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Entanglement monogamy relations of qubit systems
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We investigate the monogamy relations related to the concurrence and the entanglement of formation. General
monogamy inequalities given by the ath power of concurrence and entanglement of formation are presented for
N-qubit states. The monogamy relation for entanglement of assistance is also established. Based on these general
monogamy relations, the residual entanglement of concurrence and entanglement of formation are studied. Some
relations among the residual entanglement, entanglement of assistance, and three tangle are also presented.
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I. INTRODUCTION

Quantum entanglement [1-6] is an essential feature of
quantum mechanics, which distinguishes the quantum from
the classical world. As one of the fundamental differences
between quantum entanglement and classical correlations,
a key property of entanglement is that a quantum system
entangled with one of the other systems limits its entanglement
with the remaining others. The monogamy relations give rise
to the structures of entanglement in the multipartite setting.
Monogamy is also an essential feature allowing for security in
quantum key distribution [7].

For a tripartite system A, B, and C, the monogamy of
an entanglement measure & implies that [8] the entangle-
ment between A and BC satisfies e4jpc = €ap + €4c. Such
monogamy relations are not always satisfied by entanglement
measures. Although the concurrence C and entanglement of
formation E do not satisfy such monogamy inequality, it has
been shown that the squared concurrence C 2 19,10] and the
squared entanglement of formation E? [11] do satisfy the
monogamy relations.

In this Brief Report, we study the general monogamy
inequalities satisfied by the oth power of concurrence C%
and the ath power of entanglement of formation E*. We
show that C* and E“ satisfy the monogamy inequalities for
oa>2 and o > \/i, respectively. The monogamy relations
for the entanglement of assistance are also established.
Correspondingly, the residual entanglement of concurrence
and entanglement of formation are also investigated.

II. MONOGAMY RELATION OF CONCURRENCE

For a bipartite pure state |Y) 45 in vector space Hy ® Hp,
the concurrence is given by [12—14]

CU¥)an) = /2[1 = Tr(p3)], (1)

where p4 is the reduced density matrix by tracing over the
subsystem B, ps = Trg(|Y)ap{¥|). The concurrence for a
tripartite mixed state p4 g is defined by the convex roof

Cloap) = min > piC(I¥i)), 2)
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where the minimum (infimum) is taken over all possible
decompositions of pap =Y, pil¥i)(y¥:l, with p; > 0 and
Y ;pi=1land|Y;) € Hy ® Hp.

For a tripartite state |{) 45¢, the concurrence of assistance
(CoA) is defined by [15,16]

Call¥)asc) = Calpap) = {glﬁ;%}Zp;C(W;)), 3)

where the maximum (supremum) is taken over all
possible decompositions of pap = Trc(|V)apc(¥]) =
Y Pili)ag(Wil. When pap = |¥) a5 (W] is a pure state, then
one has C(|¥)ap) = Cu(paB).

For an N-qubit state |Y)ap,. .5y, € HAQ Hp @ - ®
Hp, ,, the concurrence C(|¥)ap,... By.,) Of the state
|¥)aiB,...By.,» Vviewed as a bipartite with partitions A
and BB, ...,By_1, satisfies the Coffman-Kundu-Wootters
(CKW) inequality [9,10]

CalBiBaby = Cap +Cag, +-+Chg, v @
where Cyup, = C(pap,) is the concurrence of pup =
Trp,,.. B _1Bi1,..Byr(P)s CAlBiBs,...Bys = CUV) AIBy,....By_)-

Dual to the CKW inequality, the generalized monogamy
relation based on the concurrence of assistance was proved in
Ref. [17],

N-1
C*(IW) a1r..8ues) < Y Calpas,). (5)
i=1

The inequalities (4) and (5) are valid because, instead of
the concurrence and CoA, the squared concurrence and CoA
are used. In fact, besides the squared concurrence, one can get
the following general monogamy inequalities.

Theorem 1. Forany2 ® 2® --- ® 2 mixed state p € Hy ®
Hp ®---® Hp,_,, we have

C%IB]Bz,...,BN—l > CI(ZBI +o Cl‘:BN—I (6)
forall o > 2.
Proof. For arbitrary 2 ® 2 ® 2"2 tripartite state p4pc, one
has [9,18]

2 2 2
Cape =2 Cap + Cic:
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If min{Cyp,Cac} =0, obviously we have C3zc = Cip +
Coc- min{Cyp,Cac} > 0, assuming C4p > Cyc, we have

cfxc>g
Cis

] =Cyp+Chc, (1)

Ciisc = (CAB + CAC)E =Cip (1 +

C2
> Cp [1 + (C—;‘C)
AB

where the second inequality is due to the inequality (1 4+ x)" >
14+x'forx <landt > 1.
By partitioning the last qudit system C into two subsystems
(a qubit system C; and a 2"~3-dimensional qudit system Cy),
and using the above inequality repeatedly, one gets (6). |
Theorem2. Forany2 ® 2 ® --- @ 2 mixed state p € Hy ®
Hp, ®---® Hp,_ ,withCyp #0,i =1,...,N — 1, wehave

+--+Chp, ()

IR

.....

fora < 0.
Proof. Similar to the proof of Theorem 1, we only need to
prove the inequality is true for arbitrary 2 ® 2 ® 2"~ tripartite

states
C
=C4 (1 + %)
CAB

a

C: \?
< CY%, [1 + <%> ] =C%%+C%, (9

IR

Chisc < (Cis +Cic)

[N

CAB

where the first inequality is due to o < 0 and the second
inequality is due to C%, > 0 and the inequality (1 + x)" <
1+x"forx >0andr <0. [ |

In (8) we have assumed that all C4p,,i =1,...,N — 1 are
nonzero. In fact, if one of them is zero, the inequality still
holds if one removes this term from the inequality Namely, if
Cap, = 0,thenonehasCp 5 <Chp +---+Chp +
Cip,, + -+ Cip,  fora<O.

Theorem 1 shows that the oth power of concurrence
C*“ satisfies the monogamy inequality (6) for o > 2. While
Theorem 2 shows that for a < 0, the inequality is reversed.
However, for 0 < o < 2, the situation is not clear. Let us
consider the three-qubit case. Any three-qubit state |¢) can
be written in the generalized Schmidt decomposition [19,20]

[¥) = 10]|000) + A€"?|100) + A,|101)
+ A3|110) + Aql111), (10)

where A; >0, i =0,...,4, and Zl oA =1. From (1)

and (2), we have CAlBC = 2)\0\/)\ + )\ + )u ,CAB = 2)\0)»2,

and Cyc = 2xoA3. Without loss of generality, we set

Ao = cosBy,A; = sinfycosB;, A, = sinbysinb cos b, A3 =

sin 6y sin 0; sin6, cos 03, and A4 = sinf, sin H; sin 6, sin 63,

6; € [0,5]. Then we have

Ciise — Cas — Cic
= 2r)*[(A3 + 23 +23)7 — A% —Ag]
= (210)* sin® By sin® 6;[1 — cos® 6, — sin* 6, cos* 65].

(11)

From (11) we have Cj 5 > Cjp + Cj fora > 2. While for
o < Oone has Cj pc < Cyp + Cyc. However forO<a <2,
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one can see that the sign of (Cjzc — Cip
certain.

— C%¢) is not

III. RESIDUAL ENTANGLEMENT OF CONCURRENCE

Similar to the three tangle of concurrence, for the three-
qubit state |[Y)apc € Ha ® Hp ® He, we can define the
residual entanglement

(V) anc) = Chisc — Cap —

where o > 2.

Theorem 3. For any three-qubit pure state |Y) € Hy ®
H B HC:

(1) |y) is bipartite separable state if and only if for any
o> 2,

Cics (12)

tE(y) = 0;

(2) |¢)is genuine entangled if and only if thereisan o > 2
such that

E(ly)) > 0.

Proof. (1) If |) is bipartite separable state, without loss of
generality, we assume that |) is a B|AC bipartite separable
state, then we have Cpjac = Cpa = Cpc = 0. From (10) we
have Ag = 0 and |A A4’ — XAz =0, or A3 = Ay = 0 and
|X1Ase’® — AaA3| = 0. For both the above two cases, we have
Caipc = Cac and Cyp = 0. Therefore raC(W)) = 0 forall o.

If rC(W)) =0 for any « >2, then we obtain
C%\TBC C/zﬁ; C/zs.ac_(cmgc)z - Cf“’g—Cf“"C—(C“B+C°‘C)2 -
CP% — C3% =2C%,C% = 0, i.e., either C, or C4 . is zero.
Without loss of generality, assuming C4p = 0, wehave Ay =0
or A3 =0.If 4g =0, then C4pc = 0. Hence |) is A|BC a
bipartite separable state. If Ag £ 0 and A3 = 0 since rzc =0,
we have A4 = 0. Hence Cpjac = 0, 1.e., |{) is B|AC bipartite
separable.

(2) By using the above proof and the fact that rac (¥) =0
for all @ > 2 from Theorem 1, one gets the result directly. W

Example 1. Let us consider the W state

1
W) = —=(|100) +
V3
We have X (|W)) = (%)a [/G) — 2(%)“] For o = 2, rC
is just the three tangle of concurrence. As 1, C(wy) =
the three tangle of concurrence cannot capture the genume

|010) + |001)). (13)

0.4r -7

‘ ‘ C
1.5 2.5 3.0

FIG. 1. (Color online) Solid line: t<(|W))asa function of o (o >
2); dashed line: 77 (|W)) as a function of & (@ > v/2).
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entanglement of the W state. Nevertheless, for « > 2, our
residual entanglement of concurrence < (|W)) > 0, see Fig. 1.

IV. MONOGAMY INEQUALITY FOR EOF

The entanglement of formation (EoF) [21,22] is a well
defined important measure of entanglement for bipartite sys-
tems. Let H4 and Hg be m- and n-dimensional (m < n) vector
spaces, respectively. The EoF of a pure state |¢) € H4 @ Hp
is defined by

E([yr)) = S(pa), (14)

where ps = Trg(|y)(¥]) and S(p) = —Tr(plog, p). For a
bipartite mixed state pap € Hy ® Hpg, the entanglement of
formation is given by

E(pan) = min > piE(IYi), (15)

with the minimum (infimum) taking over all possible de-
compositions of psap in a mixture of pure states psp =
> pilvi) (Y|, where p; > Oand ) ; p; = 1. The correspond-
ing entanglement of assistance (EoA) [23] is defined in terms
of the entropy of entanglement [24] for a tripartite pure state

|V)aBc

Eal¥)anc) = Ea(pan) = max 3 piE(1i). (16)

where the maximum (supremum) is taken over all possible de-
compositions of pap = Trc(|¥)asc) = _; pil¥i)(¥il, with
Pi 2 OandZipi =1.

Denote f(x) = H(A=X)  where H(x) = —x log,(x) —
(1 —x)log,(1 — x). From (14) and (15), one has E(|¢)) =
F(C%(|g))) for 2@ m (m > 2) pure state |¢), and E(p) =
f (C?(p)) for two-qubit mixed state p [25]. It is obvious that
f(x) is a monotonically increasing function for 0 < x < 1.
f(x) satisfies the following relations:

FE 9D = 1200 + 200, 17

F&+y) < FED + £GP, (18)

where fﬁ()c2 +y) =[f(x*+ yz)]ﬁ.

It has been shown that the entanglement of formation
does not satisfy the inequality Esp + Eac < E4ac [26].
In Ref. [27] the authors showed that EoF is a monotonic

.....

proved that for N-qubit systems, one has [11],
2 2 2 2
EA|B[Bz,,..,BN_] 2 EAB[ + EABZ + T + EABN_] *

In fact, generally we can prove the following results.
Theorem 4. For any N-qubit mixed state p € Hy @ Hp, ®
-+ ® Hp, _,, the entanglement of formation E(p) satisfies

E%\B,Bz ..... By Z EKB] + EZBZ +eeet EXBN,I, (19)

tion of p in bipartite partition A|BB,, ...,By_1, and Eap,,
i=12,...,N —1, is the entanglement of formation of the
mixed states pap, = Trp 5,,..B_,Bisy,.... By_i (0)-
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Proof. Denote t = «/ /2. For > \/5, we have
1Ay = (0 4+ )
> (£263) + £207)Y
> (S0 + (F20Y
= [+ 400, (20)

where the first inequality is due to the inequality (17), and the
second inequality is obtained from a similar consideration in
the proof of the second inequality in (7).

Let p = pili)(Vil € Hy ® Hp, @ Hp, @ - -+ @
Hp, , be the optimal decomposition of E 4, 5,,....5y_,(0) for
the N-qubit mixed state p, we have

E 4B B,,....By_(P)

2 f(Cf\lBlﬂz,...,BN,l(p))
> f(Cip, +Cap + - +Cin )

> J74(Chn) + 7(Con) + o+ F(Con, )

= \LX/E.(ZB] + E.XBZ + o + ExBN,1 ’

where the first inequality is due to that f(x?) is a convex
function. The second inequality is due to the Cauchy-Schwarz
inequality: (3, xiz)%(zi yiz)% > Y xiyi, with x; = /p; and
Yi = /Pi CaB,B,...8y_, (1¥:)). Due to the definition of concur-
rence (2) and that f(x) is a monotonically increasing function,
we obtain the third inequality. We have used the monogamy
inequality (4) for N-qubit states p to obtain the forth inequality.
The last inequality is due to the inequality (20). Since for
any 2 ® 2 quantum state pap,, E(pap,) satisfies E(pap,) =

H(H— W) = f[Cz(,oAB[ )], one gets the last equality.

The inequality (19) in Theorem 4 shows that the «th power
of EoF satisfies the monogamy inequality for any o > +/2,
which is a little different from the case of concurrence in
which o > 2. As for the entanglement of assistance, we have
the following conclusion.

Theorem 5. For any N-qubit pure state |/) € Hys @ Hp, ®
-+ ® Hp,_,, the entanglement of assistance satisfies

N-1
E(1Y)A1B,8s..bu-) < Y Eapa,), 1)
i=1

where E(|Y/) B, B,,...By_,) 15 the entanglement of formation
of ) in bipartite partition A|BB,, ...,By_1, and pap, =
Trp,,. . B Bipr,... By (W) (W ]).

024304-3



BRIEF REPORTS

Proof. Let pag = Y_; pilyi)(¥i| be the optimal decompo-
sition of C,(pap). We have

Eo(pas) = Y piE(Yi) =Y pi f(C2(1¥)))

2
> f[Zpicj(m))} > f ([Zpicaﬂw,-))} )

= f[Ci(pan)]. 22)

where the first equality is due to that, for a pure state, one
has pap = p3; and C(pap) = Cu(pap) [17]. The second
inequality is due to that f(x?) is a convex function. The
last inequality is due to the Cauchy-Schwarz inequality with

xi = /pi and y; = /pi Ca(|¥:))

Therefore for an N-qubit pure state [{) 4,

E([Y) aip,....8y-) = FIC(V) alp.....y_,)]
< f(Cpap) + -+ + Clpagy_)
< F(C2pap) + -+ F(CHpagy. )
< Eq(pap) + -+ Eq(pasy_,)-

The first inequality is due to (5). We have used the inequality
(18) to get the second inequality. The last inequality is due to
(22). |

By_;» WE have

,,,,,

V. RESIDUAL ENTANGLEMENT OF EOF

Similar to the residual entanglement (12) defined by the
ath (¢ > 2) power of concurrence, we can define the residual
entanglement by the ath (a > +/2) power of EoF for a three-
qubit pure state |Y¥) apc

w2 (1Y) asc) = ESpc — ESp — ES¢c 2 0. (23)

As an example, let us consider again the W state (13).
We have EAB = EAC = 0.550048 and EAlBC =0.918296.
Therefore tf = 0.918296% — 2(0.550048)%, see Fig. 1.

Here it should be noted that, different from the residual
entanglement of concurrence, the residual entanglement of
EoF depends on which qubit is chosen to be A.

In the following we give some relations among the residual
entanglement of EoF, entanglement of assistance, and three
tangle.

Theorem 6. For a three-qubit pure state |{) 4 gc, we have

o (1¥)asc) = 7[5 (¥)aso)]. (24)
and
ES(paB) = E*(pap) + f[ts (¥) asc)]. (25)

where o > v/2, pap = Trc(1¥)apc(¥]) and 5 (1Y) agc) is
the three tangle of concurrence.
Proof. According to the definition of £ (|Y) apc), we have

tE(Y) anc) = Ejsc — Exp — Eic

= f*(Chisc) — f*(Cap) — F*(Cic)
= f¥[Cip + Cic + 15 (V) anc)]
— f*(C3s) — 1*(Cic)
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FIG. 2. (Color online) The lower bound of E,(p4p) for state (26)
with o > ﬁ

> f*[r5 (V) aso)].

where the third equality is due to the definition of the three

tangle 75 . We have used (20) to obtain the last inequality.
Accounting to that for a 2 ® 2 ® m quantum pure state

[V asc, C2(pag) = C*(pap) + 5 (|Y¥) apc) [28], we have

E.(pap) 2 f[Cf(PAB)]
= f[C*(pap) + 15 (1) anc)]

> I FICpam) + F[EE () anc)]

- \/E“(pAB) + fe[t5 (1Y) aso)),

where we have used the inequality (22) to obtain the first
inequality and (17) to get the last inequality. |

The relations among entanglement of formation, entangle-
ment of assistance, and three tangle given in Theorem 6 can
be used to obtain a lower bound of EoA. Let us consider the
following example.

Example 2. Superpositions of the Greenberger-Horne-
Zeilinger (GHZ) state and the W state (13)

1 1
V) asc = \/;IGHZ) - \/;IW), (26)

where |GHZ) = f(|000) +|111)). According to The-
orem 6 we obtain the lower bound of E,(paB),
E (pag) = {E%(pap) + foltf (W)ABC)]} where pup =
Tre(|W) apc(Y]), see Fig. 2. From Fig. 2, one gets that the
optimal lower bound of E,(pap) is 0.623 at @ = V2.

VI. CONCLUSION

Entanglement monogamy is a fundamental property of mul-
tipartite entangled states. We have investigated the monogamy
relations related to the concurrence and the entanglement of
formation generally for N-qubit states. We also proved that the
entanglement of assistance satisfies the monogamy inequality

E(V)A1B,B,....By_,) < Zf\:ll E,(pag,). To study the genuine
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tripartite entanglement, we investigated the residual entangle-
ment of concurrence rac (]¥)aBc) and the residual entangle-
ment of entanglement of formation t£ (|Y) 4zc). By exploring
the relations among the residual entanglement, entanglement
of assistance, and three tangle, we have presented a bound
of E,(p). Our approach may be used to study further the
monogamy properties related to other quantum entanglement

PHYSICAL REVIEW A 90, 024304 (2014)

measures such as negativity and to quantum correlations such
as quantum discord.
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