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Optically tunable bound states in the continuum

Yingyue Boretz,1 Gonzalo Ordonez,2 Satoshi Tanaka,3 and Tomio Petrosky4,*

1Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 78712, USA
2Department of Physics and Astronomy, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, USA

3Department of Physical Science, Osaka Prefecture University, Gakuen-cho 1-1, Sakai 599-8531, Japan
4Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan

(Received 30 October 2013; revised manuscript received 12 March 2014; published 26 August 2014)

We demonstrate the existence of tunable bound states in the continuum (BICs) in a one-dimensional quantum
wire with two impurities induced by an intense monochromatic radiation field. We find that there is an interesting
type of BIC due to the Fano interference between two optical transition channels, in addition to the ordinary BIC
due to geometrical interference between electron wave functions emitted by impurities. In both cases the BIC
can be achieved by tuning the frequency of the radiation field. Evidence of the BIC can be obtained by observing
the absorption rate of a probe photon.
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I. INTRODUCTION

The phenomenon of bound states in the continuum (BICs)
was first discovered by Wigner and von Neumann [1]. Subse-
quent studies are found in a number of papers (e.g., [2–11]).
Examples of BIC in a double-cavity two-dimensional electron
waveguide were reported in [12,13]. An experimental report
showed evidence of BICs in superlattice structures of quantum
wells with a single impurity site [14]. More recently, electronic
BICs were found experimentally in acoustic and optical
waveguides [15,16] and quantum well infrared photodetector
(QWIP) structures [17].

In general, if a discrete state embeds inside the continuum,
the state will become unstable due to the resonance effect. If the
transition channels are more than one, the resonance line shape
becomes asymmetric due to the quantum interference between
those decay channels. The phenomenon is often referred to as
Fano interference [18,19]. There are many studies that have
followed Fano’s work. However, the phenomena of the BICs
and the Fano interference have often been studied as individual
effects. In this paper we discuss the relation between BICs and
Fano interference.

As an example we consider here a tight-binding model with
two impurity atoms, as donor and acceptor atoms, attached
to a semiconductor nanowire under a constant irradiation of
an intense monochromatic radiation field. We shall consider
two optical transitions, i.e., intra-atomic and interatomic
transitions, which are denoted by T1 and T2, respectively, in
Fig. 1. In the intra-atomic transition a core-level electron of
an impurity is excited by the radiation field into an excited
level of the impurity, while in the interatomic transition it is
directly excited to the continuous state of the nanowire. These
two optical transition channels cause Fano interference.

The main results in this paper are twofold. The first one is
a different type of BIC in this system. In this BIC the energy
of the bound state depends on the coupling constant g of the
interaction between the discrete state and the continuum. This
is not the case of an ordinary BIC that has been discussed
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before (see, e.g., Refs. [6,7]). The ordinary BIC can be found
for special values of energy of the discrete state that are
imbedded in the continuum, where the energy shift of the
discrete state due to the interaction vanishes. This value of the
energy may be found by requiring that the so-called self-energy
part of the discrete state vanishes. Hence, this type of BIC
has the same energy as the unperturbed energy without the
interaction. This type of BIC exists in our model.

In addition, however, we found the alternative type of BIC
as mentioned above. Since this type of BIC depends on the
interaction, we call this a dynamic BIC, while we call the
ordinary type of BIC a static BIC. As discussed in [6], the static
BIC is due to a geometrical interference in the wire between
electron wave functions emitted by impurities.1 In contrast,
the dynamic BIC appears because of the multichannels of the
transitions T1 and T2, as we will show. Hence, the dynamic
BIC is the result of Fano interference.

The second main result is that because of the freedom to
choose the frequency of the radiation field, both BICs (the
dynamic BIC and static BIC) may exist for a wide range of
values of discrete-state energies. This is not the case of the
BIC that has been discussed in [6] for the system without the
radiation field. Indeed, in the absence of the radiation field, we
have shown in [6] that the BIC may exist only for a special
value of the discrete energy. In contrast, here one can tune the
frequency of the radiation field in order to achieve the BIC
for an arbitrary value of the energy of the discrete state. This
tunability makes the BIC phenomena much more feasible to
observe experimentally.

This paper is organized as follows. In Sec. II we introduce
the model. Then we decompose the Hamiltonian of the
system into the symmetric part and antisymmetric part so
that we can analyze our problem in a much simpler form.
In Sec. III we construct the complex eigenvalue of resonance
states to analyze the instability of the discrete states inside

1In other systems such as the system of Ref. [5], the energy of the
BIC due to geometrical interference does depend on the interaction;
however, in the present system this energy is independent of the
interaction. Due to this feature it is much easier to distinguish the two
types of BICs in the present system.
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FIG. 1. (a) Energy levels of donor and acceptor atoms.
(b) Transitions among energy levels.

the continuum. Then we find the BIC by requiring that the
imaginary part of the complex eigenvalue of the Hamiltonian
vanishes at the BIC. In Sec. IV we present several cases of the
dynamic BIC and the static BIC by plotting the imaginary part
of the eigenvalue as a function of the frequency of the radiation
field. In Sec. V we study the absorption spectrum of a probe
light field, which can be used to detect the BIC. In Sec. VI we
summarize our results.

II. MODEL

We consider a semiconductor nanowire with donor-
acceptor impurities, e.g., 3d transition-metal impuri-
ties [20,21], where the multiplet structures of transition metals
appear in the semiconductor band gap [22]. An electron of a
donor is excited by an optical transition and is transferred to
the acceptor through a semiconductor conduction band and
the electron is deexcited by an intra-atomic transition to emit
a photon (see Fig. 1).

We show the model system of the present work in Fig. 1. The
system consists of a semiconductor nanowire with donor and
acceptor impurities located at xD and xA, respectively. The
semiconductor nanowire is described by a one-dimensional
(1D) tight-binding model with a nearest-neighbor interaction
−B/2 yielding a 1D conduction band with bandwidth B with
a lattice constant of d. We consider the lower-energy core level
and higher-energy excited level of the donor (acceptor) impu-
rity represented by |D〉 (|A〉) and |D∗〉 (|A∗〉), respectively.
In this paper we use the conventional notation of an asterisk
to denote excited states used in atomic molecular and optical
physics. We consider the charge transfer between the higher-
energy state to the nanowire at the impurity sites of xD and
xA with a coupling gB, where g is a dimensionless coupling
constant. The electronic Hamiltonian is then represented by

Hel = ED|D〉〈D| + ED∗ |D∗〉〈D∗|
+EA|A〉〈A| + EA∗ |A∗〈A∗|

+E0

N/2∑
i=−N/2

|xi〉〈xi | − B

2

∑
〈i,i ′〉

|xi〉〈xi ′ |

+ gB(|xD〉〈D∗| + |D∗〉〈xD|)
+ gB(|xA〉〈A∗| + |A∗〉〈xA|), (1)

where ED (EA) and ED∗ (EA∗) are the energies of |D〉 (|A〉) and
|D∗〉 (|A∗〉), respectively. The symbol 〈i,i ′〉 represents the sum
over nearest neighbors, where the sum runs from −N to N .

The 1D tight-binding Hamiltonian is diagonalized by the
wave-number representation defined by

|k〉 = 1√
L

N/2∑
i=−N/2

eikxi |xi〉, (2)

where under the periodic boundary condition the wave number
takes the values of

kj = 2πj

Nd
(3)

(where j is an integer −N
2 � j < N

2 ) with the length of
the nanowire L ≡ Nd. We consider the case N � 1 and
approximate it by taking the limit N → ∞. In this limit we
have

2π

L

N/2∑
j=−N/2

→
∫ π/d

−π/d

dk,
2π

L
δKr
j,j ′ → δ(k − k′), (4)

where δKr stands for Kronecker delta. We will take this limit
in Sec. III.

In terms of the wave-number representation, Hel reads

Hel = ED|D〉〈D| + ED∗ |D∗〉〈D∗|
+EA|A〉〈A| + EA∗ |A∗〉〈A∗|

+
π/d∑

k=−π/d

Ek|k〉〈k|

+ gB√
L

π/d∑
k=−π/d

(e−ikxD |k〉〈D∗| + eikxD |D∗〉〈k|)

+ gB√
L

π/d∑
k=−π/d

(e−ikxA |k〉〈A∗| + eikxA |A∗〉〈k|), (5)

where the dispersion relation of an electron in the continuum
is given by

Ek = E0 − B cos(kd). (6)

In Eq. (5) and hereafter we use the summation notation over
wave vector k. The constant E0 will be set as E0 = n� due
to the presence of an external monochromatic radiation field,
discussed next.

The external field has a frequency � that is close to the
transition energies of ED∗ − ED or EA∗ − EA. The radiation
field is described by

HR = ��b†b, (7)

where b (b†) is an annihilation (creation) operator for the
radiation field. We will denote the number of photons of the
radiation field by n.

As for the interaction of the electron with the radiation field,
we consider two optical transition paths from the impurity
lower levels. One is the intra-atomic transition in which an
electron is excited from the lower impurity level to the upper
impurity level. The other is the interatomic transition in which
an electron at the lower impurity level is directly excited
into the host semiconductor nanowire at the impurity site.
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Then the interaction Hamiltonian is described under the dipole
approximation [3] as

HV = T1D(|D∗〉〈D|b + |D〉〈D∗|b†)
+ T1A(|A∗〉〈A|b + |A〉〈A∗|b†)
+ T2D(|xD〉〈D|b + |D〉〈xD|b†)
+ T2A(|xA〉〈A|b + |A〉〈xA|b†), (8)

where T1σ and T2σ (σ = D,A) represent the transition
strengths for the two optical transitions. Since the monochro-
matic radiation �� is nearly resonant to the transition from
the lower level to the upper level or semiconductor conduction

band, we have used the rotating-wave approximation in
Eq. (8) where we have neglected further excitation from the
conduction electron to higher excited states.

Even though the interactions of the electron with the
radiation field T1σ and T2σ are small, when the the radiation
field intensity is large with a large value of n, we have to
incorporate the radiation field nonperturbatively in terms of
the dressed-state concept. We then consider the composite
vector space of the electronic states and the radiation field [23].
Let us denote the number state |n〉 (n = 0,1,2, . . . ) as an
eigenstate of the radiation field. Then the composite vector
basis is comprised of |α,n〉, where α denotes the electronic
states: α = D, A, D∗, A∗, and k. In terms of these basis, total
Hamiltonian is described by

H = Hel + HR + HV =
∞∑

n=0

∑
α=D,A,D∗,A∗,k

(Eα + ��n)|α,n〉〈α,n|

+ gB√
L

∞∑
n=0

π/d∑
k=−π/d

(e−ikxD |k,n〉〈D∗,n| + eikxD |D∗,n〉〈k,n| + e−ikxA |k,n〉〈A∗,n| + eikxA |A∗,n〉〈k,n|)

+
∞∑

n=1

√
n[T1D(|D∗,n − 1〉〈D,n| + |D,n〉〈D∗,n − 1|) + T1A(|A∗,n − 1〉〈A,n| + |A∗,n〉〈A,n − 1|)]

+
∞∑

n=1

√
n√
L

π/d∑
k=−π/d

[T2D(e−ikxD |k,n − 1〉〈D,n| + eikxD |D,n〉〈k,n − 1|)

+ T2A(e−ikxA |k,n − 1〉〈A,n| + eikxA |A,n〉〈k,n − 1|)]. (9)

This can be also written as

H =
∞∑

n=0

( ∑
α=D,A

[Eα + ��(n + 1)]|α,n + 1〉〈α,n + 1| +
∑

α=D∗,A∗,k

(Eα + ��n)|α,n〉〈α,n|

+ gB√
L

π/d∑
k=−π/d

(e−ikxD |k,n〉〈D∗,n| + eikxD |D∗,n〉〈k,n| + e−ikxA |k,n〉〈A∗,n| + eikxA |A∗,n〉〈k,n|)

+√
n + 1[T1D(|D∗,n〉〈D,n + 1| + |D,n + 1〉〈D∗,n|) + T1A(|A∗,n〉〈A,n + 1| + |A,n + 1〉〈A∗,n|)]

+
√

n + 1√
L

π/d∑
k=−π/d

[T2D(e−ikxD |k,n〉〈D,n + 1| + eikxD |D,n + 1〉〈k,n|)

+ T2A(e−ikxA |k,n〉〈A,n + 1| + eikxA |A,n + 1〉〈k,n|)]
⎞
⎠ ≡

∞∑
n=0

Hn. (10)

Note that the total vector subspace is classified into indepen-
dent manifolds according to the photon number n [23].

In the present work we solve the complex eigenvalue
problem of H . For simplicity, we shall consider a symmetric
situation where

xD = −xA, El ≡ ED = EA,
(11)

Eu ≡ ED∗ = EA∗ , Ti ≡ TiA = TiD,

where l stands for the lower level and u stands for the
upper level. In this case, because of the inversion symmetry

of the system, we can further decompose the vector space
according to the parity. We denote the symmetrized basis as
(for symmetric basis)

|Sl,n + 1〉 ≡ 1√
2

(|D,n + 1〉 + |A,n + 1〉), (12)

|Su,n〉 ≡ 1√
2

(|D∗,n〉 + |A∗,n〉), (13)

|Sk,n〉 ≡ 1√
2

(|k,n〉 + |−k,n〉) (14)
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and (for antisymmetric basis)

|Pl,n + 1〉 ≡ 1√
2

(|D,n + 1〉 − |A,n + 1〉), (15)

|Pu,n〉 ≡ 1√
2

(|D∗,n〉 − |A∗,n〉), (16)

|Pk,n〉 ≡ 1√
2

(|k,n〉 − |−k,n〉). (17)

With these basis, Hn is divided as

Hn = Hp
n + Hs

n, (18)

where

Hs
n = [El + ��(n + 1)]|Sl,n + 1〉〈Sl,n + 1|

+ (Eu + n�)|Su,n〉〈Su,n| +
π/d∑

k=−π/d

Ek|Sk,n〉〈Sk,n|

+ gB√
L

π/d∑
k=0

2 cos(kxD)(|Sk,n〉〈Su,n| + |Su,n〉〈Sk,n|)

+ T1

√
n + 1(|Su,n〉〈Sl,n + 1| + |Sl,n + 1〉〈Su,n|)

+ T2

√
n + 1√

L

π/d∑
k=0

2 cos(kxD)(|Sk,n〉〈Sl,n + 1|

+ |Sl,n + 1〉〈Sk,n|) (19)

and

Hp
n = [El + ��(n + 1)]|Pl,n + 1〉〈Pl,n + 1|

+ (Eu + n�)|Pu,n〉〈Pu,n| +
π/d∑

k=−π/d

Ek|Pk,n〉〈Pk,n|

− gB√
L

π/d∑
k=0

2i sin(kxD)(|Pk,n〉〈Pu,n| − |Pu,n〉〈Pk,n|)

+ T1

√
n + 1(|Pu,n〉〈Pl,n + 1| + |Pl,n + 1〉〈Pu,n|)

− T2

√
n + 1√

L

π/d∑
k=0

2i sin(kxD)(|Pk,n〉〈Pl,n + 1|

− |Pl,n + 1〉〈Pk,n|). (20)

Hereafter we use the units d = 1 and � = 1. By taking
the limit L ≡ Nd → ∞, summation over the wave number k

turns into the integration as in Eq. (4).

III. OPTICAL DRESSED BOUND STATE
IN THE CONTINUUM

As we pointed out previously, our main focus is to study the
decay process under influence of a constant irradiation of an
intense monochromatic optical field. For this purpose, we solve
the complex eigenvalue problem of the Hamiltonian [24–26].
The solutions corresponding to unstable state are found
on the second Riemann sheet of the complex energy plane.
The imaginary part gives decay rate of the unstable state.

We shall solve the complex eigenvalue problem of the
Hamiltonian

HnψE = EψE. (21)

We start with the antisymmetric sector, i.e., p sector in Eq. (20).
We denote the components of the eigenstates in the p sector
by ⎛

⎝ D̃

D̃∗
x̃k

⎞
⎠ ≡

⎛
⎝〈Pl,n + 1|ψE〉

〈Pu,n|ψE〉
〈Pk,n|ψE〉

⎞
⎠ . (22)

From Eq. (21) we obtain the system of equations (for d = 1)

[El + (n + 1)�]D̃ + √
n + 1T1D̃

∗ +
√

n + 1T2

π

∫ π

−π

dk i sin(xDk)x̃k = ED̃,

√
n + 1T1D̃ + (Eu + n�)D̃∗ + gB

π

∫ π

−π

dk i sin(xDk)x̃k = ED̃∗, (23)

−
√

n + 1T2

π
i sin(xDk′)D̃ − gB

π
i sin(xDk′)D̃∗ + 1

π

∫ π

−π

dk Ekδ(k − k′)x̃k = Ex̃k′ .

From the above relations we obtain the eigenvalue equation for p sector. With similar calculations, we can also obtain the
eigenvalue equations for the symmetric sector, the s sector in Eq. (19). We summarize both p and s sectors into one form
as the following eigenvalue equations whose solutions give the resonant-state pole of the resolvent operator [z − Hn]−1 at z = E

in the second Riemann sheet. The eigenvalue equations are written as

βp,s(z) ≡ [z − (n + 1)� − El](z − Eu − n�) − (n + 1)T 2
1

−	p,s(z)

(
Bg2(z − �(n + 1) − El) + 2g(n + 1)T1T2 + (n + 1)

T 2
2

B
(z − Eu − n�)

)
= 0, (24)

where 	p,s(z) are the self-energies of the Hamiltonian without the lower-energy level and external radiation field, given by [6]

	p,s(z) ≡ 1

π

∫ π

−π

dk
B[1 ± cos(2kxD)]

z − Ek

= 1

i
√

1 − 
z2/B2

[
1 ±

(
−
z

B
+ i

√
1 − 
z2/B2

)2xD

]
, (25)
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with the plus and minus for the s and p sectors, respectively,
and 
z ≡ z − n�. Equation (24) is the generalization of
Eq. (5) in Ref [6]. Its solutions give poles of Green’s functions
for the impurities. Setting


z = −B cosθ, (26)

we have

	p,s(z) = 1

i sinθ
(1 ± ei2xDθ ). (27)

The BIC corresponds to real solution of Eq. (24).
Note that if the last term of the equation vanishes, we
obtain

z = 1
2

{
[(2n + 1)� + El + Eu]

±
√

(� + El − Eu)2 + 4(n + 1)T 2
1

}
, (28)

which are real solutions.
One can show that these are the only real solutions of

Eq. (24) as follows. Let us denote the real eigenvalue as

z = z0. (29)

Substituting it into Eq. (24), we have

{z0 − [(n + 1)� + El]}[z0 − (n� + Eu)] − (n + 1)T 2
1

= 	p,s(z0)
(

{z0 − [(n + 1)� + El]}Bg2 + (n + 1)2gT1T2

+ (n + 1)
T 2

2

B
[z0 − (Eu + n�)]

)
. (30)

Note that the left-hand side itself and the factor in front of
	p,s(z0) are both real, because all parameters are real. Hence
	p,s(z0) must be real; otherwise, the factor in front must
vanish.

Because the BIC energy is within the continuum we must
have ∣∣∣∣z0 − n�

B

∣∣∣∣ � 1. (31)

As a result, θ in Eq. (26) is real for z = z0. Therefore, 	p,s(z0)
is a complex number with a nonvanishing imaginary part
except for

	p,s(z) = 1

i sinθ
(1 ± ei2xDθ ) = 0. (32)

Equation (32) leads to one possible set of BICs that satisfies

1 ± ei2xDθ = 0. (33)

Then this leads to Eq. (28).
On the other hand, if Eq. (32) is not satisfied, then 	p,s(z) is

a complex number as mentioned above. Hence, to be consistent
with the fact that the left-hand side of Eq. (30) must be real,
we have

{z0 − [(n + 1)� + El]}Bg2 + (n + 1)2gT1T2

+ (n + 1)
T 2

2

B
[z0 − (Eu + n�)] = 0. (34)

Hence, once again we obtain Eq. (28). This proves that the z

in Eq. (28) are only the real solutions of Eq. (24).

Let us first consider the case of Eq. (32). We notice that the
self-energies for the s and p sectors periodically vanish when

θ = mπ

2xD

{
is an even integer m for the p sector
is an odd integer m for the s sector (35)

and then the real solution of the eigenvalue equation, i.e., the
BIC, is given by

z0 − n� = −B cos

(
mπ

2xD

)
. (36)

Note that the energies of the BIC are the same as obtained
in [6], where z0 does not depend on g. This is a typical
feature of the ordinary BIC in this system, hence the static
BIC mentioned in the Introduction comes from a geometrical
interference of the two electron wave functions emitted from
|D∗〉 and |A∗〉 states.

Substituting Eq. (36) into Eq. (30) with the right-hand side
equal 0, we obtain an equation for the frequency � of the
photon that can achieve a static BIC in this system

� = (n + 1)T 2
1

Eu + B cos
(

mπ
2xD

) − B cos

(
mπ

2xD

)
− El. (37)

Note that this frequency does not depend on T2. Hence,
the BIC that appears at this frequency does not come from
the Fano interference between the two transition branches
corresponding to T1 and T2. As discussed in [6], in this BIC
the electron is trapped in a delocalized state extended over the
two atoms and the section of wire between them.

Next we consider the case of Eq. (34). This case leads to
a different type of BIC, which is a main result of the present
paper. In contrast to the BIC in Eq. (37), the value of � that
satisfies Eqs. (34) and (28) must meet the condition

� = Eu − El − BgT1

T2
+ (n + 1)

T1T2

Bg
. (38)

It should be noted that the frequency � depends on g and T2,

in contrast to the case in Eq. (37).
Hence, we call this BIC the dynamic BIC, as mentioned in

the Introduction. Note that in the limit T2 → 0 the dynamic
BIC disappears for T1 �= 0. Hence, the BIC is a result of the
existence of two transition branches associated with T1 and T2.
In other words, the BIC is a result of Fano interference.

It should be emphasized that all BICs obtained in our system
exist for any value of Eu for a suitable value of �. This is in
contrast to the system without radiation field discussed in [6],
where the BICs occur only for special values given by

Eu = −B cos

(
mπ

2xD

)
. (39)

In other words, the BICs in the system with decoupled lower
|D〉 and |A〉 states occur only for a special kind of intra-atoms
with the discrete-state energies given by Eq. (39). In contrast,
for the present system in which T1 �= 0 and T2 �= 0, the BICs
in the system may exist for any intra-atomic levels by tuning
the value of �. In this sense, it is experimentally more feasible
to achieve the BIC in our system than the system we have
discussed in [6].
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FIG. 2. (Color online) Absolute value of the imaginary part of
eigenvalues of the Hamiltonian (p sector) as a function of � + El . The
parameters are T1 = 0.2, g = 0.2, Eu = 0.1, and xD = 2. Hereafter
we use B/2 = 1 as the energy unit. The solid line corresponds to
T2 = 0.2, while the dashed line corresponds to T2 = 0. The curves
on the upper left corner correspond to another solution of Eq. (24).
For T2 = 0.2 (solid line) there is a static BIC at � + El = 0.4 that is
independent of the strength of the interaction g. In addition there is
a dynamic BIC at � + El = −0.2 that is due to the interaction with
the Fano interference. The � + El values for which the BIC occurs
in the plot are consistent with Eqs. (37) and (38), respectively. When
T2 = 0 (dashed line) the Fano interference is suppressed, so only the
first BIC occurs.

IV. BOUND STATES IN THE CONTINUUM AND GENERAL
SOLUTION OF THE EIGENVALUE EQUATION (24)

In this section we present numerical results showing the
general solution of Eq. (24) as a function of � + El and
compare them to the analytic solutions of the BIC we obtained
in the previous section. For illustration we will consider the
simplest case with n = 0. The numerical results were obtained
through a numerical solution of Eq. (24). In Figs. 2–5 we plot

FIG. 3. (Color online) Absolute value of the imaginary part of
eigenvalues of the Hamiltonian (p sector) as a function of � + El .
The parameters are the same as in Fig. 2 except for g = 0.4. The
solid line corresponds to T2 = 0.2, while the dashed line corresponds
to T2 = 0. The static BIC that occurs due to the vanishing of the
self-energy still occurs at � + El = 0.4, while the dynamic BIC is
shifted to � + El = −0.659 due to a change of g.

FIG. 4. (Color online) Absolute value of the imaginary part of
eigenvalues of the Hamiltonian (p sector) as a function of � + El .
The parameters are the same as in Fig. 2 except for xD = 4. The solid
line corresponds to T2 = 0.2, while the dashed line corresponds to
T2 = 0. There are two BICs at � + El = 1.38 and 0.4, where the
self-energy vanishes. There is another BIC at � + El = −0.2, for
which the self-energy does not vanish.

the imaginary part of the solution � ≡ −Imz as a function
of � + El for the p sector. The figures for the s sector are
essentially the same as those, except the locations of BICs are
different.

In Figs. 2–5 we plot the case Eu = 0.1 and T2 = 0.2. In all
these figures the red solid line corresponds to the case T2 = 0.2
and the blue dashed line corresponds to the case T2 = 0. We
consider both cases in order to identify the BIC due to Fano
interference.

We show in Fig. 2 the case xD = 2 and g = 0.2; in Fig. 3 we
have the same xD = 2 but g = 0.4. As theoretically predicted,
we have two BICs, one from Eq. (37) and the other from
Eq. (38) with � = 0.

The BIC at the positive value of � + El is the static BIC
that exists even in the case T2 = 0. As one can see, the location

FIG. 5. (Color online) Absolute value of the imaginary part of
eigenvalues of the Hamiltonian (p sector) as a function of � + El .
The parameters are the same as in Fig. 4 except for g = 0.4. The
solid line corresponds to T2 = 0.2, while the dashed line corresponds
to T2 = 0. There are two static BICs at � + El = 1.38 and 0.4,
while the dynamic BIC is shifted to � + El = −0.659 due to a
change of g.
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of the BIC is at the same point in Figs. 2 and 3, though the
value of g is different. The BIC at the negative value of � + El

in Figs. 2 and 3 is the dynamic BIC that exists only for the
case T2 �= 0. The location of this BIC depends on the value of
g (compare Figs. 2 and 3).

We show in Fig. 4 the case xD = 4 and g = 0.2; in Fig. 5 we
show the case with the same xD = 4 but g = 0.4. As predicted,
we have different BICs: Two are from Eq. (37) and the other
from Eq. (38) with � = 0.

All the static BICs are located at predicted values of � + El .
They exist also in the case T2 = 0. The locations of the static
BICs in Fig. 4 appear at the same points in Fig. 5 though
the value of g is different. The dynamic BIC appears at the
negative values of � + El in Fig. 4. We have this dynamic BIC
only for T2 �= 0. The location of the BIC depends on the value
g as predicted by Eq. (38).

V. PROBING BOUND STATES IN THE CONTINUUM

Experimental evidence of the BIC can be obtained through
the absorption spectrum of the system, which will include
sections with a Fano profile [24]. In this section we study the
absorption spectrum of a weak probe light field, which could
be compared to experimental results.

In our system the radiation field with frequency � has to
be strong so that it is able to tune the states of the system
and produce BICs. Hereafter we will call it the pump field.
Since the pump field is strong we need to obtain first the
exact eigenstates of the Hamiltonian in order to calculate the
absorption spectrum. Subsequently we will add a weak probe
field that will be used to detect the BIC.

A. Exact eigenstates of the Hamiltonian

We will obtain the exact scattering eigenstates of the
Hamiltonian, which will be the final states after the electron
absorbs a probe photon. Solving the system of equations (23),
with the condition that the eigenstates reduce to the states |k〉
when the couplings vanish, we get

x̃k′ = δ(k − k′) + 2V ∗
k′

E − Ek′ + i0
(gBD̃∗ + T̃2D̃), (40)

D̃∗ = Bg(E − El − (n + 1)�) + T̃1T̃2

β(E)
Vk, (41)

D̃ = T̃2(E − Eu − n�) + T̃1Bg

β(E)
Vk, (42)

where k is given by E = n� − B cos(k), T̃j = √
n + 1 Tj ,

Vk = −i sin(kxD) for the p sector, and Vk = cos(kxD) for
the s sector. Hereafter we shift the zero of energy so that
E = −B cos(k) (thus effectively we set n = 0). We take
into account the effect of the intensity of the field n in the
renormalized transition strengths T̃j .

B. Absorption rate

The system described so far includes the pump field with
frequency �. Now we add a weak probe field, represented by a
single photon of frequency ω. We will calculate the absorption
rate of the probe photon. The states of the system are shown in

|Pl, 1

|Pu, 0 |Pk, 0

|Pl, 0

1

2

probe absorption

0

energyEl + Ω

u

El

k

optically dressed states by pump field

E

ω

E

gB

T

T

FIG. 6. (Color online) State scheme for pump and probe photons.
Depending on the value of � the level El + � may be below or above
the level Eu. The latter case is shown here.

Fig. 6 for the p sector (the diagram for the s sector is identical).
As shown in Fig. 6, the lower-level electron in the |Pl,0〉 state
is excited into the |Pu,0〉 state in the p-sector Hamiltonian by
the absorption of the probe photon. The interaction with the
weak probe field is given by

Ûp = |Pu,0〉Up〈Pl,0| + |Pl,0〉U ∗
p〈Pu,0|. (43)

Similar states and interaction are added to the s-sector
Hamiltonian.

0.3 0.2 0.1 0.0 0.1 0.2 0.3

0.02

0.04

0.06

0.08

0.10
W ω

FIG. 7. (Color online) The solid line corresponds to the absorp-
tion rate for a pump frequency given by El + � = 1.38, which
allows the existence of a static BIC. The dashed line corresponds
to the absorption rate for El + � = 1.37, slightly off the static
BIC value. When the pump frequency is slightly off the static BIC
frequency, the absorption rate (dashed line) takes a sharp profile,
which in this case occurs near ω − � = 0.04. The sharp profile shape
is suppressed when El + � is exactly at the BIC value (solid line).
For this and the following graph the parameters are b = 2, g = 0.4,
xD = 4, T̃2 = 0.2, T̃1 = 0.2, and Eu = 0.1. We use units where � = 1.
The units of frequency and absorption rate are then the same as the
energy unit, B/2 = 1.
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0.3 0.2 0.1 0.0 0.1 0.2 0.3

0.05

0.10

0.15

0.20

0.25
W ω

FIG. 8. (Color online) The solid line corresponds to the absorp-
tion rate for a pump frequency given by El + � = −0.65, which
allows the existence of a dynamic BIC. The absorption rate shows
no sharp shape. The dashed line corresponds to the absorption
rate for El + � = −0.64, slightly off the dynamic BIC value. The
absorption rate then takes a sharp shape, which in this case occurs
near ω − � = −0.5.

We will calculate the transition rate due to absorption of the
probe photon, starting with the initial state |Pl,0〉 and ending at
an eigenstate |ψE〉 of the Hamiltonian. The transition occurs
due to the weak interaction Ûp. Similar calculations can be
done for the s sector.

Since Ûp is a weak interaction, we can apply Fermi’s golden
rule. The final energy of the electron is E = Ek = −B cos(k).
The absorption rate, denoted W (ω), is then given by

W (ω) =
∫ π

−π

dk

2π

∣∣〈ψEk

∣∣Ûp|Pl,0〉∣∣22πδ(El + ω − Ek)

= ρ(Ek)
∣∣〈ψEk

∣∣Ûp|Pl,0〉∣∣2
Ek=El+ω

= ρ(Ek)|Up|2∣∣〈Pu,0
∣∣ψEk

〉∣∣2
Ek=El+ω, (44)

where ρ(E) = dk/dE is the density of states. Using Eq. (41)
we obtain

W (ω) =ρ(Ek)|Up|2

×
∣∣∣∣Bg(Ek − El − �) + T̃1T̃2

β(Ek)
Vk

∣∣∣∣
2

Ek=El+ω

. (45)

In Figs. 7 and 8 we show the absorption rate as a function
of (El + ω) − (El + �) = ω − � for different values of El +
�. When this energy is close (but not exactly equal) to a
BIC value, the absorption rate takes a sharp (rapidly varying)
profile, which is explained as follows. The equation β(Ek) =
0 has real solutions Ek = zBIC when � approaches specific
values � = �BIC given by Eq. (37) or (38). Therefore, when
� is close to �BIC, the factor 1/β(Ek) in Eq. (45) takes a very
large value around Ek = zBIC. However, the interaction Vk

vanishes when Ek is equal to a static zBIC, while the function
χ (Ek) ≡ Bg(Ek − El − �) + T̃1T̃2 vanishes when Ek is equal
to a dynamic zBIC. As a result, the absorption rate changes
abruptly from 0 to a very large value when Ek passes through
a zBIC, producing the sharp profiles. These profiles disappear
when � is exactly an �BIC because then the zero of β(Ek)
cancels the zero of either Vk or χ (Ek).

VI. SUMMARY

In this paper we have considered a tight-binding model
of a single electron in a 1D quantum wire with two added
impurities. We have shown there are tunable bound states in
the continuum, induced by an intense monochromatic radiation
field. We found a different type of BIC in this system that we
called a dynamic BIC, in addition to the other type of BIC that
we called a static BIC. In contrast to the static BIC, the energy
of the dynamic BIC depends on the coupling constants g and
T2 between the discrete state of the electron and the continuous
state of the electron.

We have shown that the dynamic BIC occurs due to Fano
interference between two optical transition paths from the
core level to the higher-energy state. Specifically, there is
a two-step path involving the T1 transition followed by the
gB transitions and a one-step path involving the T2 transition
only (see Fig. 6). These paths interfere destructively in the
energy domain as indicated by Eq. (38). As in Fano’s original
paper, this interference involves two discrete levels and a
continuum; in our case it occurs separately within each of
the two impurities; it would occur even if one of the impurities
were removed.

On the other hand, the static BIC is due to spatial inter-
ference between the two impurities, involving only one-step
paths. Even though it involves the energy continuum, this
interference is not Fano interference; it would occur even if
there were only one transition path for each impurity. The
interference occurs between outgoing waves emitted from each
impurity. These waves destructively interfere with each other,
resulting in an appearance of a bound state confined in between
the two impurities. There are two separate interference
occurrences: One involves the T2 transitions for both atoms
and another the gB transition for both atoms. Interestingly,
the static BIC energies are independent of T2 and g couplings
because the interference occurs in the spatial domain only.
However, the location of the static BIC energy (37) depends on
the T1 coupling because the T1 transition produces a shift in the
energy levels of each impurity, which affects the wavelength
of the outgoing waves.

Furthermore, we have shown that all BICs obtained in our
system are tunable, in the sense that they exist for any value
of El of the discrete state for a suitable frequency � of the
radiation field. This is not the case for the ordinary BIC without
the radiation field. In this sense, it is experimentally more
feasible to achieve the BIC in our system.

Experimental evidence of the BIC can be obtained by
observing the absorption of a weak probe field discussed in
the present paper.2 When the frequency of the pump field �

is tuned close to the value that induces a BIC, the absorption
profile shows a sharp profile as shown in Figs. 7 and 8.
However, when � is exactly at a BIC value, this profile is
suppressed.

2It may also be of interest to relate our theoretical results, in
particular the dynamic BIC, to an experiment that reported BIC in a
QWIP [17].
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