(T ) = z∗
b/

√
h

z(0) = za/
√

h

e−
ba/h

× exp

{
i

h

∫ T

0
dt

[
i

2
(z∗ż − ż∗z) − HF

BH(|z|2; h)

]}
.

(50)

In the above integral the Hamiltonian is the rescaled version
of the function appearing in Eq. (19):

HF
BH(|z|2; h) = −(μ + hU )h|z|2

+h2 U

2
|z|4 + hμ

2
+ h2 3U

8
. (51)

We shall consider here the case of an arbitrary Hamiltonian
as long as it has the form Ĥ = H (n̂). In this case HF =
HF (|z|2; h) and the correlation function (42) can be written as
follows:

Kba = e− 1
2h

(|zb|2+|za |2)

×
∫

Dζ

∫
Dσe− i

h

∫ T

0 dtσζ− i
h

∫ T

0 dtHF (ζ ;h)K̃ba(h). (52)

The factor K̃ba in the last expression is the rescaled version of
Eq. (43):

K̃ba (h) = exp

{
i

2h

∫ T

0
dtσ + z∗

bza

h
e

i
h

∫ T

0 dtσ

}
. (53)

Inserting Eq. (53) into Eq. (52) and repeating the steps of the
previous section we arrive at the following result:

Kba = e− 1
2h

(|zb|2+|za |2)

×
∞∑

n=0

(z∗
bza/h)n

n!
e− i

h
T HF (n+ 1

2 ;h). (54)

This expression can be compared with the standard semiclassi-
cal analysis where one has to solve the classical equations żcl =
−i∂HF /∂z∗

cl and ż∗
cl = i∂HF /∂zcl with boundary conditions

zcl(0) = za and z∗
cl(T ) = z∗

b, respectively. This task can be
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considerably simplified by the introduction of an auxiliary
field σ that serves as a functional Lagrange multiplier:

HF → HF (ζ ) + σ

h
(ζ − |z|2). (55)

In this treatment, which is obviously equivalent to the
Hubbard-Stratonovich transformation we adopted in the previ-
ous sections, the result indicated in Eq. (53) coincides with the
careful calculation of the fluctuation determinant presented in
[13]. Minimizing the final result with respect to σ one arrives
at the expression indicated in Eq. (54).

Supposing that the Hamiltonian we are dealing with is an
analytic function of h we write

HF (ζ ; h) =
N∑

k=0

hkH
(k)
F (ζ ; 0),

(56)

H
(k)
F (ζ ; 0) = 1

k!

∂k

∂hk
HF (ζ ; h)

∣∣∣∣
h=0

.

If the original Hamiltonian was a polynomial in powers of |z|2
the highest power appearing in each term H

(k)
F (ζ ) is ζ k . Thus,

HF (ζ ; h) = h(a1ζ + a0) + h2(b2ζ
2 + b1ζ + b0)

+
N∑

k=3

hkH
(k)
F (ζ ; 0). (57)

In this equation we wrote

H
(1)
F (0; ζ ) = a1ζ + a0,

(58)
H

(2)
F (0; ζ ) = b2ζ

2 + b1ζ + b0.

Neglecting the last term in Eq. (57) and following the algebra
presented in the previous section we can find

Kba = e−iT (a0+a1/2)−iT h(b0−b2
1/4b2)

×
√

T

4πihb2

∫ ∞

−∞
dωe

1
h
�ω+ iωT

2 (1+b1/b2). (59)

Here,

�ω = i
T

4b2
ω2 + z∗

bzae
i(ω−a1)T − 1

2
(|zb|2 + |za|2). (60)

In the BH model the relevant parameters are

a0 = μ/2, a1 = −μ,
(61)

b0 = 3U/8, b1 = −U, b2 = U/2,

and the result of Eq. (47) is retrieved. It is obvious that having
neglected the higher-order terms in the expansion (57) the
integral in Eq. (59) must be evaluated in terms of the stationary
points of the function (60).

VI. CONCLUSIONS AND OUTLOOK

Second quantized Hamiltonians for bosonic systems are
used in a great variety of physical problems [16–23]. Further-
more, the experimental advances call for theoretical methods
that will allow the study of the many-body dynamics deep in
the quantum regime. In the present work we have introduced
a method for defining and handling time continuous coherent-
state path integrals without facing inconsistencies. Such a
path-integral formalism opens, in principle at least, new
possibilities for the analytical study of a variety of second
quantized models. The aim of this paper is not the presentation
of new results. It is, rather, an attempt to set a solid basis for
very interesting calculations which can go beyond the already
known approximate methods.

In our approach, the Hamiltonian that weights the paths
in the complexified phase space is produced through three
simple steps. In the first step one rewrites the second quantized
Hamiltonian Ĥ (â,â†) in terms of “position” and “momentum”
operators. The second step consists of constructing the
Feynman phase-space integral in which the classical form
of this Hamiltonian HF (p,q) enters. The third step is just
a canonical change of variables that produces the final form
HF (z,z∗) which enters into the time continuous form of the
coherent-state path integral. We have followed this simple
method for the case of the one-site BH model and we have
derived the correct expressions for the partition function
and the propagator of the system. We have also discussed
a semiclassical calculation pertaining to a Hamiltonian that
depends only on the number operator.

In a forthcoming study, we intend to use nonperturbative
techniques, already known in the quantum-field-theory com-
munity, in order to study the dynamics in realistic systems and
compare our results with that of already known approximate
methods. Another direction would be the combination of
our technique with the so-called Feynman-Vernon influence
functional formalism for studying open many-body systems,
like the open Bose-Hubbard chains or cavity systems [30],
which are of increasing interest both theoretically [31,32] and
experimentally [33–35].
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