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Superfluid-insulator transition of two-dimensional disordered Bose gases
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We study the two-dimensional weakly repulsive Bose gas at zero temperature in the presence of correlated
disorder. Using large-scale simulations, we show that the low-energy Bogoliubov cumulative density of states
remains quadratic up to a critical disorder strength, beyond which a power law with disorder-dependent exponent
β < 2 sets in. We associate this threshold behavior with the transition from superfluid to Bose glass, and compare
the resulting mean-field phase diagram with scaling laws and the Thomas-Fermi percolation threshold of the
mean-field density profile.
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Disorder can affect the properties of condensed-matter
systems up to the point of completely suppressing transport,
thereby driving metals [1], superconductors [2], and superflu-
ids [3] into insulating phases. While the Anderson transition of
single particles is now relatively well understood [4], the com-
bination of disorder and interactions still poses a number of
important challenges [5]. In systems of repulsive bosons with
potential disorder, the low-temperature superfluid (SF) phase
competes with a compressible insulator called Bose glass (BG)
that prevails except for a regime of weak disorder and interme-
diate interaction strength [6,7]. The mechanisms of the SF-BG
transition, which are relevant for 4He in porous media [8],
Josephson-junction arrays [9], arguably also driven-dissipative
polariton fluids [10] and superconducting films [11], have
recently attracted renewed interest due to experiments with
quantum magnets [12] and ultracold gases [13–16]. Through
unprecedented control over interactions and disorder statistics
[17], the latter allow quantitative comparisons with theory [18].

On the theory side, progress has been made in understand-
ing the features of the SF-BG transition in one dimension
(1D), such as the detailed shape of the phase diagram [19–25],
the critical regime [26–30], the connection to finite temper-
ature [31], and dynamical properties related to elementary
excitations [21,32,33]. Yet, much less is known about two
dimensions (2D), including the weakly interacting regime
that is the focus of current experiments with ultracold Bose
gases [34,35]. Renormalization-group (RG) approaches are
complicated by the lack of an equivalent of Luttinger-liquid
theory [6] and by higher connectivity [36], which reduces
the impact of isolated weak links [21,26,30,37]. The role
of percolation, in particular, is supported by numerical RG
and Gutzwiller studies [36,38]. Monte Carlo calculations have
also successfully characterized the quantum phase diagram at
strong interactions but appear to be challenged by the large
system sizes required in the opposite limit [39,40]. Other
recent studies addressed nonzero temperatures [41] and the
special case of infinitely repulsive lattice bosons [42]. As for
the weakly interacting regime, scaling laws have been derived
on the basis of purely dimensional, mean-field considerations
[20,21], but further quantitative predictions and actual signa-
tures of the T = 0 transition are missing in that context, with
the exception of the superfluid fractions analyzed in Ref. [43].

In this work, we examine the ground state of a disordered
weakly interacting 2D Bose gas, and account for quantum
fluctuations within Bogoliubov theory. Our analysis of the

SF-BG transition involves Landau’s criterion for superfluidity
[44], which in the disorder-free case relates the stability of
the SF phase against the creation of excitations, to their linear
dispersion relation E(k) at low energy, i.e., to an E2 energy
dependence of their cumulative density of states (CDOS) in
2D. While momentum is not conserved in the disordered case,
the energy dependence of the disorder-averaged CDOS still
allows an inspection of Landau’s criterion. Our numerical
results reveal an abrupt change in the Bogoliubov CDOS
that marks the suppression of phononlike excitations and the
transition to the Bose glass. This signature is used to delineate
the SF-BG phase diagram as a function of disorder amplitude
and spatial correlation vs interaction strength, and to assess
the predictions of a classical percolation analysis.

The Bose gas is described by the continuum many-body
Hamiltonian

Ĥ =
∫

d r
[
�̂†(r)Ĥ0�̂(r) + g

2
�̂†(r)�̂†(r)�̂(r)�̂(r)

]
,

(1)
where �̂(r) is the bosonic field operator, g > 0 is the
coupling constant of a repulsive contact interaction, Ĥ0 =
− �

2

2m
∇2

r + V (r) is the noninteracting Hamiltonian, and V (r)
is a random potential with configuration average V (r) = 0.
Although the approach below is general, we assume that V

is Gauss distributed and Gauss correlated, with V (r)V (r ′) =
�2e−(r−r ′)2/2η2

, and we introduce the energy scale Ec =
�

2/(2mη2) associated with the correlation length η. For
weak interactions, the Bose gas is accurately described by
Bogoliubov theory [45]. In the density-phase formulation
of the latter [46], the field operator is written as �̂(r) =
eiθ̂ (r)√ρ0(r) + δρ̂(r), and Ĥ is expanded to second order in the
quantum fluctuations θ̂ and δρ̂. The ground-state mean-field
density ρ0(r) obeys the Gross-Pitaevskii equation

[Ĥ0 + gρ0(r)]
√

ρ0(r) = μ
√

ρ0(r), (2)

where μ is the chemical potential. The quadratic Bo-
goliubov Hamiltonian is “diagonalized” by a canoni-
cal transformation to the bosonic quasiparticle opera-
tors b̂j = ∫

d r[u∗
j (r)δ�̂(r) − v∗

j (r)δ�̂†(r)], with δ�̂(r) =
i
√

ρ0(r)θ̂ (r) + δρ̂(r)/[2
√

ρ0(r)], while uj and vj are given by
the positive-energy (Ej > 0) solutions of the Bogoliubov–de
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Gennes equation (BdGE)

LGP

(
uj (r)
vj (r)

)
= Ej

(
uj (r)
vj (r)

)
(3)

with

LGP =
(

Ĥ0 + 2gρ0(r) − μ gρ0(r)
−gρ0(r) −Ĥ0 − 2gρ0(r) + μ

)
. (4)

Equations (2)–(4) give access to the excitation spectrum,
the correlation functions, and the thermodynamic properties of
the weakly interacting Bose gas at low temperatures [46,47].
For the d-dimensional Bose gas at T = 0, the Bogoliubov
expansion is valid wherever ρ0(r)ξd � 1 [46,48]. Here ξ =
�/

√
mU is the healing length associated with the interaction

energy U = gρ0. Hence, even in the strongly disordered
case, the regions of space where Bogoliubov theory breaks
down become asymptotically small in the limit ρ0 → ∞
(g → 0) at constant U . Remarkably, the derivation of the
BdGE in the density-phase picture does not rely on the
existence of a condensate with well-defined phase, but rather
on the smallness of phase gradients and relative density
fluctuations, as ensured by the sole small parameter 1/(ρ0ξ

d ).
The density-phase formulation has thus successfully been used
to describe quasicondensate phases [46], as well as properties
of the insulating phase across the SF-BG transition [33].
In the latter setting, the Bogoliubov approximation neglects
(subleading) corrections in inverse powers of the density that
become relevant in a many-body description of the critical
regime [22,30,36]. Yet, for typical experiments in the weakly
interacting regime [35,49], where criterion ρ0ξ

d � 1 is met by
one or two orders of magnitude, many-body corrections to the
phase boundary are expected to remain small. Interestingly, the
asymptotic proportionality of the critical Luttinger parameter
Kc to ρ0 in the mean-field limit (ρ0 → ∞ at fixed U ), as
inferred from Refs. [21,33,50], also appears to be compatible
with the nonuniversal behavior Kc 	= 3/2 recently put forward
for the weakly interacting and strongly disordered regimes in
1D [26,30]. Besides, the existence of a true critical behavior at
the mean-field level, as suggested for 1D [51], remains an open
question that calls for an analysis within Bogoliubov theory in
dimension d > 1.

In the present work, we analyze the CDOS of Bogoliubov
excitations, defined as

NV (E) = 1

V

∫ E

0+
dE′ ∑

j

δ(E′ − Ej ) (5)

for a system of volume V and a given potential configuration,
with Ej the corresponding eigenvalues of the BdGE (3).
In the thermodynamic limit NV (E) is expected to converge
to the nonrandom quantity N (E) = limV→∞ NV (E) due to
self-averaging [52], and we focus on the low-energy properties
of N (E). The rationale of our approach lies in the connection
between low-energy excitations of the Bose gas and its super-
fluid properties. As anticipated in the introduction, Landau’s
criterion for superfluidity requires the excitation dispersion
relation E(k) to be such that vc ≡ mink[E(k)/(�k)] > 0. In
the homogeneous case, the BdGE (3) has plane-wave solutions
that cross over from a quadratic free-particle-like dispersion for
k � 1/ξ [i.e., E(k) � μ = U ] to a linear phononlike disper-

sion E(k) ∼ �v0
s k for k � 1/ξ , with v0

s = √
U/m identified

as the sound velocity [47]. Hence, vc = v0
s and the weakly

interacting Bose gas (U > 0) is superfluid. In the presence of
disorder, Landau’s criterion needs to be examined with care
due to the broken translation invariance. For weak disorder,
the spectral broadening of low-energy Bogoliubov excitations
is negligible in comparison to their energy shift [53], so that
the notion of dispersion relation remains meaningful. In this
regime, the linear low-energy dispersion survives with a speed
of sound vs that is reduced by disorder [54]. This implies

N (E) = αd

(2π )d
k(E)d ∼ αd

(hvs)d
Ed (E → 0+), (6)

where αd is the volume of the unit ball in d dimensions,
and k(E) is the inverted dispersion relation. The CDOS thus
increases in the presence of weak disorder, but N (E)E−d

remains bounded for E → 0+. At the transition to the
BG insulator, however, sound is expected to be suppressed
in a handwaving application of Landau’s criterion. Then,
the assumption of a well-defined dispersion E(k) satisfying
limk→0[E(k)/(�k)] = 0 implies thatN (E)E−d diverges at low
energy. In agreement with this scenario, the density of states
D(E) = dN /dE has been shown to develop a power-law
divergence in the 1D BG phase [21,33,55]. Accordingly, we
use the boundedness ofN (E)E−d when E → 0+ as a criterion
of superfluidity, and the onset of a divergence as a signature of
the SF-BG transition. We observed that for large 2D systems
as considered here the computation of superfluid fractions
with twisted boundary conditions [21] poses serious numerical
challenges, and the CDOS results prove more reliable and
accurate.

To characterize the SF-BG transition, we computed the
Bogoliubov CDOS in finite but large systems of size V = L2

with periodic boundary conditions, and averaged over disorder
configurations to obtain reliable estimates of NV (E), i.e.,
N (E) up to residual finite-size effects. Equations (2) and (3)
were discretized on a square lattice with spacing � = L/n�,
while aiming at t = �

2/(2m�2) � U,�,Ec in order to emulate
the continuum limit. Unless stated otherwise, we simulated
systems of size 512η × 512η, and we chose t = 4Ec (i.e.,
η = 2�) to resolve energies E � U,�,Ec despite finite-size
cutoffs.

For each disorder configuration, the density ρ0(r) was
calculated with a conjugate-gradient technique [56]. Figure 1
shows a disorder configuration and the resulting density for
two disorder amplitudes. Subsequently we computed the local
CDOS NV (r,E) = ∑

0<Ej �E pj (r), where pj (r) = u2
j (r) −

v2
j (r), for a set of positions r , using a kernel polynomial

method (KPM) [50,57]. The latter offers an efficient alternative
to the (partial) diagonalization of LGP, e.g., via Lanczos-type
techniques, which becomes prohibitive for the system sizes
under scrutiny. The particular weighting pj (r) of the (real-
valued) Bogoliubov modes stems from their biorthogonality
relations [46,48,50] and corresponds to a trace over particle-
hole (u-v) space. This weighting also implies that the CDOS
for a configuration may be obtained as the spatial average
NV (E) = V−1

∫
d rNV (r,E).
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ρ 0(r)
ρ 0

V (r)
Δ

FIG. 1. (Color online) Upper panel: disorder configuration with
correlation length η = 4�. Lower panels: corresponding ground-state
density profiles ρ0(r) for an interaction strength of U = gρ0 = 1.6Ec

and disorder amplitudes � = 0.8Ec (left) and � = 9.6Ec (right).

In our KPM scheme, the local CDOS is expanded as

NV (r,E) = μ0(r)

π
arcsin

(
E

Emax

)

−
+∞∑
p=1

μ2p(r)

pπ
sin

[
2p arccos

(
E

Emax

)]

− 2φa(r)φ0(r), (7)

where the μn(r) are Chebyshev moments [57] of the local
Bogoliubov DOS, given by

μn(r) = (〈r|,〈r|)Tn (LGP/Emax)

(|r〉
|r〉

)
. (8)

Above, the Tn are Chebyshev polynomials of the first kind,
and Emax is a scaling factor slighty larger than the maximum
eigenvalue of the discretized LGP, which we calculated by
power iteration for each configuration. Equation (8) allows
an iterative computation of μn(r), n = 0,1, . . . , that requires
only one sparse-matrix vector multiplication for each new
order n. We truncated expansion (7) at order nmax = 106 and
used a Jackson kernel to damp Gibbs oscillations [57], thereby
achieving a level broadening well below 10−3Ec even for the
largest disorder amplitudes, for which Emax reached 400Ec.
Expression (8) entails a contribution from the zero eigenspace
of LGP [46,48], which is canceled by the last line of Eq. (7),
where φ0(r) = √

ρ0(r)/N0, with N0 the number of bosons, and
φa(r) is an anomalous term, which can be calculated explicitly
[46,48]. We found the 2φa(r)φ0(r) term to have a negligible
impact outside the low-energy range where only very few
(�10) states are accumulated in NV (r,E), and we omitted

−1.5 −1 −0.5 0

1

1.5

2

2.5

3

3.5

4

lo
g 10

[V
 N

(E
)]

log
10

(E/E
c
)

−1.8 −1.3 −0.8
4.7
4.8
4.9

5

−0.5 0 0.5 1
1

1.5

2

2.5

3

3.5

4

4.5

log
10

(E/E
c
)

lo
g 10

[V
 N

(E
)]

−0.8 −0.2 0.4

3

3.1

3.2

Δ=1.8E
c

Δ=3.0E
c

Δ=56E
c

Δ=68E
c

(a)

(b)

BG

SF

β = 2.00 ± 0.02 (SF)

β = 2.01 ± 0.02 (SF)

β = 1.83 ± 0.05 (BG)
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SF
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FIG. 2. (Color online) Averaged CDOS NV (E) � N (E), mul-
tiplied by the volume V , for (a) U = 0.4Ec and (b) U = 32Ec.
The red dashed lines are linear fits to the low-energy part of the
log-log data. The blue and green data bracket the critical disorder
strength, as revealed by a change in the β exponent of the power-law
asymptotics (see Fig. 3). The black dash-dotted lines show the
� = 0 asymptotics VN (E) ∼ Vα2(hv0

s )−2E2 [see Eq. (6)]. Insets:
log10[VE2

cNV (E)E−2] vs log10(E/Ec). The dashed lines reflect the
fits of the main panels, and negative slopes mark a divergence of
N (E)E−2 as E → 0+, i.e., an insulating behavior.

the counterterm in Eq. (7) accordingly. Finally, rather than
averaging NV (r,E) over r for each configuration, we directly
performed the disorder average at position r = 0 to obtain
NV (E).

With the above procedure, we computed the Bogoliubov
CDOS for various interaction strengths U and for increasing
disorder strength �, averaging over 200 to 1000 configurations
for each (U,�) pair. For all values of U , we found (i) a
gapless spectrum at all disorder strengths (down to finite-size
gaps of about 10−2Ec to 10−1Ec by increasing values of U ),
as expected for the SF and BG phases; (ii) a quadratic and
enhanced CDOS N (E) at low energies, reflecting a speed
of sound reduced by disorder; and (iii) at a critical disorder
strength, the onset of a power-law behavior N (E) ∼ Eβ with
(disorder-dependent) exponent β < 2, signaling the loss of
sound. Figures 2(a) and 2(b) show the disorder-averaged
CDOS obtained for a set of representative (U,�) pairs in the
white noise (WN, U � Ec) and Thomas-Fermi (TF, U � Ec)
regimes. The red dashed curves are linear fits to the log-log
data at low E. Figure 3 displays the corresponding slopes β,
and demonstrates a threshold behavior that we associate with
the SF-BG transition.
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FIG. 3. (Color online) Power-law exponent β versus disorder
strength �, as obtained from fits to the low-energy CDOS data (see
Fig. 2), for (a) U = 0.4Ec and (b) U = 32Ec. The error bars are 95%
confidence intervals of the fits.

To determine the critical disorder for each U , the β data
was interpolated linearly and a threshold β value set at 1.96
to account for the typical error bars of 2% found close to the
transition (see Fig. 3). The resulting phase diagram is shown
in Fig. 4. The error bars on the data reflect the uncertainty
on the critical � inherited from the β exponents. In the WN
regime the boundary follows a power law �/Ec = ζ (U/Ec)α ,
with α = 0.49 ± 0.13 and ζ = 3.78 ± 0.45, in agreement with
the square-root dependence expected at the mean-field level,
irrespective of Gaussian statistics [20,21]. In the TF regime we
find a power α = 1.01 ± 0.10 that is also consistent with the
linear behavior expected from mean-field scaling arguments
[20,21]. The critical ratio �/U = 1.83 ± 0.37 in this regime
lies below the TF percolation threshold �/U = √

2π of ρ0(r)
in Gaussian 2D disorder [58]. In other words, the classical
percolation of the ground-state density is not sufficient to
ensure superfluidity. These findings agree with those of a
recent Monte Carlo study of the T > 0 phase diagram in
speckle disorder [41], and suggest that the notion of superfluid
puddles in a percolation picture of the transition [16,36,38]
should be characterized with care. It is also worth comparing
our results to the T = 0 study of Ref. [43]. While the superfluid
fractions found therein for the WN regime are consistent with
a square-root law, no data were presented for the TF regime
where a classical percolation analysis applies. Moreover, the
data of Ref. [43] were obtained for systems of a few tens of
correlation lengths and extrapolated with an ad hoc scaling
law. By contrast, the system sizes achieved here and the
threshold behavior observed in the power-law CDOS allow

10
0

10
1

10
1

U/E
c

/E
c

Bose Glass

Superfluid

FIG. 4. (Color online) Phase diagram of the 2D Bose gas as a
function of interaction and disorder. The green dashed line shows
the percolation threshold for the density ρ0(r) based on the Thomas-
Fermi limit of Eq. (2). The red line represents linear fits to the four
leftmost and three rightmost data points on log-log scale.

us to locate the phase boundary with an accuracy of 10%–20%
with the presently available � values. It is worth noting that
a reduction of the linear system size L lifts the low-energy
finite-size cutoff by the same factor, due to the linear dispersion
at the transition. We found that in systems of 128η × 128η the
asymptotics of Fig. 2 were barely emerging, which typically
lead to an underestimation of the critical �. Quite generally, a
finite size is expected to limit the resolution on the critical �

by masking the departure from β = 2 at arbitrarily low energy.
In conclusion, we analyzed the cumulative density of states

N (E) of the Bogoliubov excitations of disordered bosons in
2D. We found power-law asymptotics N (E) ∼ Eβ at low
energy for all disorder strengths, with a sharp threshold
behavior in the exponent β indicating a transition to the
Bose-glass phase. Our numerical results provide a quantitative
picture of the T = 0 mean-field phase diagram in the white-
noise and Thomas-Fermi regimes, which should be valuable
for both the analysis of present experiments [16,35,49] and the
identification of other signatures of the 2D phase transition,
e.g., in coherence [50] or localization properties [32,42].
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