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We investigate the monogamy relations related to the concurrence and the entanglement of formation. General
monogamy inequalities given by the αth power of concurrence and entanglement of formation are presented for
N -qubit states. The monogamy relation for entanglement of assistance is also established. Based on these general
monogamy relations, the residual entanglement of concurrence and entanglement of formation are studied. Some
relations among the residual entanglement, entanglement of assistance, and three tangle are also presented.
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I. INTRODUCTION

Quantum entanglement [1–6] is an essential feature of
quantum mechanics, which distinguishes the quantum from
the classical world. As one of the fundamental differences
between quantum entanglement and classical correlations,
a key property of entanglement is that a quantum system
entangled with one of the other systems limits its entanglement
with the remaining others. The monogamy relations give rise
to the structures of entanglement in the multipartite setting.
Monogamy is also an essential feature allowing for security in
quantum key distribution [7].

For a tripartite system A, B, and C, the monogamy of
an entanglement measure ε implies that [8] the entangle-
ment between A and BC satisfies εA|BC � εAB + εAC . Such
monogamy relations are not always satisfied by entanglement
measures. Although the concurrence C and entanglement of
formation E do not satisfy such monogamy inequality, it has
been shown that the squared concurrence C2 [9,10] and the
squared entanglement of formation E2 [11] do satisfy the
monogamy relations.

In this Brief Report, we study the general monogamy
inequalities satisfied by the αth power of concurrence Cα

and the αth power of entanglement of formation Eα . We
show that Cα and Eα satisfy the monogamy inequalities for
α � 2 and α �

√
2, respectively. The monogamy relations

for the entanglement of assistance are also established.
Correspondingly, the residual entanglement of concurrence
and entanglement of formation are also investigated.

II. MONOGAMY RELATION OF CONCURRENCE

For a bipartite pure state |ψ〉AB in vector space HA ⊗ HB ,
the concurrence is given by [12–14]

C(|ψ〉AB) =
√

2
[
1 − Tr

(
ρ2

A

)]
, (1)

where ρA is the reduced density matrix by tracing over the
subsystem B, ρA = TrB(|ψ〉AB〈ψ |). The concurrence for a
tripartite mixed state ρAB is defined by the convex roof

C(ρAB) = min
{pi ,|ψi 〉}

∑
i

piC(|ψi〉), (2)

*Corresponding author: jing_feng1986@126.com

where the minimum (infimum) is taken over all possible
decompositions of ρAB = ∑

i pi |ψi〉〈ψi |, with pi � 0 and∑
i pi = 1 and |ψi〉 ∈ HA ⊗ HB .
For a tripartite state |ψ〉ABC , the concurrence of assistance

(CoA) is defined by [15,16]

Ca(|ψ〉ABC) ≡ Ca(ρAB) = max
{pi ,|ψi 〉}

∑
i

piC(|ψi〉), (3)

where the maximum (supremum) is taken over all
possible decompositions of ρAB = T rC(|ψ〉ABC〈ψ |) =∑

i pi |ψi〉AB〈ψi |. When ρAB = |ψ〉AB〈ψ | is a pure state, then
one has C(|ψ〉AB) = Ca(ρAB).

For an N -qubit state |ψ〉AB1,...,BN−1 ∈ HA ⊗ HB1 ⊗ · · · ⊗
HBN−1 , the concurrence C(|ψ〉A|B1,...,BN−1 ) of the state
|ψ〉A|B1,...,BN−1 , viewed as a bipartite with partitions A

and B1B2, . . . ,BN−1, satisfies the Coffman-Kundu-Wootters
(CKW) inequality [9,10]

C2
A|B1B2,...,BN−1

� C2
AB1

+ C2
AB2

+ · · · + C2
ABN−1

, (4)

where CABi
= C(ρABi

) is the concurrence of ρABi
=

TrB1,...,Bi−1Bi+1,...,BN−1 (ρ), CA|B1B2,...,BN−1 = C(|ψ〉A|B1,...,BN−1 ).
Dual to the CKW inequality, the generalized monogamy

relation based on the concurrence of assistance was proved in
Ref. [17],

C2
(|ψ〉A|B1,...,BN−1

)
�

N−1∑
i=1

C2
a (ρABi

). (5)

The inequalities (4) and (5) are valid because, instead of
the concurrence and CoA, the squared concurrence and CoA
are used. In fact, besides the squared concurrence, one can get
the following general monogamy inequalities.

Theorem 1. For any 2 ⊗ 2 ⊗ · · · ⊗ 2 mixed state ρ ∈ HA ⊗
HB1 ⊗ · · · ⊗ HBN−1 , we have

Cα
A|B1B2,...,BN−1

� Cα
AB1

+ · · · + Cα
ABN−1

(6)

for all α � 2.
Proof. For arbitrary 2 ⊗ 2 ⊗ 2n−2 tripartite state ρABC , one

has [9,18]

C2
A|BC � C2

AB + C2
AC.
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If min{CAB,CAC} = 0, obviously we have Cα
A|BC � Cα

AB +
Cα

AC. If min{CAB,CAC} > 0, assuming CAB � CAC , we have

Cα
A|BC �

(
C2

AB + C2
AC

) α
2 = Cα

AB

(
1 + C2

AC

C2
AB

) α
2

� Cα
AB

[
1 +

(
C2

AC

C2
AB

) α
2
]

= Cα
AB + Cα

AC, (7)

where the second inequality is due to the inequality (1 + x)t �
1 + xt for x � 1 and t � 1.

By partitioning the last qudit system C into two subsystems
(a qubit system C1 and a 2n−3-dimensional qudit system C2),
and using the above inequality repeatedly, one gets (6). �

Theorem 2. For any 2 ⊗ 2 ⊗ · · · ⊗ 2 mixed state ρ ∈ HA ⊗
HB1 ⊗ · · · ⊗ HBN−1 with CABi

�= 0, i = 1, . . . ,N − 1, we have

Cα
A|B1,...,BN−1

< Cα
AB1

+ · · · + Cα
ABN−1

(8)

for α � 0.
Proof. Similar to the proof of Theorem 1, we only need to

prove the inequality is true for arbitrary 2 ⊗ 2 ⊗ 2n−2 tripartite
states

Cα
A|BC �

(
C2

AB + C2
AC

) α
2 = Cα

AB

(
1 + C2

AC

C2
AB

) α
2

< Cα
AB

[
1 +

(
C2

AC

C2
AB

) α
2

]
= Cα

AB + Cα
AC, (9)

where the first inequality is due to α � 0 and the second
inequality is due to Cα

AB > 0 and the inequality (1 + x)t <

1 + xt for x > 0 and t � 0. �
In (8) we have assumed that all CABi

, i = 1, . . . ,N − 1 are
nonzero. In fact, if one of them is zero, the inequality still
holds if one removes this term from the inequality. Namely, if
CABi

= 0, then one has Cα
A|B1,...,BN−1

< Cα
AB1

+ · · · + Cα
ABi−1

+
Cα

ABi+1
+ · · · + Cα

ABN−1
for α � 0.

Theorem 1 shows that the αth power of concurrence
Cα satisfies the monogamy inequality (6) for α � 2. While
Theorem 2 shows that for α � 0, the inequality is reversed.
However, for 0 < α < 2, the situation is not clear. Let us
consider the three-qubit case. Any three-qubit state |ψ〉 can
be written in the generalized Schmidt decomposition [19,20]

|ψ〉 = λ0|000〉 + λ1e
iϕ |100〉 + λ2|101〉

+ λ3|110〉 + λ4|111〉, (10)

where λi � 0, i = 0, . . . ,4, and
∑4

i=0 λ2
i = 1. From (1)

and (2), we have CA|BC = 2λ0
√

λ2
2 + λ2

3 + λ2
4,CAB = 2λ0λ2,

and CAC = 2λ0λ3. Without loss of generality, we set
λ0 = cos θ0,λ1 = sin θ0 cos θ1, λ2 = sin θ0 sin θ1 cos θ2, λ3 =
sin θ0 sin θ1 sin θ2 cos θ3, and λ4 = sin θ0 sin θ1 sin θ2 sin θ3,
θi ∈ [0, π

2 ]. Then we have

Cα
A|BC − Cα

AB − Cα
AC

= (2λ0)α
[(

λ2
2 + λ2

3 + λ2
4

) α
2 − λα

2 − λα
3

]
= (2λ0)α sinα θ0 sinα θ1[1 − cosα θ2 − sinα θ2 cosα θ3].

(11)

From (11) we have Cα
A|BC � Cα

AB + Cα
AC for α � 2. While for

α � 0 one has Cα
A|BC < Cα

AB + Cα
AC . However, for 0 < α < 2,

one can see that the sign of (Cα
A|BC − Cα

AB − Cα
AC) is not

certain.

III. RESIDUAL ENTANGLEMENT OF CONCURRENCE

Similar to the three tangle of concurrence, for the three-
qubit state |ψ〉ABC ∈ HA ⊗ HB ⊗ HC , we can define the
residual entanglement

τC
α (|ψ〉ABC) = Cα

A|BC − Cα
AB − Cα

AC, (12)

where α � 2.

Theorem 3. For any three-qubit pure state |ψ〉 ∈ HA ⊗
HB ⊗ HC :

(1) |ψ〉 is bipartite separable state if and only if for any
α � 2,

τC
α (|ψ〉) = 0;

(2) |ψ〉 is genuine entangled if and only if there is an α � 2
such that

τC
α (|ψ〉) > 0.

Proof. (1) If |ψ〉 is bipartite separable state, without loss of
generality, we assume that |ψ〉 is a B|AC bipartite separable
state, then we have CB|AC = CBA = CBC = 0. From (10) we
have λ0 = 0 and |λ1λ4e

iϕ − λ2λ3| = 0, or λ3 = λ4 = 0 and
|λ1λ4e

iϕ − λ2λ3| = 0. For both the above two cases, we have
CA|BC = CAC and CAB = 0. Therefore τC

α (|ψ〉) = 0 for all α.
If τC

α (|ψ〉) = 0 for any α � 2, then we obtain
C2α

A|BC−C2α
AB−C2α

AC=(Cα
A|BC)2 −C2α

AB−C2α
AC=(Cα

AB+Cα
AC)2 −

C2α
AB − C2α

AC = 2Cα
ABCα

AC = 0, i.e., either Cα
AB or Cα

AC is zero.
Without loss of generality, assuming CAB = 0, we have λ0 = 0
or λ3 = 0. If λ0 = 0, then CA|BC = 0. Hence |ψ〉 is A|BC a
bipartite separable state. If λ0 �= 0 and λ3 = 0 since τC

2 = 0,
we have λ4 = 0. Hence CB|AC = 0, i.e., |ψ〉 is B|AC bipartite
separable.

(2) By using the above proof and the fact that τC
α (|ψ〉) � 0

for all α � 2 from Theorem 1, one gets the result directly. �
Example 1. Let us consider the W state

|W 〉 = 1√
3

(|100〉 + |010〉 + |001〉). (13)

We have τC
α (|W 〉) = ( 2√

3
)α[

√
( 2

3 )α − 2( 1√
3
)α]. For α = 2, τC

α

is just the three tangle of concurrence. As τC
2 (|W 〉) = 0,

the three tangle of concurrence cannot capture the genuine

1.5 2.5 3.0
α

0.1

0.2

0.3

0.4

FIG. 1. (Color online) Solid line: τC
α (|W 〉) as a function of α (α �

2); dashed line: τE
α (|W 〉) as a function of α (α �

√
2).
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entanglement of the W state. Nevertheless, for α > 2, our
residual entanglement of concurrence τC

α (|W 〉) > 0, see Fig. 1.

IV. MONOGAMY INEQUALITY FOR EOF

The entanglement of formation (EoF) [21,22] is a well
defined important measure of entanglement for bipartite sys-
tems. Let HA and HB be m- and n-dimensional (m � n) vector
spaces, respectively. The EoF of a pure state |ψ〉 ∈ HA ⊗ HB

is defined by

E(|ψ〉) = S(ρA), (14)

where ρA = TrB(|ψ〉〈ψ |) and S(ρ) = −Tr(ρ log2 ρ). For a
bipartite mixed state ρAB ∈ HA ⊗ HB , the entanglement of
formation is given by

E(ρAB) = min
{pi ,|ψi 〉}

∑
i

piE(|ψi〉), (15)

with the minimum (infimum) taking over all possible de-
compositions of ρAB in a mixture of pure states ρAB =∑

i pi |ψi〉〈ψi |, where pi � 0 and
∑

i pi = 1. The correspond-
ing entanglement of assistance (EoA) [23] is defined in terms
of the entropy of entanglement [24] for a tripartite pure state
|ψ〉ABC

Ea(|ψ〉ABC) ≡ Ea(ρAB) = max
{pi ,|ψi 〉}

∑
i

piE(|ψi〉), (16)

where the maximum (supremum) is taken over all possible de-
compositions of ρAB = T rC(|ψ〉ABC) = ∑

i pi |ψi〉〈ψi |, with
pi � 0 and

∑
i pi = 1.

Denote f (x) = H ( 1+√
1−x

2 ), where H (x) = −x log2(x) −
(1 − x) log2(1 − x). From (14) and (15), one has E(|ϕ〉) =
f (C2(|ϕ〉)) for 2 ⊗ m (m � 2) pure state |ϕ〉, and E(ρ) =
f (C2(ρ)) for two-qubit mixed state ρ [25]. It is obvious that
f (x) is a monotonically increasing function for 0 � x � 1.
f (x) satisfies the following relations:

f
√

2(x2 + y2) � f
√

2(x2) + f
√

2(y2), (17)

f (x2 + y2) � f (x2) + f (y2), (18)

where f
√

2(x2 + y2) = [f (x2 + y2)]
√

2.
It has been shown that the entanglement of formation

does not satisfy the inequality EAB + EAC � EA|BC [26].
In Ref. [27] the authors showed that EoF is a monotonic
function E2(C2

A|B1B2,...,BN−1
) � E2(

∑N−1
i=1 C2

ABi
). It is further

proved that for N -qubit systems, one has [11],

E2
A|B1B2,...,BN−1

� E2
AB1

+ E2
AB2

+ · · · + E2
ABN−1

.

In fact, generally we can prove the following results.
Theorem 4. For any N -qubit mixed state ρ ∈ HA ⊗ HB1 ⊗

· · · ⊗ HBN−1 , the entanglement of formation E(ρ) satisfies

Eα
A|B1B2,...,BN−1

� Eα
AB1

+ Eα
AB2

+ · · · + Eα
ABN−1

, (19)

where α �
√

2, EA|B1B2,...,BN−1 is the entanglement of forma-
tion of ρ in bipartite partition A|B1B2, . . . ,BN−1, and EABi

,
i = 1,2, . . . ,N − 1, is the entanglement of formation of the
mixed states ρABi

= TrB1B2,...,Bi−1Bi+1,...,BN−1 (ρ).

Proof. Denote t = α/
√

2. For α �
√

2, we have

f α(x2 + y2) = (f
√

2(x2 + y2))t

� (f
√

2(x2) + f
√

2(y2))t

� (f
√

2(x2))t + (f
√

2(y2))t

= f α(x2) + f α(y2), (20)

where the first inequality is due to the inequality (17), and the
second inequality is obtained from a similar consideration in
the proof of the second inequality in (7).

Let ρ = ∑
i pi |ψi〉〈ψi | ∈ HA ⊗ HB1 ⊗ HB2 ⊗ · · · ⊗

HBN−1 be the optimal decomposition of EA|B1B2,...,BN−1 (ρ) for
the N -qubit mixed state ρ, we have

EA|B1B2,...,BN−1 (ρ)

=
∑

i

piEA|B1B2,...,BN−1 (|ψi〉)

=
∑

i

pif
(
C2

A|B1B2,...,BN−1
(|ψi〉)

)

� f

( ∑
i

piC
2
A|B1B2,...,BN−1

(|ψi〉)
)

� f

([∑
i

piCA|B1B2,...,BN−1 (|ψi〉)
]2

)

� f
(
C2

A|B1B2,...,BN−1
(ρ)

)
� f

(
C2

AB1
+ C2

AB2
+ · · · + C2

ABN−1

)
� α

√
f α

(
C2

AB1

) + f α
(
C2

AB2

) + · · · + f α
(
C2

ABN−1

)
= α

√
Eα

AB1
+ Eα

AB2
+ · · · + Eα

ABN−1
,

where the first inequality is due to that f (x2) is a convex
function. The second inequality is due to the Cauchy-Schwarz
inequality: (

∑
i x

2
i )

1
2 (

∑
i y

2
i )

1
2 �

∑
i xiyi , with xi = √

pi and
yi = √

pi CA|B1B2...BN−1 (|ψi〉). Due to the definition of concur-
rence (2) and that f (x) is a monotonically increasing function,
we obtain the third inequality. We have used the monogamy
inequality (4) for N -qubit states ρ to obtain the forth inequality.
The last inequality is due to the inequality (20). Since for
any 2 ⊗ 2 quantum state ρABi

, E(ρABi
) satisfies E(ρABi

) =
H (

1+
√

1−C2(ρABi
)

2 ) = f [C2(ρABi
)], one gets the last equality.

The inequality (19) in Theorem 4 shows that the αth power
of EoF satisfies the monogamy inequality for any α �

√
2,

which is a little different from the case of concurrence in
which α � 2. As for the entanglement of assistance, we have
the following conclusion.

Theorem 5. For any N -qubit pure state |ψ〉 ∈ HA ⊗ HB1 ⊗
· · · ⊗ HBN−1 , the entanglement of assistance satisfies

E(|ψ〉A|B1B2,...,BN−1 ) �
N−1∑
i=1

Ea(ρABi
), (21)

where E(|ψ〉A|B1B2,...,BN−1 ) is the entanglement of formation
of |ψ〉 in bipartite partition A|B1B2, . . . ,BN−1, and ρABi

=
TrB1,...,Bi−1Bi+1,...,BN−1 (|ψ〉〈ψ |).
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Proof. Let ρAB = ∑
i pi |ψi〉〈ψi | be the optimal decompo-

sition of Ca(ρAB). We have

Ea(ρAB) �
∑

i

piE(|ψi〉) =
∑

i

pif
(
C2

a (|ψi〉)
)

� f

[ ∑
i

piC
2
a (|ψi〉)

]
� f

([ ∑
i

piCa(|ψi〉)
]2

)

= f
[
C2

a (ρAB)
]
, (22)

where the first equality is due to that, for a pure state, one
has ρAB = ρ2

AB and C(ρAB) = Ca(ρAB) [17]. The second
inequality is due to that f (x2) is a convex function. The
last inequality is due to the Cauchy-Schwarz inequality with
xi = √

pi and yi = √
pi Ca(|ψi〉).

Therefore for an N -qubit pure state |ψ〉AB1,...,BN−1 , we have

E(|ψ〉A|B1,...,BN−1 ) = f [C2(|ψ〉A|B1,...,BN−1 )]

� f
(
C2

a (ρAB1 ) + · · · + C2
a (ρABN−1 )

)
� f

(
C2

a (ρAB1 )
) + · · · + f

(
C2

a (ρABN−1 )
)

� Ea(ρAB1 ) + · · · + Ea(ρABN−1 ).

The first inequality is due to (5). We have used the inequality
(18) to get the second inequality. The last inequality is due to
(22). �

V. RESIDUAL ENTANGLEMENT OF EOF

Similar to the residual entanglement (12) defined by the
αth (α � 2) power of concurrence, we can define the residual
entanglement by the αth (α �

√
2) power of EoF for a three-

qubit pure state |ψ〉ABC

τE
α (|ψ〉ABC) = Eα

A|BC − Eα
AB − Eα

AC � 0. (23)

As an example, let us consider again the W state (13).
We have EAB = EAC = 0.550048 and EA|BC = 0.918296.
Therefore τE

α = 0.918296α − 2(0.550048)α , see Fig. 1.
Here it should be noted that, different from the residual

entanglement of concurrence, the residual entanglement of
EoF depends on which qubit is chosen to be A.

In the following we give some relations among the residual
entanglement of EoF, entanglement of assistance, and three
tangle.

Theorem 6. For a three-qubit pure state |ψ〉ABC , we have

τE
α (|ψ〉ABC) � f 2

[
τC

2 (|ψ〉ABC)
]
, (24)

and

Eα
a (ρAB) � Eα(ρAB) + f α

[
τC

2 (|ψ〉ABC)
]
, (25)

where α �
√

2, ρAB = TrC(|ψ〉ABC〈ψ |) and τC
2 (|ψ〉ABC) is

the three tangle of concurrence.
Proof. According to the definition of τE

α (|ψ〉ABC), we have

τE
α (|ψ〉ABC) = Eα

A|BC − Eα
AB − Eα

AC

= f α
(
C2

A|BC

) − f α
(
C2

AB

) − f α
(
C2

AC

)
= f α

[
C2

AB + C2
AC + τC

2 (|ψ〉ABC)
]

− f α
(
C2

AB

) − f α
(
C2

AC

)

1.5 2.0 2.5 3.0
α

0.50

0.52

0.54

0.56

0.58

0.60

0.62

FIG. 2. (Color online) The lower bound of Ea(ρAB ) for state (26)
with α �

√
2.

� f α
[
τC

2 (|ψ〉ABC)
]
,

where the third equality is due to the definition of the three
tangle τC

2 . We have used (20) to obtain the last inequality.
Accounting to that for a 2 ⊗ 2 ⊗ m quantum pure state

|ψ〉ABC , C2
a (ρAB) = C2(ρAB) + τC

2 (|ψ〉ABC) [28], we have

Ea(ρAB) � f
[
C2

a (ρAB)
]

= f
[
C2(ρAB) + τC

2 (|ψ〉ABC)
]

� α

√
f α[C2(ρAB)] + f α

[
τC

2 (|ψ〉ABC)
]

= α

√
Eα(ρAB) + f α

[
τC

2 (|ψ〉ABC)
]
,

where we have used the inequality (22) to obtain the first
inequality and (17) to get the last inequality. �

The relations among entanglement of formation, entangle-
ment of assistance, and three tangle given in Theorem 6 can
be used to obtain a lower bound of EoA. Let us consider the
following example.

Example 2. Superpositions of the Greenberger-Horne-
Zeilinger (GHZ) state and the W state (13)

|�〉ABC =
√

1

2
|GHZ〉 −

√
1

2
|W 〉, (26)

where |GHZ〉 = 1√
2
(|000〉 + |111〉). According to The-

orem 6 we obtain the lower bound of Ea(ρAB),
Ea(ρAB) � {Eα(ρAB) + f α[τC

2 (|ψ〉ABC)]} 1
α , where ρAB =

TrC(|�〉ABC〈�|), see Fig. 2. From Fig. 2, one gets that the
optimal lower bound of Ea(ρAB) is 0.623 at α = √

2.

VI. CONCLUSION

Entanglement monogamy is a fundamental property of mul-
tipartite entangled states. We have investigated the monogamy
relations related to the concurrence and the entanglement of
formation generally for N -qubit states. We also proved that the
entanglement of assistance satisfies the monogamy inequality
E(|ψ〉A|B1B2,...,BN−1 ) �

∑N−1
i=1 Ea(ρABi

). To study the genuine
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tripartite entanglement, we investigated the residual entangle-
ment of concurrence τC

α (|ψ〉ABC) and the residual entangle-
ment of entanglement of formation τE

α (|ψ〉ABC). By exploring
the relations among the residual entanglement, entanglement
of assistance, and three tangle, we have presented a bound
of Ea(ρ). Our approach may be used to study further the
monogamy properties related to other quantum entanglement

measures such as negativity and to quantum correlations such
as quantum discord.
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