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Unambiguous discrimination of linearly independent pure quantum states:
Optimal average probability of success
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We consider the problem of unambiguous (error-free) discrimination of N linearly independent pure quantum
states with prior probabilities, where the goal is to find a measurement that maximizes the average probability of
success. We derive an upper bound on the optimal average probability of success using a result on optimal local
conversion between two bipartite pure states. We prove that for any N � 2 an optimal measurement in general
saturates our bound. In the exceptional cases we show that the bound is tight, but not always optimal.
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One of the consequences of the superposition principle is
that quantum states could be nonorthogonal, which restricts
our ability to reliably determine the state of a quantum
system even when the set of possible states is known. Thus
a fundamental problem in quantum mechanics is to determine
how well quantum states can be distinguished from one another
(see [1,2] for reviews). In its simplest form, the problem is
defined as follows: A quantum system is prepared in one
of N known pure states |ψ1〉,|ψ2〉, . . . ,|ψN 〉 with associated
probabilities p1,p2, . . . ,pN , where 0 < pi < 1 for every i and∑N

i=1 pi = 1. We do not know which state the system is in,
but wish to identify it. If the states are mutually orthogonal,
the solution is straightforward. However, if the states are not
mutually orthogonal, then quantum mechanics forbids us from
distinguishing them perfectly. Therefore, the objective is to
devise a measurement strategy that is optimal according to
some reasonable quantifier of distinguishability. This scenario
is typical in quantum information theory, especially in quan-
tum communications and quantum cryptography.

In this paper we consider how well a given set of pure
states can be discriminated without error. This measurement
strategy, known as unambiguous discrimination, seeks certain
knowledge of the state of the system balanced against a
probability of failure. Since no error is permitted, in addition
to the measurement outcomes that correctly identify the input
state, an inconclusive outcome, which is not informative, must
be allowed. That is, either the input state is correctly detected
or the outcome is inconclusive, in which case we do not
learn anything about the state. It may be noted that in other
strategies such as minimum error discrimination [1,2] and
maximum confidence measurements [2], we cannot in general
be completely sure of the identity of the input state.

Unambiguous discrimination of pure quantum states is
possible if and only if the states are linearly independent [3].
This assumption will therefore hold throughout this paper.
The measurement is described by a positive operator valued
measure (POVM) � = {�k} with N + 1 outcomes, where
�k � 0 and

∑N+1
k=1 �k = I . The POVM elements {�k|k =

1, . . . ,N} are associated with success and satisfy

〈ψi |�j |ψj 〉 = γiδij ∀i, j = 1, . . . ,N, (1)
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where γi is the probability of successfully detecting the
state |ψi〉. Note that Eq. (1) implies that if the system is in
state |ψi〉, the outcome j �= i for j = 1, . . . ,N will never
occur. The operator �N+1 = I − ∑N

i=1 �i corresponds to an
inconclusive outcome. Notice that the set of individual success
probabilities {γ1, . . . ,γN } is determined only by our choice
of POVM. Thus, for a given measurement �, the average
probability of success is defined as

P (�) =
N∑

i=1

piγi. (2)

The goal is to find a measurement that maximizes the average
probability of success. In particular, we are interested in the
following quantity:

Popt = max
{�}

P (�) =
N∑

i=1

piγ
opt
i , (3)

where the optimal solution γ opt = {γ opt
i |i = 1, . . . ,N} is the

set of individual success probabilities maximizing the average
probability of success. The optimal solution is known only
for N = 2 [4–7] and special cases for N � 3 [8–13]. General
results include lower [14,15] and upper [16] bounds on the
average probability of success, a solution for N equiprob-
able symmetric states [17], a formulation of the problem
as a semidefinite program with results for symmetric and
geometrically uniform states [18], characterization of optimal
solutions [8], a graphic method for finding and classifying
optimal solutions [9], and a solution for equidistant states [19].

Before we state our results it is necessary to briefly review
all possible classes of optimal solution [8], precise definitions
of which are given in Ref. [20]. For a given set of N linearly
independent pure states let R be the set of all candidate
optimal solutions. This set, said to be the critical feasible
region, is an (N − 1)-dimensional region (hypersurface) in
the N -dimensional real vector space RN and is completely
determined by the input states and the constraints imposed
by the problem. Once we specify the prior probabilities, the
optimal solution, which is an element of R, becomes unique
in the sense that there is no other solution that is also optimal
for the same set of prior probabilities. Different sets of prior
probabilities in general lead to different optimal solutions
within the set R.
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The optimal solution is either an interior or a boundary point
of R. If it is an interior point then it means that the optimal
measurement is able to discriminate all states, i.e., for every i,
0 < γ

opt
i � 1. On the other hand, if it is a boundary point, then

at least one of the optimal individual success probabilities
is zero. We say that an interior point is nonsingular if the
solution is nondegenerate, i.e., it can be the optimal solution
only for a unique set of prior probabilities. An interior point
can also be singular if the solution is degenerate, i.e., it can be
the optimal solution for different sets of prior probabilities. It
should be noted that interior singular points are exceptions and
may not even exist for a given set of states. Thus there are only
three possible classes of optimal solution: interior nonsingular,
interior singular, and boundary.

Using the conditions in [8], it is easy to show that for a given
set of states, every interior nonsingular point is the optimal
solution for some set of prior probabilities. Noting that the
critical feasible region is of dimension N − 1, the dimension
of the interior part is also N − 1, whereas the dimensions of
the boundary regions are strictly less than N − 1. Therefore,
for almost all assignments of prior probabilities, the optimal
solution will be an interior nonsingular point. In other words,
for any given instance of an unambiguous state discrimination
problem, the optimal solution in general will be an interior
nonsingular point of the critical feasible region.

In this work we derive an upper bound on the optimal
average probability of success using a result [21,22] on optimal
local conversion between two bipartite pure states. We prove
that the bound is saturated when the optimal solution is an
interior nonsingular point of the critical feasible region: the set
of all candidate optimal solutions. From the previous argument
we therefore conclude that for any given set of N � 2 linearly
independent pure states with prior probabilities, the upper
bound in general equals the optimal average probability of
success.

When the optimal solution is either an interior singular point
or a boundary point, we show that the upper bound is tight.
However, we also show that it is not achieved in general by an
optimal boundary solution. The question whether an optimal
solution that is an interior singular point always saturates our
bound remains open.

We begin by obtaining an upper bound on the optimal
average probability of success.

Theorem 1. Suppose a quantum system is prepared in one of
the linearly independent pure states |ψ1〉, . . . ,|ψN 〉 with prior
probabilities p1, . . . ,pN , respectively, where 0 < pi < 1 for
every i and

∑N
i=1 pi = 1. For an optimal unambiguous state

discrimination measurement, the average success probability
Popt is bounded by

Popt � min
{θj }

∥∥∥∥∥∥
N∑

j=1

√
pje

iθj |ψj 〉
∥∥∥∥∥∥

2

. (4)

Essentially we are required to minimize the norm of the vector∑N
j=1

√
pje

iθj |ψj 〉 with respect to the real parameters {θj |j =
1, . . . ,N} we are free to vary. Because of this we can always
set one of the θi , say, θ1, equal to zero and minimize the norm
with respect to the remaining N − 1 parameters. However, it
is often useful to express inequality (4) in a form where the

parameters defining the inner products of the states become
explicit. Let 〈ψi |ψj 〉 = |〈ψi |ψj 〉|eφij , i < j . We then have

Popt � 1 + min
{θi }

∑
1�i<j�N

2
√

pipj |〈ψi |ψj 〉| cos(θj − θi + φij ).

(5)
We shall use (5) in the examples later in the paper and
Ref. [20].

The proof of the theorem relies on two facts. First, any set
of linearly independent quantum states can be unambiguously
discriminated [3]. This simply means that one can always find a
measurement, which may not be optimal, that unambiguously
discriminates all states. Second, a pure bipartite entangled
state with d nonzero Schmidt coefficients can be converted,
with some nonzero probability, to a maximally entangled state
in d ⊗ d by local operations and classical communication
(LOCC). The optimal probability of such a local conversion
can be obtained using the result in [21,22] and is stated in the
following lemma (proof in [20]).

Lemma 1. Let |�〉AB = ∑d
i=1

√
αi |i〉A|i〉B be a bipartite

pure entangled state, where {√αi} are the Schmidt coefficients
such that α1 � · · · � αd > 0 and

∑d
i=1 αd = 1. Then the

optimal probability with which |�〉AB can be locally converted
to a maximally entangled state in d ⊗ d is given by dαd .

Proof of Theorem 1. For convenience we first sketch the
main idea behind the proof. We shall begin with a scenario
of local conversion between two bipartite states (say, source
and target), where the target state is maximally entangled.
The source state is so constructed that (a) any measurement,
say, �, on Alice’s side that unambiguously discriminates the
states {|ψj 〉|j = 1, . . . ,N} constitutes a local protocol for the
aforementioned state transformation and (b) the probability
of local conversion, say, P (�), thus obtained is exactly equal
to the average probability of success in an unambiguous dis-
crimination scenario, where the measurement � distinguishes
the states {pj ,|ψj 〉|j = 1, . . . ,N}. However, for any �,
P (�) is bounded by the optimal local conversion probability
obtained from Lemma 1. An upper bound on the optimal
average probability of success follows by choosing Alice’s
measurement to be optimal for unambiguous discrimination,
that is, � = �opt. Further refinement leads us to inequality (4).
We now give the formal proof in three key steps.

(i) Consider a bipartite scenario with two spatially separated
observers, Alice and Bob, with Alice holding quantum systems
A1 and A2 of dimensions N ′ � N and N , respectively, and Bob
holding a quantum system B of dimension N . Alice and Bob
share the pure state

|ψθ 〉AB =
N∑

j=1

√
pje

iθj |ψj 〉A1 ⊗ |
j 〉A2B, (6)

where θ represents the collection of parameters {θi |i =
1, . . . ,N} allowed to vary and {|
j 〉|j = 1, . . . ,N} is a set of
N mutually orthonormal maximally entangled states in N ⊗ N

defined as

|
j 〉 = 1√
N

N∑
k=1

exp

(
2πi(k − 1)(j − 1)

N

)
|k〉|k〉,

j = 1, . . . ,N. (7)
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Suppose Alice and Bob wish to convert |ψθ 〉AB to a maxi-
mally entangled state, say, |
〉AB in N ⊗ N , by LOCC. This
can be achieved by a local protocol, which is not necessarily
optimal, where Alice performs a generalized measurement
(POVM) � = {�k|k = 1, . . . ,N + 1} on system A1 that
unambiguously discriminates the states {|ψj 〉|j = 1, . . . ,N}.
The POVM elements {�k|k = 1, . . . ,N} satisfy Eq. (1), where
the outcomes j = 1, . . . ,N correspond to success and the
outcome j = N + 1 corresponds to failure. If the outcome
is j , the measurement successfully detects the state |ψj 〉 for
j = 1, . . . ,N . From the expression of |ψθ 〉AB given by Eq. (6)
it is evident that this occurs with probability pjγj and for
each of these cases the corresponding maximally entangled
state |
j 〉 is created between Alice and Bob. For j = N + 1,
the outcome is inconclusive and therefore will not be our
concern.

The above local protocol, with some nonzero probabil-
ity, converts the state |ψθ 〉AB to a maximally entangled
state in N ⊗ N . Note that for every successful outcome,
the maximally entangled state created between Alice and
Bob can be converted to the designated state |
〉AB by
local unitaries. Thus the probability of creating a maxi-
mally entangled state between Alice and Bob with this
local protocol is P (�) = ∑N

j=1 pjγj , which is the same
as the average probability of success in unambiguous dis-
crimination of the states {pj ,|ψj 〉|j = 1, . . . ,N} with the
measurement �.

Now suppose that the POVM � = �opt, that is, the
measurement is optimal for unambiguous discrimination of
the states {pj ,|ψj 〉|j = 1, . . . ,N}. Then Popt = ∑N

j=1 pjγ
opt
j ,

which by our previous argument is also the probability, not
necessarily optimal, of locally converting the state |ψθ 〉AB

to |
〉AB . However, Popt cannot exceed the optimal local
conversion probability p(ψθ

AB → 
AB) that can be obtained
by applying Lemma 1. Therefore,

Popt � p(ψθ
AB → 
AB). (8)

(ii) To obtain an expression for p(ψθ
AB → 
AB) we first

write |ψθ 〉AB in its Schimdt-decomposed form

|ψθ 〉 = 1√
N

N∑
k=1

‖|ηk〉‖|η′
kk〉A1A2 |k〉B, (9)

where |ηk〉 (unnormalized) is given by

|ηk〉 =
N∑

r=1

√
pre

iθr exp

(
2πi

N
(r − 1)(k − 1)

)
|ψr〉 (10)

and |η′
k〉 = 1

‖|ηk〉‖ |ηk〉 is the normalized state. Observe that

(9) is indeed the Schmidt decomposition of |ψθ 〉AB owing
to 〈η′

kk|η′
mm〉 = 〈η′

k|η′
m〉〈k|m〉 = 〈η′

k|η′
m〉δkm. The Schmidt

coefficients are given by ‖|ηk〉‖√
N

, k = 1, . . . ,N , where for every
k, ‖|ηk〉‖ > 0. Thus all Schmidt coefficients are nonzero. Then
from Lemma 1 it follows that

p(ψθ
AB → 
AB) = min

k
{‖|ηk〉‖2|k = 1, . . . ,N}. (11)

It can be easily seen that p(ψθ
AB → 
AB) depends on {θi |i =

1, . . . ,N}, inner products of the states {|ψr〉|r = 1, . . . ,N},

and the probabilities {pi |i = 1, . . . ,N}. Of all these only the
real parameters θi can be varied, everything else remaining
fixed for a given set {pi,|ψi〉|i = 1, . . . ,N}.

Noting that Popt does not depend on {θi}, inequality (8)
therefore holds for any set {θi} and in particular any set that
minimizes p(ψθ

AB → 
AB). Therefore,

Popt � min
{θi }

p(ψθ
AB → 
AB) (12)

gives us the best possible bound on Popt using this approach.
(iii) To evaluate the right-hand side of (12) we proceed as

follows. First, we observe that

min
{θi }

p(ψθ
AB → 
AB) = min

k
{min

{θi }
‖|ηk〉‖2|k = 1, . . . ,N}.

(13)

Next, we prove the following equality:

min
{θi }

‖|ηk〉‖2 = min
{θi }

‖|ηj 〉‖2 (14)

for every pair (k,j ). To prove Eq. (14) we first express ‖|ηk〉‖2

as

‖|ηk〉‖2 =
∥∥∥∥∥

N∑
r=1

√
pre

iθ ′
r (k)|ψr〉

∥∥∥∥∥
2

, (15)

where θ ′
r (k) = θr + 2π

N
(r − 1)(k − 1) for r = 1, . . . ,N . Now

suppose that the set {θr |r = 1, . . . ,N} minimizes ‖|ηk〉‖2.
Noting that (15) has exactly the same form of ‖|η1〉‖2, the set
{θ ′

r (k)|r = 1, . . . ,N} therefore minimizes ‖|η1〉‖2. A similar
argument holds for every i,i �= k. We have therefore proved
(14) and consequently

min
{θi }

p(ψθ
AB → 
AB) = min

{θi }
‖|ηk〉‖2 ∀k = 1, . . . ,N. (16)

Inequalities (12) and (16) for k = 1 together prove the
theorem. �

We now show that the upper bound in (4) is saturated
when the optimal solution is a nonsingular interior point of
the critical feasible region R. Therefore, in a generic case the
optimal average probability of success is equal to the upper
bound given by Theorem 1.

Theorem 2. Let a quantum system be prepared in one
of the linearly independent pure states |ψ1〉, . . . ,|ψN 〉 with
prior probabilities p1, . . . ,pN , respectively, where 0 < pi < 1
for every i and

∑N
i=1 pi = 1. For an optimal unambiguous

state discrimination measurement, suppose that the solution
is an interior nonsingular point of the critical feasible region.
Then

Popt = min
{θi }

∥∥∥∥∥∥
N∑

j=1

√
pje

iθj |ψj 〉
∥∥∥∥∥∥

2

. (17)

Proof. In [8] it was shown that if γ opt is an interior
nonsingular point of the critical feasible region, then Popt can
be expressed as

Popt =
∥∥∥∥∥∥
∑

j

√
pje

iθ ′
j |ψj 〉

∥∥∥∥∥∥
2

, (18)
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but no explicit expressions of the phases eiθ ′
j were given.

However, it was noted that Popt must be the value of a
stationary point if the phases are allowed to change freely. Note
that without the explicit knowledge of the phases or knowing
how to obtain them (a stationary point may be a minimum or
maximum), Eq. (18) is not very useful.

However, the upper bound in Theorem 1 [inequality (4)],
which holds irrespective of the class of optimal solution, fills
this gap. Consequently,

Popt = min
{θi }

∥∥∥∥∥∥
∑

j

√
pje

iθj |ψj 〉
∥∥∥∥∥∥

2

. (19)

This proves the theorem and also shows that the stationary
point must be a minimum. �

It is not clear whether our bound saturates for the other
two classes of optimal solution, as the expression (18) was
obtained [8] assuming that the optimal solution is an interior
nonsingular point of the critical feasible region. However, by
considering examples from each of the other two classes, we
first show that the upper bound given by Theorem 1 is tight for
both. The third example shows that for a boundary solution,
the optimal value could be strictly less than the value obtained
from our bound. Therefore, an optimal boundary solution will
not in general saturate our bound.

Example I: boundary point. We begin by consider-
ing an example for N = 3 [13], where the given states

|ψ1〉 = (1 0 0)T , |ψ2〉 =
√

1
3 (1 1 1)T , and |ψ3〉 =

1√
3
(1 1 −1)T are equally likely. Noting that the inner

products are all real, inequality (5) becomes (set θ1 = 0)

Popt � 1 + min
{θ2,θ3}

2

3
√

3

[
cos θ2 + cos θ3 + 1√

3
cos(θ3 − θ2)

]
.

By simple numerical minimization using Mathematica we
find that Popt � 0.4444. In [13] it was shown that γ opt =
{0, 2

3 , 2
3 }, from which we obtain Popt = 4

9 = 0.4444. Thus the
upper bound is achieved. As one of the individual success
probabilities is zero, the optimum point is therefore on the
boundary.

It is easy to construct an example for any N � 4 starting
from the one we just discussed. Here we give an example for
N = 4, from which it will be evident how to generalize for
higher N . Consider the set of states {|ψi〉|i = 1, . . . ,4}, where
the first three states are from the above example and the new
state |ψ4〉 has the property that |ψ4〉 ⊥ |ψi〉 for i = 1,2,3. We
choose the prior probabilities as pi = 1−p

3 for i = 1,2,3 and
p4 = p, where 0 < p < 1. In this case, using inequality (5)

we find that

Popt � p + 0.4444(1 − p).

To show that the above bound is tight, we find the optimal
set of the individual success probabilities. Noting that |ψ4〉
is orthogonal to every other state, it is easy to obtain that
γ opt = {0, 2

3 , 2
3 ,1} and Popt = p + 4

9 (1 − p), thereby achieving
the upper bound.

Example II: interior singular point. We begin by con-
sidering such an example for N = 3 [8]. Consider the

vectors |ψ1〉 = (1 0 0)T , |ψ2〉 =
√

1
5 (1 2 0)T , and

|ψ3〉 = 2√
17

(1 1 3
2 )T , with prior probabilities p1 = 0.30,

p2 = 0.35, and p3 = 0.35, respectively. We see that the inner
products are real. Using inequality (5), a simple numerical
minimization using MATHEMATICA shows that Popt � 0.4430,
which agrees with the optimal value [8]. Following the method
used in the previous example, we can therefore generalize this
example for any N � 4.

Example III: In this example we show that the upper
bound does not saturate in general for an. This example
is from [8], where the states |ψ1〉 = (1 0 0)T , |ψ2〉 =√

1
5 (1 2 0)T , and |ψ3〉 = 2√

17
(1 1 3

2 )T occur with
prior probabilities p1 = 0.10, p2 = 0.80, and p3 = 0.10, re-
spectively. Once again using inequality (5), a simple numerical
minimization using Mathematica shows that Popt � 0.4758,
which is pretty close to the optimal value Popt = 0.4632 [8].

To conclude, we studied the problem of unambiguous
discrimination of N linearly independent pure quantum states,
where the measurement strategy is such that either the input
state is correctly identified (zero error) or we learn nothing
about it. The objective is to find a measurement that maximizes
the average probability of success. This problem has been
extensively studied over the years, but the exact solution is
known only for N = 2 and special cases for N � 3. In this
paper we obtained an upper bound on the optimal average
probability of success using a result [21,22] on optimal local
conversion between two bipartite pure states. We showed that
for N � 2 an optimal measurement in general saturates our
bound, thereby providing an exact expression of the optimal
average probability of success in the generic case. In the
exceptional cases we have shown that the bound is tight, but not
always attained for an optimal boundary solution. The question
whether an optimal solution that is an interior singular point
always saturates our bound remains open.
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