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We present a generalization of the diagrammatic pump-probe approach to coherent backscattering (CBS) of
intense laser light for atoms with degenerate energy levels. We employ this approach for a characterization of
the double-scattering signal from optically pumped atoms with the transition Jg → Je = Jg + 1 in the helicity-
preserving polarization channel. We show that, in the saturation regime, the internal degeneracy becomes manifest
for atoms with Jg � 1, leading to a faster decrease of the CBS enhancement factor with increasing saturation
parameter than in the nondegenerate case.
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I. INTRODUCTION

Coherent backscattering (CBS) is an interference phe-
nomenon arising when monochromatic waves get multiply
scattered by a disordered distribution of dilute scatterers. It
occurs in the weak-scattering regime, where the constructive
interference of counterpropagating amplitudes survives the
disorder average and leads to an enhanced intensity in
backscattering direction [1,2]. CBS was observed for the first
time with optical waves and polystyrene particles acting as
classical point scatters [3] in the 1980s and, more recently,
with acoustic [4], seismic [5], and matter [6] waves.

Constant technical progress and modern cooling techniques
made it possible to study CBS of laser light by clouds of
cold atoms behaving like unique quantum scatterers [7]. In
contrast to classical scatterers, atoms are able to scatter light
inelastically, when driven by an intense resonant laser field
[8]. Moreover, the electronic structure of the atoms allows
the scattered photons to flip their polarization and renders the
scattering process polarization dependent. Recent experiments
on CBS of light by cold Sr [9] and Rb [10] atoms showed
that nonlinear inelastic scattering, as well as the internal
atomic structure strongly affect the phase coherence of the
multiply scattered fields, reducing the interference contrast.
However, an accurate quantitative description of the above
experiments is still missing. Indeed, the theoretical approaches
using a diagrammatic scattering theory [11], a master equation
[12], or quantum Langevin equations [13] led to a deeper
understanding of the physical mechanism responsible for the
observed coherence loss and achieved a qualitative agreement
with the experiment [9], but were unable to reach an accurate
quantitative description thereof. The major problem with the
above approaches is that they are restricted either to a small
number of photons or atoms. In particular, the master equa-
tion approach is capable of accurately assessing the atomic
response to a strong resonant field, but the complexity of the
problem increases exponentially with the number of atoms.

Recently, we suggested a hybrid—diagrammatic pump-
probe—approach, which blends diagrammatic scattering the-
ory and single-atom master equations [or optical Bloch equa-
tions (OBE)] [14,15]. This method was initially introduced for
the double scattering contribution to CBS from two two-level
atoms, in which case the signal is deduced from solutions of the

OBE under a classical bichromatic driving. One component of
the bichromatic driving represents the, in general, saturating
laser field, while the other, nonsaturating component stems
from the field scattered by the second atom. Thus, our approach
owes its name to the analogy with a method in saturation
spectroscopy [16].

First of all, since the diagrammatic pump-probe approach
uses only single-atom quantities for the derivation of the
multiple scattering signal, it circumvents the aforementioned
problem of the exponential growth of the system complexity
with the number of scatterers. Second, it transforms the
problem of CBS of intense laser light off a cold atomic
cloud into a form that is amenable to Monte Carlo simulation
methods [17]. Third, for double [18] and triple [19] scattering
orders the solutions obtained within the pump-probe approach
are equivalent to the solutions following from the master
equation (where, in the triple-scattering case, the recurrent
scattering contributions are dropped). Under the assumption
that this equivalence always holds in the dilute regime, general
analytical expressions have recently been derived for single-
atom responses [19]. It will be a subject of future work to
include these expressions into the Monte Carlo simulation
subroutines.

The purpose of the present contribution is to generalize
the diagrammatic pump-probe approach to realistic dipole
transitions possessing internal degeneracy. Such transitions
were probed in the above-mentioned experiments [9,10]. We
also incorporate a vectorial representation of the electromag-
netic fields into our approach, which is required for a proper
description of the light-matter interaction as well as of the
polarization-sensitive character of the CBS effect.

The paper is structured as follows. In the next section, we
recall the basic ingredients of the pump-probe approach for
two-level atoms. In Sec. III, we generalize this approach to
the scenario of vector fields and atoms with degenerate dipole
transitions. Thereafter, we apply this generalized treatment
to double scattering from optically pumped atoms with the
ground- and excited-state angular momenta Jg and Je = Jg +
1, respectively, in the helicity-preserving polarization channel.
We show that the elastic component of the double-scattering
spectrum for arbitrary Jg can be expressed using the results
for Jg = 0. This is not, in general, the case for the inelastic
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intensity, since inelastic scattering from the degenerate ground
state results in additional processes that do not interfere
perfectly and lead to a more rapid decay of phase coherence as
compared to atoms with Jg = 0. Finally, in Sec. V we conclude
our work.

II. THE DIAGRAMMATIC PUMP-PROBE APPROACH
FOR TWO-LEVEL ATOMS

Before we present the pump-probe approach to CBS from
two atoms with degenerate energy levels, it is instructive
to recall its formulation for two-level atoms [14,15]. The
generalization thereof for multilevel dipole transitions will be
developed, along the same lines, in Sec. III.

To this end, let us consider double scattering in a toy
model of CBS, consisting of two immobile and distant atoms
in free space, driven by a near-resonant laser field. The
scattering processes which survive the disorder average and
contribute to the background and interference intensities,
respectively, are shown in Figs. 1(a) and 1(b). Thick arrows
directed towards gray dots depict a cw (continuous wave)
laser field of arbitrary strength driving the atoms. The laser
field contains positive-frequency as well as negative-frequency
parts; see Eq. (1). To lighten the graphics we draw them
as one arrow. Thin solid (dashed) arrows depict positive-
(negative-) frequency parts of the scattered field. Now the
main idea of the pump-probe approach is to account for the
laser-atom interaction nonperturbatively, while the atom-atom
interaction is dealt with perturbatively, at lowest nonvanishing
order [20–22]. The two components of the driving field seen
by each of the atoms in Fig. 1 correspond to the incident laser
field and the field scattered by the other atom, respectively. A
large interatomic separation implies a small Rabi frequency
of the scattered field in comparison to the natural line width
and justifies its perturbative treatment. As regards the classical
ansatz for the probe field, it was suggested [14,15] and proven
[18] that it is valid up to second order in the scattered field (two
exchanged amplitudes), because the nonclassical character of
the atomic radiation reveals itself only in the field correlation
functions describing the coincidence measurements of at least
two photons [23] (i.e., four exchanged amplitudes).

FIG. 1. Double-scattering processes surviving the disorder aver-
age: (a) ladder, or background, contribution, describing copropagat-
ing amplitudes; (b) crossed, or interference, contribution, resulting
from the interference between counterpropagating amplitudes. The
incident laser field at frequency ωL is assumed to be strong enough
to induce nonlinear inelastic scattering processes, whereupon the
frequencies ωp , ω′

p , and ωD may differ from the incident laser field’s
frequency.

The classical description of the scattered fields allows
us to consider the light-matter interaction of each of the
atoms separately and to derive the double-scattering signal
by combining single-atom building blocks, in analogy with
multiple scattering theory [1].

According to [14,15], the single-atom building blocks
describe stationary spectral responses of a two-level atom
subjected to a classical bichromatic electric field Epp(t),

Epp(t) = Ee−iωLt + E∗eiωLt + εe−iωpt + ε∗eiωpt , (1)

where both waves, whose frequencies are introduced in Fig. 1,
are split into their positive- and negative-frequency parts, with
E and ε being, respectively, the complex amplitudes of the laser
and the scattered fields, the latter acting as a “probe” on the
laser-driven atom. Since CBS is observed in the dilute regime,
i.e., when kLr12 � 1, the atoms are located in the radiation
zone of each other where the probe field scales as (kLr12)−1,
validating a perturbative treatment.

The dynamics of the quantum-mechanical expectation
value of an arbitrary atomic observable Q of a two-level atom
in free space driven by the classical field (1) can be deduced
from a standard master equation for single-atom resonance
fluorescence under classical bichromatic driving, which in the
frame rotating at the laser frequency reads (see, for instance,
[22])

〈Q̇〉 =
〈
−iδ[σ+σ−,Q] − i

2
[�σ+ + �∗σ−,Q]

+ γ (σ+[Q,σ−] + [σ+,Q]σ−)

− i

2
[ge−iωtσ+ + g∗eiωtσ−,Q]

〉
. (2)

Here σ−(σ+) = |g〉〈e|(|e〉〈g|) denotes the atomic lowering
(raising) operator, with |g〉 and |e〉 the atomic ground and
excited states, respectively. Furthermore, δ = ωL − ω0 is the
detuning between the laser and the atomic transition frequency,
ω = ωp − ωL is the detuning between the probe and the laser
field frequency, γ is half the spontaneous decay rate of the
excited state, and � = 2dE/�, g = 2dε/�, with d the matrix
element of the dipole transition, are the Rabi frequencies of
the laser and probe fields, respectively.

Equation (2) is equivalent to the OBE with bichromatic
driving, which we write in matrix form as [14,15]

〈σ̇ (t)〉 = M1〈σ (t)〉 + L1 + ge−iωt�(−)〈σ (t)〉
+ g∗eiωt�(+)〈σ (t)〉. (3)

Here 〈σ 〉 = (〈σ−〉,〈σ+〉,〈σ z〉) is the quantum-mechanical
expectation value of the optical Bloch vector, with σ z =
σ+σ− − σ−σ+, and the explicit form of the matrices M1,
�(+), �(−), together with the vector L1, is readily obtained
when the elements of the Bloch vector are entered into Eq. (2).

The basic quantity that we are using to characterize single-
atom stationary spectral responses is the frequency correlation
function,

I (ν,ν ′) = 1

(2π )2

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′e−itν+it ′ν ′ 〈σ+(t)σ−(t ′)〉, (4)

which describes spectral correlations between the positive-
frequency amplitude at frequency ν and the negative-frequency
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amplitude at frequency ν ′. To evaluate this function, we split
the atomic dipole temporal correlation function 〈σ+(t)σ−(t ′)〉
in Eq. (4) into a sum of a factorized and a fluctuating part,
respectively,

〈σ+(t)σ−(t ′)〉 = 〈σ+(t)〉〈σ−(t ′)〉 + 〈
σ+(t)
σ−(t ′)〉, (5)

where 
σ± ≡ σ± − 〈σ±〉. Insertion of the right-hand side of
Eq. (5) into Eq. (4) yields a decomposition,

I (ν,ν ′) = I el(ν,ν ′) + I in(ν,ν ′), (6)

where elastic and inelastic components, I el(ν,ν ′) and I in(ν,ν ′),
result from the Fourier transform of the factorized and the
fluctuating part of the atomic dipole correlation function (5),
respectively.

The stationary factorized atomic dipole correlation func-
tion, defined in terms of the atomic raising and lowering
operators, can readily be evaluated from the perturbative
solutions of Eq. (3) to second order in the probe field amplitude.
A similar consideration applies also to the fluctuating part of
the atomic dipole correlation function, since, according to the
quantum regression theorem [8], it satisfies an equation of
motion which follows straightforwardly from (3). Plugging
the obtained solutions into Eq. (4) and performing the Fourier
transformations, we obtain the elastic and inelastic single-atom
spectral responses.

In frequency space, the perturbative solutions for the
atomic dipole averages and correlation functions are referred
to as the elementary single-atoms building blocks. It is
convenient to define them graphically [24]. Figure 2 shows
the complete set of the elementary blocks, together with
their symbolic expressions, required for the construction
of the double-scattering ladder and crossed spectra. As
seen from Fig. 2, the frequencies of incoming and out-
going amplitudes are correlated, which is a direct conse-

FIG. 2. Graphical definitions of the elementary single-atom spec-
tral responses, together with our notation for the corresponding cor-
relation functions. (a)–(d) Complex scattering amplitudes associated
with the perturbative solutions of Eq. (3); (e)–(h) blocks associated
with the perturbative solutions for the fluctuating part of the atomic
dipole correlation function 〈
σ+(t)
σ−(t ′)〉 [see Eq. (5)]. Blank
and hatched shapes denote elastic and inelastic spectral responses,
respectively (see text).

quence of energy conservation during the scattering processes
[14,15].

Furthermore, it should be mentioned that, for each of
the elementary blocks, a replacement of solid arrows with
dashed ones and vice versa yields complex conjugated blocks.
Therefore, knowledge of the spectral responses shown in
Fig. 2 suffices to obtain an arbitrary single-atom spectral
response needed to infer the double-scattering signal. Circles
with one outgoing solid arrow [see Figs. 2(a)–2(d)] provide
graphical representations of the perturbative corrections of
zeroth (no incoming arrows), first (one incoming solid or
dashed arrow), and second order (one dashed and one solid
incoming arrows) to the expectation value of the atomic dipole
lowering operator 〈σ−〉. Squares with two outgoing arrows
[see Figs. 2(e)–2(h)] correspond to the perturbative solutions
for the inelastic component of the frequency correlation
function (4). We put labels above the arrows to denote the
detunings of the corresponding waves from the laser field
frequency; in case of exact resonance, the labels are omitted for
brevity. Furthermore, we leave a shape blank if its outgoing
arrow is elastic with respect to the laser frequency (in case
of the squares, this rule applies to the arrow that is directed
towards the detector if the detected field is elastic with respect
to the laser frequency; see, e.g., Fig. 3). Otherwise, the shape
is hatched. The expressions for the correlation functions on
the right-hand sides of each of the diagrams in Fig. 2 can be
found in [24].

To construct double-scattering processes contributing to the
ladder or crossed signals, one decomposes the total spectral
response of each of the two atoms into its elastic and inelastic
components, using the elementary building blocks from Fig. 2
and their complex conjugates [24]. Then the diagrammatic
expansions for both atoms are reconnected self-consistently,
using a set of rules [24], to form double-scattering diagrams
of either ladder [see Fig. 1(a)] or crossed [see Fig. 1(b)]
types. We present an example of a double-scattering diagram
contributing to the elastic crossed spectrum in Fig. 3. Applying
the rules of self-consistent combination of the building blocks
to the relevant spectral response functions (see Fig. 2), we

FIG. 3. An example of a double-scattering diagram contributing
to the elastic crossed spectrum. The spectral response of the left atom
is elastic and constructed as a product (denoted by the “X”) of the
block which is the complex conjugate of the one shown in Fig. 2(a)
and of the block Fig. 2(c) (one should bear in mind that, for circles,
the direction of the outgoing arrow is immaterial for the definition of
the spectral response [24]). The spectral response of the right atom is
represented by the block in Fig. 2(f). There is no hatching of the square
since, as discussed in the text, the outgoing arrow that represents the
detected field is elastic with respect to the laser frequency. The overall
mathematical expression for this double-scattering process is given
in Eq. (7).
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obtain

Fig. 3 = |ḡ|2
∫ ∞

−∞

dω

2π
〈σ+〉(0)〈σ−(−ω)〉(+)P (−)(ω,0), (7)

where ḡ ∝ (kL�)−1, with � the average interatomic distance.
Detailed expressions and numerous examples of the double-
scattering elastic and inelastic spectra can be found in [25].

Concluding this section, we would like to mention that the
elementary single-atom blocks have a physical interpretation
as effective nonlinear susceptibilities [24], which describe the
response of the laser-driven atom to weak probe fields [26].
Recently, it has been shown that there is a systematic way of
obtaining analytical expressions for such blocks in case of an
arbitrary number of probe fields [19]. In future work, these
expressions will be incorporated into the theory of nonlinear
transport by classical scatterers [27] to describe CBS of intense
laser light in cold atomic gases [17].

III. GENERALIZATION OF THE APPROACH TO ATOMS
WITH DEGENERATE DIPOLE TRANSITIONS

A. Fundamental double-scattering processes

The diagrammatic pump-probe approach, presented in the
previous section, ignores the polarization degree of freedom of
the light. This is closely related to the fact that, in Sec. II, we
reduced the internal quantum structure of the atomic dipole
transitions to one ground and one excited level. However,
Sr or Rb atoms, studied in real experiments on CBS of
light, possess degenerate dipole transitions, which renders this
effect sensitive to the choice of the incoming and outgoing
fields’ polarizations [28,29]. Our main goal is to include
the internal degeneracy, as well as the vector character of
the electromagnetic field, into the diagrammatic pump-probe
approach. As in the case of scalar atoms, we ensure, whenever
possible, a close correspondence with the results of the master
equation approach. Presently, such results have been made
available for double scattering from two Sr atoms [12,30,31].

Inclusion of polarization and electronic degeneracy
amounts to a certain technical overhead, without affecting the
basic idea of the approach. Namely, the matrix dimension of
the linear system generalizing Eq. (3) will increase according
to the number of sublevels of the electronic ground and
excited states. Furthermore, the explicit form of the single-
atom building blocks will now depend on the choices of
the pump, probe, and detected fields’ polarizations. However,
our justification of the classical description of the exchanged
amplitudes, as presented in Sec. II, certainly remains true also
for polarized electric fields.

To begin with, let us consider a vectorial generalization
of the fundamental scattering processes (see Fig. 1) that
survive the disorder average in Fig. 4. Copropagating inelastic
scattering amplitudes contribute to the ladder spectrum [see
Fig. 4(a)], and counterpropagating amplitudes contribute to the
crossed spectrum [see Fig. 4(b)]. In addition to the elements
that are present in Fig. 1, each of the arrows in Fig. 4 is now
garnished by polarization indices. Unless otherwise stated, any
such index q corresponds to a unit polarization vector êq in

FIG. 4. Double-scattering diagrams which survive the disorder
average for the case of vector electric fields and atoms with degenerate
dipole transitions: (a) ladder spectrum; (b) crossed spectrum. The
meaning of the labels ωL, ωp , ω′

p , and ωD is the same as in Fig. 1.
Indices qL, q, q ′, r , r ′, and qD refer to the polarization indices of
the corresponding arrows in the spherical basis (see text for further
details).

the spherical basis,

ê±1 = ∓ 1√
2

(êx ± iêy), ê0 = êz, (8)

where êx , êy , and êz are the unit vectors in the Cartesian basis.
In general, arrows corresponding to the scattered fields

carry a pair of polarization indices. However, we study the
CBS signal in exact backscattering direction, that is, along
the quantization axis set by the direction of the laser wave.
Therefore, the polarization of the backscattered field, alike the
laser field, can be specified by a single index. Introducing
a pair of polarization indices for the intermediate arrows
can be motivated with the aid of Fig. 5, which presents

FIG. 5. (Color online) A linearly polarized laser wave [thick red
(light gray) arrow] excites the π transitions [double red (light gray)
thin arrows] of two atoms with ground- and excited-state angular
momenta Jg and Je equal to 1/2. Atom 1 emits a σ− polarized
amplitude (q = −1) towards atom 2, and, after projection of the
polarization vector onto the plane perpendicular to the line connecting
both atoms, excites a σ+ transition thereof (q ′ = +1). Finally, a
π -polarized amplitude (q ′′ = 0) is emitted by atom 2 towards the
detector.
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an example of a double-scattering process of a linearly
polarized positive-frequency laser wave by two atoms with
equal angular momenta of the ground and excited states:
Jg = Je = 1/2. As evident from Fig. 5, the polarizations of
the waves emitted by atom 1 (q = −1) and absorbed by
atom 2 (q ′ = +1) can be different; hence, the two indices
for the intermediate amplitudes. For the positive-frequency
wave, the probability amplitudes of various combinations
of q,q ′ are defined by the projections thereof on the plane
transverse to the line connecting the atoms (see Fig. 5), given

by
←→
� q ′q ≡ ê∗

q ′ · ←→
� · êq , with the projector on the transverse

plane
←→
� = ←→

1 − n̂n̂, and
←→
1 = −ê−1ê+1 + ê0ê0 − ê+1ê−1, (9)

n̂ = eiφ sin ϑ√
2

ê−1 + cos ϑ ê0 − e−iφ sin ϑ√
2

ê+1. (10)

By analogy, it is easy to show that the complex conjugate
amplitude of the one shown in Fig. 5 is proportional to

(
←→
� q ′q)∗ = ê∗

q · ←→
� · êq ′ .

It follows from the above that the double-scattering pro-
cesses shown in Figs. 4(a) and 4(b) are proportional to the

geometric factor (e∗
r · ←→

� · êq)(e∗
q ′ · ←→

� · êr ′ ), whose explicit
form can easily be obtained for arbitrary polarization indices
using Eqs. (9) and (10). Next, we need to perform the
configuration average over the random angles (ϑ,φ), which
define the orientation of the vector n̂ connecting the atoms with
respect to the quantization axis [see Eq. (10)]. The resulting
geometric weight for diagrams in Figs. 4(a) and 4(b) reads

〈←→� rq

←→
� q ′r ′ 〉 = 1

4π

∫ π

0
sin ϑdϑ

∫ 2π

0

←→
� rq

←→
� q ′r ′dφ. (11)

Finally, if there are several polarization channels for double
scattering, we perform a summation over the corresponding
polarization indices.

Each of the disorder-averaged geometric weights must be
multiplied by the corresponding double-scattering spectral
response, whose evaluation from single-atom building blocks
is considered in the subsequent sections.

B. Diagrammatic expansion of the double-scattering process

After selecting the double-scattering processes which sur-
vive the disorder average, we proceed by considering the
two atoms and their incoming and outgoing classical fields
in Figs. 4(a) and 4(b) separately. In complete analogy with
the case of scalar atoms [14,15,24], the spectral response of
either one of the atoms is split into an elastic and an inelastic
component. It is convenient to represent these components
graphically, as shown in Figs. 6 and 7.

We remind the reader that, to alleviate the diagrams, the
arrows which represent the laser field are not depicted in Figs. 6
and 7. Note also that we do not yet assign the frequency
values to different arrows in Figs. 6 and 7: These will be
determined in the course of a self-consistent combination
of the single-atom responses into double-scattering ladder
and crossed spectral signals (see Sec. III F). To facilitate
establishing the correspondence between the diagrams in

FIG. 6. Diagrammatic expansion of the double-scattering process
depicted in Fig. 4(a) into its elastic (open circles) and inelastic
(hatched boxes) components. Left (A), (B) Single-atom building
blocks contributing to the ladder spectrum. Right (a1)–(b5) Expansion
of the single-atom building blocks into elementary building blocks.

Figs. 6, 7, and 4, respectively, we depict the backscattered
fields with downward-directed arrows.

In each of these graphical equations, open circles with
one outgoing arrow and null, one, or two incoming arrows
describe the elementary elastic building blocks. Circles are
always combined in pairs by the symbols X. We see below,
in Sec. IIIE1, that pairs of circles correspond to the factorized
parts of the atomic dipole correlation function, which describe
the elastic spectral responses. The number of pairs of circles
in the graphical expansion of the building blocks is equal to
2n, where n is the number of incoming probe fields [19,24].

Apart from the open circles, each of the graphical equations
in Figs. 6 and 7 contains one hatched square, with two
outgoing arrows and null, one, or two incoming arrows. This
corresponds to the inelastic elementary building block, which

FIG. 7. Diagrammatic expansion of the double-scattering process
depicted in Fig. 4(b) into the elastic (open circles) and inelastic
(hatched boxes) components. Left (C), (D) Single-atom building
blocks contributing to the crossed spectrum. Right (c1)–(d3) Ex-
pansion of the single-atom building blocks into elementary building
blocks.
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can be derived from the fluctuating part of the atomic dipole
correlation function; see Sec. IIIE2.

Computation of the single-atom elementary elastic and
inelastic spectral responses is based on the formalism of the
generalized OBE, to be explained below.

C. Generalized optical Bloch equations

This section presents a step-by-step generalization of the
OBE formalism outlined in Sec. II to the case of vector fields
and atoms with arbitrary dipole transitions. We set out by
writing the expression for the classical bichromatic vector
field,

Epp(t) = E êLe−iωLt + E∗ê∗
LeiωLt + εêre

−iωpt + ε∗ê∗
r ′e

iωpt ,

(12)

where the meaning of E , ε, ωL, ωp is the same as in Eq. (1),
and êL, êr (ê∗

r ′ ) are the unit polarization vectors of the laser
and probe fields, respectively.

To account for the vector nature of the atomic dipole
transition, we introduce vector raising and lowering atomic
operators instead of the operators σ+ and σ−. We consider
atoms with total ground- and excited-state angular momenta
Jg and Je, respectively. Then the atomic raising and lowering
operators, D† and D, can be expressed using the projection
operators on the ground- and excited-state manifolds,

Pe =
Je∑

me=−Je

|Jeme〉〈Jeme|, Pg =
Jg∑

mg=−Jg

|Jgmg〉〈Jgmg|,

(13)

where |Jeme〉 (|Jgmg〉) denotes an excited (ground)-state
sublevel with magnetic quantum number me (mg). The raising
and lowering parts of the atomic dipole operator read

D† = 1

d
PeDPg, D = (D†)†, (14)

where d ≡ 〈Je||D||Jg〉 is the reduced matrix element, and D =
d(D† + D) is the atomic dipole moment operator. Inserting the
projectors (13) into Eq. (14), and using the Wigner-Eckart
theorem [32], we obtain the expression

D†=
1∑

q=−1

Jg∑
mg=−Jg

ê∗
q〈Jgmg,1q|Jemg + q〉|Jemg + q〉〈Jgmg|,

(15)

where 〈Jgmg,1q|Jemg + q〉 denotes a Clebsch-Gordan coeffi-
cient, and one summation (over me) was removed from Eq. (15)
owing to the dipole transition selection rules [32].

With the vector bichromatic field and dipole operators
defined, we merely make the replacements Epp(t) → Epp(t),
σ+ → D†, σ− → D in Eq. (2), to obtain its vector generaliza-
tion:

〈Q̇〉 =
〈
− iδ[D† · D,Q] − i

2
[�(D† · êL) + �∗(D · ê∗

L),Q]

+ γ (D† · [Q,D] + [D†,Q] · D)

− i

2
[ge−iωt (D† · êr ) + g∗eiωt (D · ê∗

r ′ ),Q]

〉
. (16)

Finally, by choosing operators Q from the complete set of op-
erators (see Appendix A), we translate the master equation (16)
into a matrix equation for the vector 〈Q〉, in full analogy with
the case of a two-level atom [see Eq. (3)]. Accordingly, we
refer to the resulting system of equations,

〈Q̇〉 = M〈Q〉 + L + ge−iωt�(−)
r 〈Q〉 + g∗eiωt�

(+)
r ′ 〈Q〉, (17)

as the generalized OBEs under bichromatic driving.

D. Single-atom spectral correlation functions

We characterize the spectral response of multilevel atoms
in different polarization channels by the tensor frequency
correlation function generalizing Eq. (4),

Iq ′q(ν ′,ν) = 1

(2π )2

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′e−it ′ν ′+itν〈D†

q ′ (t ′)Dq(t)〉,

(18)

where D
†
q ′ (t ′) ≡ êq ′ · D†(t ′) and Dq(t) ≡ ê∗

q · D(t). In complete
analogy with the scalar case, we proceed by decomposing the
atomic dipole correlation function in (18) into a factorized and
a fluctuating part,

〈D†
q ′ (t ′)Dq(t)〉 = 〈D†

q ′(t ′)〉〈Dq(t)〉 + 〈
D
†
q ′ (t ′)
Dq(t)〉,

(19)

with the fluctuating part 
Dq defined in strict analogy to
Eq. (5). Both of the correlation functions on the right-hand
side of Eq. (19) can be found by solving Eq. (17). Plugging the
right-hand side of Eq. (19) into Eq. (18), we obtain a tensor
correlation function which generalizes Eq. (6):

Iq ′q(ν ′,ν) = I el
q ′q(ν ′,ν) + I in

q ′q(ν ′,ν). (20)

Once again, the elastic and inelastic components arise from the
factorized and fluctuating parts of the atomic dipole correlation
function, respectively. Apart from the frequencies ν, ν ′ and
polarization indices q,q ′, the correlation functions in Eq. (20)
depend also on the frequency ω and the polarization indices r ,
r ′ of the incoming wave. These dependencies are reflected in
the diagrammatic representation of the single atom blocks, to
be introduced below.

E. Building blocks

The evaluation of the single-atom building blocks in the
vectorial case is again completely analogous to the scalar one.
To see this, it is important to realize that, regardless of the
structure of the dipole transition and the polarization indices of
the driving and scattered fields, the spectral response functions,
expanded to second order in the probe field amplitude,
satisfy the same energy conservation conditions as their scalar
analogs studied in detail in [14,15]. Namely, the response
functions contain δ functions originating from integrations
over time in Eq. (18), under the assumption of stationarity
of the atomic dipole correlation functions 〈D†

q ′ (t ′)Dq(t)〉 =
〈D†

q ′ (t ′ − t)Dq(0)〉, which entails strict relations between the
incoming and outgoing frequencies.

We incorporate these relations into the diagrammatic
representation of the elementary single-atom building blocks
(see Fig. 8). As seen from Fig. 8, we introduce the same
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FIG. 8. Elementary single-atom building blocks, together with
the corresponding spectral response functions in the vector case. (a)–
(d) Complex scattering amplitudes associated with the perturbative
solutions of Eq. (17); (e)–(h) blocks associated with the perturbative
solutions for the fluctuating part of the atomic dipole correlation
function; see Eq. (19). The notation ω[q] for a positive- (negative-)
frequency wave implies a wave with frequency ω and polarization
described by the unit vector êq (ê∗

q ). Blank and hatched shapes denote
elastic and inelastic spectral responses, respectively, in full analogy
to the scalar case; see Fig. 2.

type (elastic or inelastic) and number of the spectral response
functions as in the scalar case (see Fig. 2). In addition to
the graphical elements that are already present in the scalar
case, each incoming and outgoing arrow in Fig. 8 carries a
polarization index.

We now explain how to find explicit expressions for
the vector spectral responses on the right-hand sides of the
graphical equations in Fig. 8.

1. Elastic building blocks

All the elastic spectral response functions appearing on the
right-hand side in Figs. 8(a)–8(d) can be obtained directly
from the stationary perturbative solutions of the generalized
OBE (17), to second order in the probe field amplitude. Setting
the left-hand side of Eq. (17) to zero, it is easy to obtain the
perturbative solutions

〈Q〉(0) = GL, (21a)

〈Q(ω[r])〉(−) = G(−iω)�(−)
r 〈Q〉(0), (21b)

〈Q(ω[r ′])〉(+) = G(iω)�(+)
r ′ 〈Q〉(0), (21c)

〈Q(ω[r],ω[r ′])〉(−+) = G�
(+)
r ′ 〈Q(ω[r])〉(−)

+ G�(−)
r 〈Q(ω[r ′])〉(+), (21d)

where

G(z) = 1

z − M
(22)

is the free propagator governing the internal dynamics of the
laser-driven, damped atom, and G ≡ G(0).

Using the perturbative solutions (21), the expressions for
the elementary blocks with one solid (dashed) outgoing arrow
carrying the index q [see Figs. 8(a)–8(d)] can be expressed
as scalar products with the projection vectors Vq (Uq),
respectively (see Appendix A). For example, the zeroth-order
projections yield

〈Dq〉(0) = Vq · 〈Q〉(0), 〈D†
q〉(0) = Uq · 〈Q〉(0). (23)

The remaining elementary building blocks are constructed
analogously.

2. Inelastic building blocks

The starting point for the derivation of the inelastic building
blocks is the introduction of the stationary vector correlation
functions

fq(τ ) = 〈
Q(τ )
Dq〉, (24a)

hq ′ (τ ) = 〈
D
†
q ′
Q(τ )〉, (24b)

where τ � 0.
Application of the quantum regression theorem to Eq. (24a)

leads to an equation of motion for the vector fq [compare with
Eq. (17)],

ḟq = Mfq + ge−iωt�(−)
r fq + g∗eiωt�

(+)
r ′ fq, (25)

and the equation for hq ′ is obtained upon replacing fq → hq ′ .
The temporal evolutions of the vector functions fq and hq ′ are,
of course, different from each other, due to the different initial
conditions, fq(0) �= hq ′ (0); see Eq. (24). We solve Eq. (25)
perturbatively using Laplace transform; the solutions for hq ′

follow by analogy. As we see below, Laplace transforms of
fq and hq ′ define the outgoing negative-frequency amplitude
with polarization q ′ and positive-frequency amplitude with
polarization q, respectively, of the inelastic building blocks in
Figs. 8(e)–8(h). We have

f̃(0)
q (z′′) = G(iz′′)f(0)

q (0), (26a)

f̃(+)
q (ω[r ′]; z′′) = G(iz′′ + iω)

{
�

(+)
r ′ f̃(0)

q (z′′)

+ f(+)
q (ω[r ′]; 0)

}
, (26b)

f̃(−)
q (ω[r]; z′′) = G(iz′′ − iω)

{
�(−)

r f̃(0)
q (z′′)

+ f(−)
q (ω[r]; 0)

}
, (26c)

f̃(+−)
q (ω[r ′],ω[r]; z′′) = G(iz′′)

{
�(−)

r f̃(+)
q (ω[r ′]; z′′)

+�
(+)
r ′ f̃(−)

q (ω[r]; z′′)

+ f(+−)
q (ω[r ′],ω[r]; 0)

}
, (26d)

where z′′ = Im(z), and the vectors of the initial conditions
f(0)
q (0), f(+)

q (ω[r ′]; 0), f(−)
q (ω[r]; 0) and f(+−)

q (ω[r ′],ω[r]; 0) are
given in Appendix B . Now the outgoing positive- and negative-
frequency fields of the inelastic building blocks follow via
scalar products of the obtained perturbative solutions with
the projection vectors Vq and Uq ′ , respectively, yielding
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expressions for the inelastic building blocks,

P (0)(ν[q],ν[q ′]) = Uq ′ · f̃(0)
q (ν) + Vq · h̃(0)

q ′ (−ν),

(27a)

P (−)(ω[r]; ν[q],(ν − ω)[q ′]) = Uq ′ · f̃(−)
q (ω[r]; ν)

+ Vq · h̃(−)
q ′ (ω[r]; ω − ν),

(27b)

P (+)(ω[r ′]; (ν − ω)[q],ν[q ′]) = Uq ′ · f̃(+)
q (ω[r ′]; ν − ω)

+ Vq · h̃(+)
q ′ (ω[r ′]; −ν), (27c)

P (+−)(ω[r ′],ω[r]; ν[q],ν[q ′]) = Uq ′ · f̃(+−)
q (ω[r ′],ω[r]; ν)

+ Vq · h̃(+−)
q ′ (ω[r ′],ω[r]; −ν),

(27d)

with the values of z in every expression above fixed by the
energy conservation relation, in strict analogy with the scalar
case [14].

F. Self-consistent combination of single-atom building blocks

In the previous section we defined the elementary single-
atom building blocks. Now, we discuss the rules of their self-
consistent combination into double-scattering contributions to
CBS. For nondegenerate dipole transitions, these rules were
elaborated in [19,24].

As already mentioned in Sec. III E, for fixed values
of the polarization indices, the number of the elementary
elastic and inelastic response functions is the same as in
the scalar case. Furthermore, these response functions exhibit
the same relations between the frequencies of the incoming
and outgoing fields. Therefore, the rules of the self-consistent
combination that were formulated for nondegenerate dipole
transitions are valid also in the present case.

To be self-contained, we here briefly remind the reader of
how to construct the double-scattering signal using single-
atom responses. To obtain the ladder spectrum, we connect
the outgoing arrows of each of the diagrams on the right-
hand side of the graphical equation (A) with the incoming
arrows of those of equation (B) in Fig. 6, respecting the
direction and character (solid or dashed) of the arrows. The
frequency values of all the arrows are assigned according to
the definitions of the elementary single-atom building blocks
given in Fig. 8. If the frequency of an intermediate arrow
that is distinct from the laser frequency changes its value
upon the scattering process, it is integrated over. Finally,
the two downward arrows corresponding to the backscattered
signal in a given polarization channel should bear the same
polarization indices and frequency values (equal to ν for
the inelastic component). Application of these rules to the
diagrammatic expansions (A) and (B) in Fig. 6 results in six
contributions—(a1)(b1), (a1)(b2), (a1)(b3), (a1)(b4), (a2)(b1),
and (a2)(b2)—to the elastic, and four contributions—(a1)(b5),
(a2)(b3), (a2)(b4), and (a2)(b5)—to the inelastic component
of the double-scattering ladder spectrum. For example, the
combination of diagrams (a2) and (b5) in Fig. 6 yields the

result

(a2)(b5) = |ḡ|2〈←→� qr

←→
� r ′q ′ 〉

∫ ∞

∞

dω

2π
P (0)(ω[q],ω[q ′])

×P (+−)(ω[r ′],ω[r]; ν[qD ],ν[qD ]). (28)

Using this example, it is easy to construct the expressions for
other contributions by analogy.

To obtain the crossed signal, we apply the same rules
to the graphical equations (C) and (D) in Fig. 7. Here a
subtlety arises when combining diagrams (c2) and (d2). Such
a combination is forbidden since it features a closed loop
including two amplitudes cycling between the two circles
without an outgoing amplitude [19,24,27]. Excluding the
forbidden diagram, we obtain five contributions—(c1)(d1),
(c1)(d2), (c2)(d1), (c2)(d3), and (c3)(d2) to the elastic, and
three contributions—(c1)(d3), (c3)(d1), and (c3)(d3)—to the
inelastic spectrum of CBS.

Finally, after summation over the relevant values of the
intermediate polarization indices q, q ′, r , and r ′, one obtains
the result for the double-scattering ladder and crossed spectra
in a given polarization channel.

IV. APPLICATION: DOUBLE SCATTERING
BY OPTICALLY PUMPED ATOMS

A. Formulation of the problem

In this section we apply the formalism developed in Sec. III
to calculate the double-scattering signal from optically pumped
atoms in the helicity preserving (h ‖ h) polarization channel.
This scenario is very different from the one where multiple
scattering of a weak laser field from degenerate atoms in the
thermal equilibrium state was considered [7,28,33–35].

It is known that laser light with arbitrary polarization causes
optical pumping [36], that is, a nonequilibrium redistribution
of the atomic ground state’s sublevels’ populations. The
simplest situation arises in the case of a circularly polarized
laser field (for definiteness, we assume σ+ polarization): Such
a field pumps the atoms into a transition with the maximal
ground-state magnetic quantum number mg = Jg . For the
excited-state angular momenta Je = Jg − 1 and Je = Jg such
a state is “dark,” in the sense that the atoms get transparent for
the laser light [37]. The only nontrivial situation leading to a
CBS signal corresponds to the transition Jg → Je = Jg + 1.
Therefore, henceforth, we exclusively deal with the case
Je ≡ Jg + 1.

In Fig. 9 we present a steady-state population distribution
for an atom with such a transition optically pumped by
a σ+-polarized laser field. Apart from that, in Fig. 9, we
depict a scattering process which leads to a signal in the
h ‖ h polarization channel. This (double-) scattering process
is mediated by the excited-state sublevel |Je Je − 2〉 (we
remind the reader that the first and second symbols refer
to the total angular momentum and to magnetic quantum
numbers, respectively). In the linear scattering regime, the
relevant levels are the three sublevels |Je Je − 2〉, |Jg Jg〉, and
|Je Je〉. Therefore, for any ground-state angular momentum,
the ground-state degeneracy becomes immaterial, and perfect
phase coherence of the CBS signal is predicted [38]. Does this
imply that, in the nonlinear scattering regime, the enhancement
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FIG. 9. (Color online) Degenerate dipole transition Jg → Je =
Jg + 1 driven by σ+-polarized light [thick red (light gray) double
arrows]. In the notation of the ground- and excited-state sublevels,
the first number refers to the angular momentum and the second
one to the magnetic quantum number. The black dots show that the
populations in the steady-state limit are distributed among the states
|Jg Jg〉 and |Je Je〉, with Je = Jg + 1. The CBS signal in the helicity
preserving channel appears due to the double-scattering process on
the transition between |Jg Jg〉 and |Je Je − 2〉 depicted by the thin
blue (dark gray) arrow.

factor decays in the same way as it does for Jg = 0 as a function
of the laser field strength? As evident from Fig. 9, when two or
more laser photons are involved in the scattering process, the
state |Je Je − 2〉 can be coupled to the ground-state sublevel
|Jg Jg − 2〉 (if Jg � 1), such that the atom effectively becomes
an N-type four-level system with the ground-state sublevels
|Jg Jg − 2〉, |Jg Jg〉 and the excited-state sublevels |Je Je − 2〉,
|Je Je〉. In this case, the ground-state degeneracy does come
into play even though the atoms are optically pumped. Below,
we explore the effect of the internal degeneracy in optically
pumped atoms quantitatively, using the diagrammatic pump-
probe approach.

B. Selection of the polarization indices

The qualitative consideration of Sec. IV A allows us to
identify all the polarization indices of the single-atom blocks
in Figs. 6 and 7. We recall that the indices r , r ′ describe the
incoming waves and q, q ′ the outgoing ones; the index qD

corresponds to the polarization of the detected signal.
Let us first consider the ladder contribution; see Fig. 6. It

is easy to see that q = q ′ = +1, since this corresponds to the
polarization of the field radiated by an atom that is optically
pumped by a σ+-polarized laser field. Indices r , r ′ correspond
to the σ−-polarized probe field depicted by the thin blue (dark
gray) arrow in Fig. 9; hence, r = r ′ = −1. Finally, detection in
the parallel helicity channel means that qD = −1. As regards
the crossed contribution (see Fig. 7), we likewise obtain, for
diagram (C), r ′ = qD = −1, q = +1, and for diagram (D),
r = qD = −1, q ′ = +1.

It follows from the above that both the ladder and the
crossed contributions are proportional to the geometric weight

〈|←→� −1,+1|2〉, for any Jg . Using the definitions (9), (10), and
(11), we easily perform the angular integrations to obtain

〈|←→� −1,+1|2〉 = 2/15.

C. Some basic properties of the building blocks
for optically pumped atoms

With the polarization indices fixed, the elementary single-
atom building blocks required for the evaluation of the
double-scattering signal in the h ‖ h polarization channel
can readily be evaluated using Eqs. (21) and (27). Some of

these elementary blocks vanish identically in this channel,
which reduces the total number of the double-scattering
diagrams. First, let us consider the elementary block shown in
Fig. 8(a) (or its complex conjugate). Indeed, the corresponding
amplitude describes single scattering and must have the
same polarization as the laser field. Its contribution therefore
vanishes in the h ‖ h polarization channel (where qD = −1,
as opposed to q = q ′ = +1 for the incident laser). By the
same argument, all double-scattering diagrams containing the
blocks (b1) and (b2) (Fig. 6) and (c2) and (d2) (Fig. 7) yield
zero contribution. Second, let us examine the block (b4) in
Fig. 6 which is composed of the two elementary blocks [see
Fig. 8(c)] describing phase conjugation processes of the probe
fields in the presence of the laser field [24], whereupon the
incoming solid arrow turns into the outgoing dashed arrow
and vice versa. These are nonlinear transformations of the
probe fields which can only take place if the probe and laser
field polarizations coincide. However, this is not the case
in the helicity-preserving channel (where r = r ′ = −1 and
q = q ′ = +1; see Sec. IV B); hence, there is no contribution
to the ladder spectrum due to the block (b4).

After excluding the diagrams that do not contribute in
the h ‖ h polarization channel, we end up with four double-
scattering diagrams, each contributing to the ladder and to the
crossed spectrum. We now consider the elastic and inelastic
components of both spectra separately.

D. Elastic component

The elastic ladder and crossed double scattering spectra are
obtained by combining diagrams (a1) and (b3) in Fig. 6 and
diagrams (c1) and (d1) in Fig. 7, respectively. It is evident
that the resulting ladder and crossed diagrams contain the
same elementary blocks. Hence, as expected [38], the elastic
component of the double-scattering contribution to CBS yields
perfect interference contrast in the parallel helicity channel. We
have phenomenologically deduced an analytical expression for
these intensities which, as we have checked, exactly coincides
with the result based on the numerical solution of the OBE
(see above) for arbitrary choice of the parameters �, δ, and Jg ,

Lel = Cel = 1

(4Jg + 1)2

1

1 + (δ/γ )2

s

(1 + s)4
, (29)

where we dropped a common geometric prefactor, and
introduced the saturation parameter

s = 1

2

�2

γ 2 + δ2
. (30)

For Jg = 0, Eq. (29) reduces to the result for Sr atoms derived
using the master equation approach [12].

As already noted, perfect interference contrast, following
from Eq. (29), is a consequence of the optical pumping,
whereupon the internal degeneracy does not play any role.
In the opposite case of degenerate atoms in the thermal
equilibrium (all ground-state sublevels are equally populated),
the contrast is, in general, <1, but its maximum value is
restored in the semiclassical limit Jg → ∞ [39].
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FIG. 10. (Color online) Inelastic ladder (solid lines) and crossed
(dashed lines) double-scattering CBS spectra in the weakly inelastic
regime (� = 0.3γ ), for four different dipole transitions. (Top) Jg = 0
and Jg = 1/2. Both spectra coincide after rescaling the Jg = 1/2 plots
by the factor 1/9. (Middle) Jg = 1; (bottom) Jg = 3. (Left column)
Exact resonance, δ = 0; (right column) detuned driving, δ = 5γ .
Insets magnify narrow resonances that emerge for Jg � 1, centered at
the driving frequency for δ = 0, and slightly shifted towards a more
pronounced sideband for δ �= 0. In cases (d) and (f), sidebands at
δ = 5γ exist, but are not resolved on this scale.

E. Inelastic spectrum

The sum of the remaining self-consistent combinations of
diagrams, (a1)(b5) + (a2)(b3) + (a2)(b5) (see Fig. 6), yields
inelastic ladder, and the sum (c1)(d3) + (c3)(d1) + (c3)(d3)
(see Fig. 7) yields inelastic crossed spectra. Below, we present
our numerical results obtained by substituting solutions of
Eqs. (21) and (27) into the above graphical equations, along
with a qualitative discussion of how the internal degeneracy of
optically pumped atoms affects the inelastic CBS spectra.

In the inelastic-scattering regime, the laser field couples the
excited state of the CBS transition to the unpopulated ground-
state sublevel with mg = Jg − 2 (see Fig. 9). Since such a
coupling is impossible for atoms with Jg = 0 and Jg = 1/2,
these two types of transitions are expected to exhibit similar
behavior in the helicity-preserving channel. Indeed, as our
calculations show [Figs. 10(a), 10(b), and 12], the inelastic
spectra for Jg = 1/2 coincide, up to a prefactor 1/9 = (4Jg +
1)−2, with the double-scattering spectra for the transition with
Jg = 0. Since the same prefactor appears in the expression for

the elastic intensities [see Eq. (29)], the enhancement factors
must coincide for the transitions with Jg = 1/2 and Jg = 0,
for arbitrary parameters of the laser field.

For atoms with Jg � 1, the CBS transition shares a common
excited state with the laser-driven transition |Jg Jg − 2〉 ↔
|Je Je − 2〉 (see Fig. 9), which leads to qualitatively different
spectra in the weakly and strongly inelastic-scattering regimes,
as compared to the case of the nondegenerate atoms.

Below, we illustrate the above claims with numerical results
for different values of Jg .

1. Weakly inelastic scattering

Figure 10 shows several examples of the spectra for the
case � = 0.3γ . By virtue of Eq. (30), this corresponds to
the weakly inelastic regime, s � 1, for arbitrary detunings δ.
The results for the transitions Jg = 0 and Jg = 1/2 coalesce
in Figs. 10(a) and 10(b) after rescaling the Jg = 1/2 signal
with the prefactor (4Jg + 1)2; see our discussion above. In
the resonant case (left panels), ladder and crossed spectra
exhibit an inelastic Rayleigh peak with a width of the order
of γ , centered at ν = 0; in the detuned case (right panels),
both spectra contain two sidebands centered at ν = ±δ. The
detailed analytical and numerical results for double scattering
spectra and a physical interpretation thereof were presented for
the case of Sr atoms (Jg = 0) in [30,31]. We stress that, here
and in Sec. IVE2 below, the double scattering CBS spectra
for Sr atoms calculated using the master equation approach
[30] coincide with the ones found within the diagrammatic
pump-probe approach [31].

Starting from Jg = 1, both the ladder and the crossed
spectra exhibit, in addition to the spectrally wide features
that are present in the case of Jg = 0 and Jg = 1/2, narrow
resonances centered at the laser frequency, ν = 0 [in the
detuned case, the position of the narrow resonance is slightly
shifted towards a more pronounced sideband; see Figs. 10(d)
and 10(f)].

Subnatural linewidth resonances are typical for atoms
with degenerate dipole transitions [40–45]. Using the insights
gained in these previous works, the emerging narrow peaks
in the double-scattering CBS spectra in the case Jg � 1 can
straightforwardly be explained [43]: Namely, since the system
is optically pumped, an additional time scale, the finite lifetime
of unpopulated magnetic ground-state sublevels, emerges.
Associated with this lifetime, optically pumped atoms acquire
an effective subnatural width ≈ sγ . This width shows up in
the CBS spectra as an additional narrow peak centered near
ν = 0, when a field scattered from another atom couples to the
unpopulated ground-state sublevel via a laser field (see Fig. 9).

We see below in Sec. IVE2 that, in the double-scattering
spectral signal from atoms with Jg � 1, ultranarrow peaks
can appear even in the strong saturation regime, s � 1. In that
case, the physical origin of the narrow resonances is quantum
interference between stimulated emission processes.

2. Inelastic scattering from saturated atoms

Since saturation sets in for s � 1, the narrow features
in the CBS spectra then disappear (unless Jg � 1). The
degeneracy of the Zeeman sublevels is lifted by the dynamic
Stark effect, and the shape of the double-scattering CBS

023850-10



DIAGRAMMATIC TREATMENT OF COHERENT . . . PHYSICAL REVIEW A 90, 023850 (2014)

FIG. 11. (Color online) Dressed-state structure for atoms with
different ground-state angular momenta (a) Jg = 0, (b) Jg = 1/2,
and (c) Jg � 1. Modified Rabi frequency �̃ = √

�2 + δ2, and �′ is
given by Eq. (31). While in cases (a) and (b) the structure of the levels
relevant for double scattering is the same, in case (c) the excited state
of the CBS transition is dressed by the laser field.

spectra can be understood by analyzing the dressed-state
structure of the relevant dipole transitions of the atoms.
Figure 11 schematically depicts the dressed levels of the
optically pumped atoms with (a) Jg = 0, (b) Jg = 1/2, and
(c) Jg � 1. In the former two cases, the structure of the dipole
transition, relevant for the CBS signal in the h ‖ h channel,
is the same. Unsurprisingly, the ladder and crossed spectra
for Jg = 0 and Jg = 1/2 plotted in Fig. 12 are identical up

FIG. 12. (Color online) Examples of double-scattering ladder
(top) and crossed (bottom) spectra for three different values of the
Rabi frequency � (see legend) at resonance (δ = 0; left) and at a
detuning δ = 5γ (right), for Jg = 0 and Jg = 1/2. The spectra for
both values of Jg coalesce upon rescaling the Jg = 1/2 spectra by a
factor (4Jg + 1)−2 = 1/9.

to the numerical prefactor 1/9 = (4Jg + 1)−2 from Eq. (29).
Note that, unlike Fig. 10, we present the ladder and crossed
spectra in the saturation regime in separate plots to facilitate
the interpretation of the spectral features which become more
complicated in this high intensity limit. Since the CBS spectra
for Sr atoms have been discussed in detail in [30], we right
away move on to the case Jg � 1.

Results for the two examples Jg = 1 and Jg = 3 are
presented in Fig. 13. As in the weakly inelastic regime,
the spectra for Jg � 1 are different from those for Jg < 1:
Especially the number and the positions of the peaks differs.
The main reason for this distinction in the saturation regime is
a different dressed-state structure for Jg � 1 as compared to
Jg < 1; see Fig. 11.

In the limit of well-separated spectral lines, �̃ � γ , the
splitting between the dressed levels corresponding to the
transition |Jg Jg〉 ↔ |Je Je〉 is equal to the modified Rabi
frequency �̃ = √

�2 + δ2, whereas the splitting �′ between
the dressed levels for the transition |Jg Jg − 2〉 ↔ |Je Je − 2〉
is given by the product of the modified Rabi frequency and the
corresponding Clebsch-Gordan coefficient,

�′ = �̃〈Jg Jg − 2,11|Jg + 1 Jg − 1〉

= �̃

√
Jg(2Jg − 1)

2J 2
g + 3Jg + 1

. (31)

Due to these unequal splittings, there should appear four
resonance frequencies in the CBS ladder spectra, which
represent the various double-scattering processes, at

ν = 1
2 (±�̃ ± �′). (32)

Formula (32) describes accurately the positions of the reso-
nances not only in the limit of well-separated spectral lines, but
also for moderate values of the Rabi frequency. For instance,
let us take δ = 0 and � = 10γ . In this case, the positions of
the maxima of the ladder spectrum as obtained in Figs. 13(a)
and 13(c) (red dash-dotted lines) from the solution of Eqs. (21)
and (27) (with a binning size 0.1γ of the frequency axis) are
(in units of γ )

ν = ±2.8; ±7.1 (Jg = 1),

ν = ±1.3; ±8.6 (Jg = 3).

In good agreement with these values, Eqs. (31) and (32) yield
resonances centered at the frequencies

ν = ±2.96; ±7.04 (Jg = 1),

ν = ±1.34; ±8.66 (Jg = 3).

As regards the crossed spectra, they originate from inter-
ferences between different inelastic-scattering processes that
are manifest in the ladder spectra as separate resonances
[30]. These interferences lead to a peculiar line shape of
the crossed spectra for Jg = 1 and Jg = 3 (see Fig. 13),
which contains regions of both constructive and destructive
interference, depending on the phase shifts associated with
the corresponding frequency shifts upon inelastic-scattering
processes. Note that, in all cases, the maximum of the crossed
spectrum occurs close to ν = 0. Therefore, the interference is
always constructive close to the laser frequency.
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FIG. 13. (Color online) Examples of the double-scattering ladder (top) and crossed (bottom) spectra, for three different values of the Rabi
frequency � (see legend) for (a),(b),(e),(f), Jg = 1; and (c),(d),(g),(h), Jg = 3. Plots (a), (c), (e), and (g) are obtained at exact resonance, δ = 0,
while (b), (d), (f), and (h) show the result for finite detuning, δ = 5γ .

It is interesting to study the double-scattering spectra
for larger values of Jg . In particular, this allows us, in the
next section, to answer the question of whether the CBS
interference effect survives in the limit Jg → ∞. Previously, it
was established that a residual enhancement factor exists in the
deep saturation regime for atoms with Jg = 0 [12], and in the
elastic-scattering regime for semiclassical atoms (Jg → ∞)
[39].

Using the aforementioned fact that optically pumped atoms
with arbitrary Jg can be modeled as effective few-level
systems, it is possible to calculate the double-scattering CBS
spectra for arbitrary Jg by simply readjusting the values of the
Clebsch-Gordan coefficients. As we checked, these spectra
look qualitatively the same as the spectra shown in Fig. 13,
as long as Jg � 40. For larger values of Jg , the splitting
�′ between the dressed levels converges to the modified
Rabi frequency �̃ [see Eq. (31)], and the two maxima of
the ladder spectrum at ν = ±(�̃ − �′)/2 merge. As a result,
the ladder spectrum acquires a line shape consisting of three
broad (linewidth ∼γ ) peaks located at ν = −�̃,0, + �̃, and
a subnatural linewidth peak at ν = 0; see Fig. 14. The three
broad peaks represent nothing but the Mollow triplet [46]. It
results from the spontaneous emission of the atom, excited by
the probe field on the level |Je Je − 2〉, down the dressed
states of the CBS transition [which tends, for Jg � 1, to
the dressed-state structure of the laser-driven two-level atom;
see Fig. 11(c)]. As for the narrow resonance, we believe
that it originates from destructive interference between two
stimulated emission processes from the dressed states, when
ν ≈ 0 [leading to an extremely long lifetime of these states
∼ (Jg/γ )]. We deduce the linear scaling with Jg from the
observation of the behavior of the widths of the subnatural
peaks which decrease as ∼J−1

g (see Fig. 14). Similar ultranar-
row spectral features due to destructive interference between

the dressed-state transitions were predicted in resonance
fluorescence of a four-level atom excited by a bichromatic
coherent field [47].

Concerning the crossed spectra, in the limit Jg � 1 it
consists of a single positive narrow peak centered at ν = 0
(see Fig. 14). Its width coincides with the width of the narrow
ladder resonance and, hence, it also decreases as ∼J−1

g with
increasing Jg .

FIG. 14. (Color online) Inelastic ladder (solid lines) and crossed
(dashed lines) double-scattering CBS spectra at exact resonance
(δ = 0) in the deep saturation regime (� = 18γ ), for different dipole
transitions: (a) Jg = 30, (b) Jg = 110, (c) Jg = 103, and (d) Jg = 104.
Insets magnify narrow resonances.
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To see better how the above-described spectral signatures
affect the net interference effect of all the elastic and inelastic-
scattering processes, we conclude our study in the next section
with an investigation of the total CBS enhancement factor.

F. Enhancement factor

The enhancement factor α is a quantitative measure of phase
coherence between the interfering waves which contribute to
the CBS signal. In the h ‖ h channel, it is defined as [33]

α(θ ) = 1 + Ctot(θ )

Ltot
, (33)

where θ is the observation angle with respect to the backwards
direction and Ctot(θ ) and Ltot are the total crossed and ladder
intensities of double scattering, respectively. Hereafter, we
consider the exact backward direction, θ = 0.

In the inelastic-scattering regime, the total intensities are
given by the sums of the elastic and inelastic intensities,

Ctot(0) = Cel + Cin, (34)

Ltot = Lel + Lin, (35)

where the elastic components, Cel = Lel, are defined in
Eq. (29), and the inelastic intensities

Cin =
∫ ∞

−∞
dνCin(ν), Lin =

∫ ∞

−∞
dνLin(ν), (36)

are given by integrations over their frequency distributions.
Applying the formulas (33)–(36) to the calculated spectra,

we study the behavior of the enhancement factor versus the
saturation parameter, for different values of the ground-state
angular momenta. Our results for the case of exact resonance
are presented in Fig. 15.

In the elastic-scattering regime, that is, for s → 0, the
enhancement factor features perfect phase coherence—α →
2—for arbitrary Jg . This is in full agreement with our result
for the elastic ladder and crossed intensities; see Eq. (29).
Furthermore, the results for Jg = 0 and Jg = 1/2 coincide
for all s. As already discussed in Sec. IV E, the ground-state
degeneracy does not affect the phase coherence in these cases;
the decrease of α is due to inelastic-scattering processes alone.

FIG. 15. (Color online) Coherent backscattering enhancement
factor α vs saturation s, at resonant driving, for different values of
Jg . The enhancement factor initially decreases faster with increasing
saturation for higher values of Jg .

FIG. 16. (Color online) Residual enhancement factor α∞ at s =
162 � 1, versus Jg = 0, 1/2, 1, 3/2, 2, 5/2, 3, 4, 5, 6, 7, 8, 9, 10,
15, etc., with α∞(0) = α∞(1/2) ≈ 1.095. (Inset) Semilog graph of
α∞(Jg), with α∞(104) ≈ 1.0016. The continuous line is a guide for
the eye.

Starting from Jg = 1, the enhancement factor exhibits an
initially steeper decay of α with s as Jg increases. We attribute
this behavior to the fact that the coupling of the excited
state |Je Je − 2〉 to the ground state |Jg Jg − 2〉 increases
with Jg , due to the growth of the associated Clebsch-Gordan
coefficients. Although at intermediate and large values of s

larger values of Jg do not necessarily lead to a faster decrease
of α with s, the result for Jg = 0 and Jg = 1/2 yields an
upper bound. In other words, when the internal degeneracy
comes into play, it always leads to a faster decay of the phase
coherence as compared to the nondegenerate case.

Finally, let us discuss the asymptotic behavior of the
enhancement factor α∞ in the deep saturation regime, s � 1.
For double scattering from Sr atoms, we found earlier that the
inelastic ladder and crossed intensities asymptotically decrease
as ∼s−1, leading to a residual enhancement α∞ ≈ 1.095 in the
case of resonant driving [12]. The dependence of α∞ on Jg is
presented in Fig. 16. For Jg > 1/2, α∞ drops with increasing
total angular momentum, until it reaches a minimum of
α∞(40) ≈ 1.0073. Further increase of Jg leads to a very slow
but monotonic increase of the residual enhancement until Jg ≈
500, where a local maximum of α∞(500) ≈ 1.017 is reached
(see inset in Fig. 16). This behavior is unsurprising when taking
into account that the increase in Jg is not accompanied by
an increase in the effective internal ground-state degeneracy,
which remains equal to 2 for any Jg � 1. The slow growth
of α∞ for Jg > 40 can be attributed to the fact that the total
weight of the ladder spectrum decreases after merging two
central peaks into one single peak [see Fig. 14(a) and 14(b)].

Further increase of Jg leads to a monotonic decrease of
α∞. As follows from the discussion in Sec. IVE2 and Fig. 14,
for very large values of Jg , an increase of Jg is accompanied
by narrowing of the subnatural linewidth resonances of the
ladder and crossed spectra, without affecting the broad spectral
features of the ladder spectra. This is not compensated by an
increase of the relative peaks’ heights, which remain fixed for
a given value of s. Therefore, we predict that the enhancement
factor should asymptotically tend to unity:

α∞ = 1 + O(J−1
g ), Jg → ∞. (37)
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V. SUMMARY AND CONCLUSION

In this work, we generalized the pump-probe approach to
CBS of light by cold two-level atoms [14,15,24] to atoms
with degenerate energy levels. For this, we derived equations
of motion for a generalized Bloch vector, describing the
dynamics of a single atom under a classical bichromatic
driving field. Because these equations are formally equivalent
to the equations appearing in the pump-probe approach for
two-level atoms, we could translate our equations to the
same diagrammatic language. By doing so, we obtained
similar single-atom building blocks as in [24], where, in
the generalized diagrams, each incoming and outgoing arrow
is additionally equipped with a polarization index. Like for
two-level atoms, the double-scattering contributions to CBS
can be derived by combining these single-atom building blocks
self-consistently.

We applied the generalized pump-probe approach to study
double scattering from optically pumped atoms in the helicity-
preserving polarization channel. To this end, we considered
several examples of the dipole transition Jg → Je = Jg + 1.
Comparing our results for the Jg = 0 transition with the master
equation results [12,30], for different parameter values, we
could establish perfect agreement between both approaches.

For Jg � 1, the internal degeneracy manifests itself in
the inelastic scattering signal, leading to a faster decay of
the CBS enhancement factor with increasing saturation of
the atomic transition as compared to the nondegenerate case.
Finally, we predict that, in the deep saturation regime, the
CBS interference signal should asymptotically vanish with
increasing Jg , as J−1

g .
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APPENDIX A: PROJECTING VECTORS

For a dipole transition with the ground- and excited-state
angular momenta Jg and Je, respectively, the complete orthog-
onal basis set contains N = [2(Je + Jg) + 2]2 − 1 operators.
We denote these operators by μ1, . . . ,μN . Consequently, the
generalized optical Bloch vector can be written as

Q = (μ1, . . . ,μN )T , (A1)

where T denotes transposition. Among these operators, it
is convenient to choose the first N0 = 2(Je + Jg) + 2 oper-

ators as the identity operator and N0 − 1 diagonal traceless
operators. The remaining N − N0 operators are chosen as
nondiagonal operators describing transitions between pairs of
different sublevels. Then, the set of operators μ′

i , orthogonal to
the set of operators μi , can be chosen in the following way: The
first N0 operators of the orthogonal set read μ′

i = μi/Tr[μ2
i ]

(i = 1, . . . ,N0), and the remaining operators μ′
i = μT

i .
It is easy to see that, in this case, the orthogonality

condition, Tr[μnμ
′
m] = δnm, is fulfilled for all 1 � n,m � N .

Consequently, any operator O = ∑
i ciμi can be defined as a

scalar product

O = C · Q, 〈O〉 = C · 〈Q〉, (A2)

where C = (c1, . . . ,cN ) is a projecting vector, with ci =
Tr[Oμ′

i]. Likewise, we denote the vectors projecting onto the
operator D

†
q and Dq to be Uq and Vq , respectively:

〈D†
q〉 = Uq · 〈Q〉, 〈Dq〉 = Vq · 〈Q〉. (A3)

APPENDIX B: INITIAL CONDITIONS

We now explain how to define the initial conditions in
Eq. (26). From the definitions of the correlation functions (27),
we have

fq(0) = 〈QDq〉 − 〈Q〉〈Dq〉, (B1a)

hq ′ (0) = 〈D†
q ′Q〉 − 〈D†

q ′ 〉〈Q〉, (B1b)

where the average should be taken with respect to the steady
state of a single laser-driven atom. We note that the perturbative
expansion of the factorized part of the correlation function in
Eq. (B1) can be obtained directly from Eq. (21d). As regards
the nonfactorized parts on the right-hand sides of (B1), they
can be expressed using Eq. (21d) as

〈QDq〉 = A1〈Q〉 + L1, (B2a)

〈D†
q ′Q〉 = A2〈Q〉 + L2, (B2b)

where

(A1)ij = Tr[μiDqμ
′
j ], (L1)i = Tr[Dqμ

′
i]/N0, (B3a)

(A2)ij = Tr[D†
q ′μiμ

′
j ], (L2)i = Tr[D†

q ′μ
′
i]/N0. (B3b)

Performing the perturbative expansion of both sides of
Eq. (B1a) to second order in the probe field, we obtain

f(0)
q (0) = A1〈Q〉(0) + L1 − 〈Q〉(0)〈Dq〉(0), (B4a)

f(+)
q (ω[r ′]; 0) = A1〈Q(ω[r ′])〉(+) − 〈Q(ω[r ′])〉(+)〈Dq〉(0) − 〈Q〉(0)〈Dq(ω[r ′])〉(+), (B4b)

f(−)
q (ω[r]; 0) = A1〈Q(ω[r])〉(−) − 〈Q(ω[r])〉(−)〈Dq〉(0) − 〈Q〉(0)〈Dq(ω[r])〉(−), (B4c)

f(+−)
q (ω[r ′],ω[r]; 0) = A1〈Q(ω[r ′],ω[r])〉(+−) − 〈Q(ω[r ′],ω[r])〉(+−)〈Dq〉(0) − 〈Q〉(0)〈Dq(ω[r ′],ω[r])〉(+−)

−〈Q(ω[r ′])〉(+)〈Dq(ω[r])〉(−) − 〈Q(ω[r])〉(−)〈Dq(ω[r ′])〉(+). (B4d)
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Expanding, in the same way, Eq. (B1b) leads to the initial conditions for the vector hq ′ (0):

h(0)
q ′ (0) = A2〈Q〉(0) + L2 − 〈Q〉(0)〈D†

q ′ 〉(0), (B5a)

h(+)
q ′ (ω[r ′]; 0) = A2〈Q(ω[r ′])〉(+) − 〈Q(ω[r ′])〉(+)〈D†

q ′ 〉(0) − 〈Q〉(0)〈D†
q ′ (ω[r ′])〉(+), (B5b)

h(−)
q ′ (ω[r]; 0) = A2〈Q(ω[r])〉(−) − 〈Q(ω[r])〉(−)〈D†

q ′ 〉(0) − 〈Q〉(0)〈D†
q ′(ω[r])〉(−), (B5c)

h(+−)
q ′ (ω[r ′],ω[r]; 0) = A2〈Q(ω[r ′],ω[r])〉(+−) − 〈Q(ω[r ′],ω[r])〉(+−)〈D†

q ′ 〉(0) − 〈Q〉(0)〈D†
q ′ (ω[r ′],ω[r])〉(+−)

−〈Q(ω[r ′])〉(+)〈D†
q ′(ω[r])〉(−) − 〈Q(ω[r])〉(−)〈D†

q ′(ω[r ′])〉(+). (B5d)
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