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The semiconductor diode, which acts as an electrical rectifier and allows unidirectional electronic transports,
is the key to information processing in integrated circuits. Analogously, an optical rectifier (or diode) working
at specific target wavelengths has recently become a highly sought-after device in optical communication and
signal processing. In this paper, we propose a scheme to realize an optical diode for photonic transport at the
level of few photons. The system consists of two spatially overlapping single-mode semiconductor microcavities
coupled via χ (2) nonlinearities. The photon blockade is predicted to take place in this system. These photon
blockade effects can be achieved by tuning the frequency of the input laser field (driving field). Based on those
blockades, we analytically derive the one- and two-photon current in terms of a zero and a finite time-delayed
two-order correlation function. The results suggest that the system can serve as a one- and two-photon quantum
optical diode which allows transmission of photons in one direction much more efficiently than in the other.
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I. INTRODUCTION

The electrical diode is a two-terminal electronic device with
asymmetric conductance. It has low resistance to current flow
in one direction and high resistance in the opposite direction.
The study of electrical diodes can be traced back to more than
a century ago, when the first device enabled the rectification of
current flux. Motivated by the significant rectifying capabilities
of electric diodes, considerable efforts have been made to
investigate the rectification of other energy forms, for example,
thermal flux [1–6] and solitary waves [7].

Efforts have also been made to investigate the optical
diodes. Optical diodes, also known as optical isolators [8],
are an optical rectifier working at specific target wavelengths.
They allow propagation of a photon signal in one direction
and block that in the opposite direction. Motivated by potential
applications in a quantum network of light, various possible
solid-state optical diodes have been proposed, including the
diodes from standard bulk Faraday rotators [9,10], the diodes
integrated on a chip [11–15], and diodes operating in an
optically controllable way [11,16,17], as well as the diodes
at low-field intensities or even at the single-photon levels [18].

The physics behind the optical diode is the breaking of time-
reversal symmetry, which is typically achieved via acoustic
rectifiers [19,20], moving photonic crystal [21], spin-photon
entangling [22], and few-photon tunneling [23–25]. Thanks to
the classical level at which these schemes work, they have now
been attained in different configurations on-chip [13,14,26].

With the recent advances in quantum photonic technologies
at the single-photon levels [27], researchers have made a step
further in the study of the optical diode, i.e., the quantum op-
tical diode. Tunable one- or two-photon quantum rectification
is likely to play an important role in this case, analogous to the
classical electrical diodes in current microchips. A quantum
optical rectifier is a two-terminal, spatially nonreciprocal
device that allows unidirectional propagation of single or few
quanta of (electromagnetic) energy at a fixed signal frequency

*Corresponding author: yixx@nenu.edu.cn

and amplitude [28]. Up to now, only a few proposals have been
made [18,28] in the fully quantum regime.

In this paper, we propose a fully quantum diode with
two coupled semiconductor microcavities driven by external
fields. The merit of this proposal is to unify the unidirectional
transport of photon and photon conversion. The system
consists of two spatially overlapping single-mode cavities
with frequencies ωb and ωa , respectively. The two cavities
are coupled by χ (2) nonlinearities that mediate the conversion
of a photon in cavity b to two photons in cavity a, and
vice versa [29–33]. The physics behind this proposal is the
photon blockade. When cavity a is pumped, the single-photon
blockade prevails in the system; the single photon that occupies
the Fock state first blockades the generation of more photons.
When the pumping is on cavity b, due to the existence of the
two-photon eigenstate of the system, a two-photon blockade
dominates, blockading more photons in cavity b.

The single-photon blockade was already observed in
standard cavity quantum electrodynamics (QED) [34–43],
optomechanical systems [44–47], and in a circuit QED
system [48,49]. The proposal presented here is to use these
techniques and show the one- and two-photon blockade effect
by changing the intensity and frequency of the driving field.

To be specific, we present a proposal for an optical diode in
microcavities. By analyzing the propagation of photons in the
system, we observe a significant rectifying effect that allows
the photons with a fixed frequency to propagate in one direction
but suppresses them in the opposite direction. Based on the
analysis of the underlying rectifying mechanism and detailed
examination of the parameter dependence of the rectifying
efficiency, we find that the system may be identified as a diode
in a wide range of parameters despite its simplicity.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the system and present a model to
describe the system. The one- and two-photon blockades are
predicted and discussed. In Sec. III, in terms of the two-order
correlation function and photon number statistics, we analyze
a specific one-photon and two-photon diode. In Sec. IV,
we investigate the rectification of the diode via two-time
correlation functions. Section V is devoted to the experimental
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realization of a few-photon optical diode. Discussion and
conclusions are given in Sec. VI.

II. MODEL AND PHOTON BLOCKADE

Throughout this work, we adopt the International System
(SI) of units [50]. The nonlinear optical response of dielectric
material to an electric field is given by

Di(r,t) =
∑
jkm

{
ε0εij (r)Ej (r,t) + ε0

[
χ

(2)
ijk(r)Ej (r,t)Ek(r,t)

+χ
(3)
ijkm(r)Ej (r,t)Ek(r,t)Em(r,t) + · · ·]}, (1)

which defines the relative dielectric permittivity tensor of
the medium, εij (r) = δij + χ

(1)
ij (r). We will consider only the

nonlinear response up to second order in the electromagnetic
field, i.e., we assume χ

(3)
ijkm(r) = 0 and only take the optical

nonlinear effects caused by χ
(2)
ijk in Eq. (1) into account.

We assume the material is isotropic, i.e., εij (r) → ε(r) is a
spatially dependent scalar quantity. The canonical quantization
can be done by expressing the field operators as

Ê(r,t) =
∑

j=a,b

√
�ωj

2ε0

[
ĥj

�φj (r)√
ε(r)

e−iωj t + H.c.

]
, (2)

and B̂(r,t) = −∇ × Ê(r,t)/ω0, with H.c. standing for the
Hermitian conjugate. Here, ĥa = â and ĥb = b̂ denote the
photon destruction operators in the two cavities with frequen-
cies ωa and ωb = 2ωa , respectively. For each cavity mode,
the three-dimensional cavity field φj (r) must be normalized

by
∫ | �φj (r)|2d3r = 1 (j = a,b). By the energy density for-

mula in classical electrodynamics, Hem = 1
2

∫
[E(r,t)D(r,t) +∫

H(r,t)B(r,t)]d3r, where H(r,t) = B(r,t)/μ0, an interac-
tion Hamiltonian in the second quantization can be ob-
tained [29,31],

Ĥ0 = �ωaâ
†â + �ωbb̂

†b̂ + ��(b̂†â2 + H.c.), (3)

where the nonlinear interaction coefficient is defined by

� =
√

�ω2
aωb

2ε0

∑
ijk

∫
χ

(2)
ijk(r)

[ε(r)]1.5
φ∗

i,a(r)φ∗
j,a(r)φk,b(r)d3r. (4)

For the scheme to work, external driving for cavity a

or b is essential. We illustrate the setup in Fig. 1(a). The
driving frequency is denoted by ωL for cavity a and 2ωL for
cavity b, respectively. F stands for the driving strength. The
corresponding Hamiltonian is

Ĥdr (t) = Ĥ0 + �F ĥj e
−iλj ωLt + �F ∗ĥ†

j e
iλj ωLt , (5)

where λa = 1 and λb = 2. In a rotating frame defined by
ÛS(t) = exp[iωLt(â†â + 2b̂†b̂)], the Hamiltonian is

ĤS = �
aâ
†â + �
bb̂

†b̂ + ��(b̂†â2 + â†2b̂)

+ �F ĥj + �F ∗ĥ†
j ,

(6)

where 
a = ωa − ωL and 
b = ωb − 2ωL define the detun-
ings of the cavity a and cavity b modes from the driving laser,
respectively.
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FIG. 1. (Color online) (a) Illustration of the setup. The two
cavities driven by external fields (pumping) are coupled by χ2

nonlinearities. The pumping on the cavity a is resonant with the field
inside cavity a, while the pumping on cavity b is at 2ωa + √

2�

or 2ωa − √
2�. (b) Level diagram for the two coupled cavities

with ωb = 2ωa . States are labeled by |mn〉 with the first (second)
number denoting the photon number in cavity a (cavity b). The
coupling � splits the degeneracy of states |mn〉 and |m − 2n + 1〉
or |m + 2n − 1〉. The arrows show the frequency of the driven field.

The nonlinear terms proportional to � in Eq. (6) describe
coherent photon exchange between the two optical cavity
modes. The resulting low-energy level diagram is shown in
Fig. 1(b), where |mn〉 as before represents the state with m and
n photons in the cavity a and b, respectively. In the absence of
driving fields, we diagonalize ĤS with ωb = 2ωa and ωL = ωa .
The ground state and low excited state are

|0〉 = |00〉 ,

|1〉 = |10〉 ,

|2±〉 = 1√
2

|01〉 ± |20〉 ,

|3±〉 = 1√
2

|11〉 ± |30〉 ,

|4±〉 = 1√
2

|02〉 ± |21〉 .

(7)

The driving field couples all states which differ from each
other by a single photon. In the following sections, we will
restrict ourselves to consider a very weak driving field such
that the Hilbert space can be truncated to low-energy levels, as
listed in Eq. (7).

In addition to the coherent evolution governed by the
Hamiltonian ĤS , we introduce cavity losses to the system,
and the dynamics of the system is described by

ρ̇ = −i[ĤS,ρ] + κaD(â)ρ + κD(b̂)ρ, (8)
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where ĤS is given by Eq. (6), κ and κa denote loss rates for
the two cavities, respectively, and the superoperator D(ô) =
ôρô† − 1

2 ô†ôρ − 1
2ρô†ô. According to the Markovian input-

output formalism of Collett and Cardiner [51–53], the input,
output, and intracavity fields are linked by the input-output
relation,

âout(t) = âin(t) + √
κaâ(t),

b̂out(t) = b̂in(t) + √
κb̂(t).

(9)

For an arbitrary state of the input modes, correlations of the
output fields would depend on cross correlations between
the input and intracavity fields, which in turn would require
one to model the input fields together with the system
dynamics. However, if we assume that only classical driving
fields are added to the quantum vacuum of the input-output
channels, then all normally ordered cross correlations between
intracavity and input modes vanish, and correlations in the
output channels can be expressed as functions of intracavity
correlations only. With this assumption, the average output
current (or photon stream) at time t can be formally given by

Nj (t) = κj Tr[ĥ†
j ĥj ρ(t)]. (10)

We will set κb ≡ κ hereafter.
Now we discuss the photon-blockade effect. This effect can

be characterized by the second-order correlation function with
no time delay [54,55],

g
(2)
j (0) =

〈
ĥ
†
j

2
ĥ2

j

〉
〈ĥ†

j ĥj 〉2 , (11)

where all operators are evaluated at the same instance of time.
In Fig. 2, we show g(2)

a (0) and g
(2)
b (0) as a function of detuning.

The figures are plotted in the weak driving limit. Interesting
features can been found at detunings 0,− 1√

2
, 1√

2
,−√

2,
√

2,

and 0 marked, respectively, by A–F. Recalling that g
(2)
j (0) <

1 indicates photon antibunching and g
(2)
j (0) → 0 implies

complete photon blockade, we find that point A exactly
corresponds to the single-photon blockade, similar to that
in Kerr-type [35,54,56] or QED [34–40] nonlinear systems.
Remarkably, when cavity b is pumped, a two-photon blockade
for cavity a occurs. This can be found at points D and E in
Fig. 2(c). Of course, for cavity b, it is still a single-photon
blockade. We refer to this effect as the two-photon blockade
from the aspect of cavity a, which means that the two-photon
Fock states blockade the generation of more photons.

To gain more insight into the one- and two-photon blockade
shown in Fig. 2, we develop an approximately analytic
expression for the system by considering only the eight lowest
energy levels in Fig. 1(b). By assuming that the system is
initially prepared in |00〉 and only these levels are occupied
due to the pumping of the driving, the state of the system can
be written as [57]

|〉 = C00 |00〉 + C10 |10〉 + C01 |01〉 + C20 |20〉
+C11 |11〉 + C30 |30〉 + C21 |21〉 + C02 |02〉 , (12)

and we take the effective Hamiltonian Ĥeff = ĤS − i[κaâ
†â +

κb̂†b̂]/2 to describe the system. This approach allows us to
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FIG. 2. (Color online) Rescaled average photon number (black
squares) and the equal-time second-order correlation function (blue
circles) as a function of detunings. The photon number is rescaled
by F 2 to fit the correlation function. (a) and (b) are for the case with
cavity a pumped, and (c) and (d) for cavity b pumped. Once one cavity
is pumped, another is left free. Dotted lines are analytical results [see
Eqs. (14)–(17)]. Red solid lines show the numerical results. Here and
hereafter, �, F,
a,
b, and κa are rescaled in units of κ , and t is then
in units of 1/κ . Hence all parameters are dimensionless. In all plots,
we chose �/κ = 4, F/κ = 0.2, ωa/κ = 1, ωb/κ = 2, and κa/κ = 1.
A–F mark the maximum and minimum, where the corresponding
detunings are A: 
a/� = 0; B: − 1√

2
; C: 1√

2
; D: 
b/� = −√

2; E:√
2; and F: 0. The tiny deviation of the analytical results from the

numerical ones is caused by the approximation F/κ 	 1 used in
Eqs. (14)–(17). A–F in the bottom panels illustrate the transitions
that may lead to the features seen at the points A–F. Suppression of
the steady-state population of the level |01〉 is indicated by a red X.
Further explanation of the features can be found in the main text.

evaluate the mean occupation numbers up to the order of
F 2 and the second-order correlation function up to the order
of F 4. By substituting |〉 into the Schrödinger equation
i∂t |〉 = Ĥeff |〉 (� = 1, hereafter), we find the following
coupled equations:

Ċ00 = 0,

Ċ10 = −iFC11 − δaC10,

Ċ20 = −i
√

2�C01 − 2δaC20,

Ċ01 = −i
√

2�C20 − iFC00 − δbC01,

Ċ11 = −i
√

6�C30 − iFC10 − (δa + δb)C11, (13)

Ċ30 = −i
√

6�C11 − 3δaC30,

Ċ21 = −i2�C02 − iFC20 − (2δa + δb)C21,

Ċ02 = −i2�C21 − i
√

2FC01 − 2δbC02,
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where δj = κj/2 + 
ji, and cavity b being pumped is
assumed. At steady states, these amplitudes Cij do not evolve.
The mean occupation numbers in this case are n̄a = 2|C̄20|2
and n̄b = |C̄01|2, where C̄ij denote the amplitude at the steady
state. Up to first order in F/κ (see Appendix A), the mean
photon number is

n̄a

n0
= 2�2

S
(

1
4 ,−
b,1,
b

2 , 1
2

) ,

n̄b

n0
= 4S (1,0,0,0,2)

S (1,−4
b,4,2
b,2)
,

(14)

where S (a,b,c,d,e) = (aκa + b
a + c�2)2 + (dκa + e
a)2

and n0 = (F/κ)2. From S (a,b,c,d,e) in these equations, we
can obtain the location for local maxima and minima of the
average photon numbers, which are in excellent agreement
with the numerical results shown in Fig. 2. The eight-level
model also provides us with the analytical expression of the
second-order correlation functions (see Appendix A),

g(2)
a (0) = S

(
1
4 ,−
b,1,
b

2 , 1
2

)
4F 2�2

,

g
(2)
b (0) = S

(− 1
2a0,2
a + 
b,1,2
a + 1

2
b,
1
2

)
S
(− 1

2 ,2
b,−2 + −1+4
2
b

4�2 ,
b,1 + 
b


a

)
× S (1,−4
b,4,2
b,2)

S2 (1,0,0,0,2)
, (15)

where a0 = κa + 1/2. Using the same approach, we can obtain
the following equations for the case of cavity a being pumped:

Ċ00 = 0,

Ċ10 = − iFC00 − i
√

2FC20 − δaC10,

Ċ20 = − i
√

2�C01 − 2δaC20 − i
√

2FC10,

Ċ01 = − i
√

2�C20 − δbC01,

Ċ11 = − i
√

6�C30 − iFC01 − i
√

2FC21 − (δa + δb)C11,

Ċ30 = − i
√

6�C11 − 3δaC30 − i
√

3FC20,

Ċ21 = − i2�C02 − i
√

2FC11 − (2δa + δb)C21,

Ċ02 = − i2�C21 − 2δbC02.

(16)

The steady-state amplitudes (see Appendix A) are given by

n̄a

n0
= 4

S (1,0,0,0,2)
,

n̄b

n0
= (F�)2

S
(

1
2 ,0,0,0,1

)
S

(
1
4 ,−
b,1,
b

2 , 1
2

) ,

g(2)
a (0) =

S (1,0,0,0,2) S
(

1
κa

,0,0, 2
b

κa
,0

)
S (1,−4
b,4,2
b,2)

,

g
(2)
b (0) = S (1,0,0,0,2) S

(
1
4 ,−
b,1,
b

2 , 1
2

)
S (a1,b1,c1,d1,e1) S−1

(

b

κa
,1,0, 1

2 , 1
2
a

) ,

(17)

where

a1 = − 1

16
− 3κa

16
− κ2

a

8
+ 3
2

b

4
+ 3κa


2
b

4
,

b1 = 3
a

4
+ 3κa
a

2
− 3
a


2
b − 
3

b + 
bf1,

c1 = − 1

2
− 3κa

2
− κ2

a

2
+ 2
2

a + 2
2
b − 4�2,

d1 = − 3
a

4
− 3
b�

2 − 3

4
κa
a + 
3

b

2
+ 
bg1,

e1 = − 1

8
+ 
2

a + 3
a
b + 3

2

2

b + �2h1.

(18)

Here, f1 = 3
4 + 3κa + 3κ2

a

2 − 2
2
a + 6�2, g1 = − 3

8 − 3
4κa −

1
4κ2

a + 3
2
a + 3
a
b, and h1 = −3 − 2 
b


a
− 2κa. Similarly,

by analyzing S(a,b,c,d,e) in Eqs. (14)–(17), we can obtain
interesting points in g

(2)
a,b(0) labeled by A–F, which are in

excellent agreement with the numerical results shown in Fig. 2.
We now discuss the features observed in Fig. 2. We will

use the eight-level model together with the diagonal basis
in Eq. (7) to understand the physics behind the features. In
Figs. 2(a) and 2(b), e.g., the pumping is on microcavity a, and
when the detuning is zero, 
a = 0 (point A in Fig. 2), we can
see g(2)

a (0) 	 1, indicating complete antibunching due to the
suppressed two-photon process (panel A, bottom of Fig. 2).
This leads to the single-photon blockade. Physically, when
the left cavity a is pumped by an incident laser of frequency
ωL, an incident photon with the the same frequency as the
cavity field ωa will excite the cavity from vacuum |0〉 to the
first excited state |1〉 [marked by the blue dotted arrow in
Fig. 1(b)]. Once the cavity has a photon, the second photon at
that frequency will be blocked because, due to the nonlinearity
of (3), excitation of the system from |1〉 to |2+〉 or |2−〉 requires
an additional energy �

√
2�, which cannot be supplied by the

second photon. At the detuning 
a/g = ± 1√
2

[points B and C
of Fig. 2(a)], bunching happens due to the two-photon resonant
transition |0〉 → |2+〉 and|2−〉 (panels B and C, bottom of
Fig. 2). The physics behind this bunching is similar.

A similar story takes place when the microcavity b is
pumped; see Fig. 2(c). At detuning 
b/g = ±√

2 [points D
and E of Fig. 2(c)], resonant transition |0〉 → |2+〉 and |2−〉
(panels D and E, bottom of Fig. 2) occurs, indicating almost
complete antibunching for cavity mode b. Mathematically, we
find that both the one-photon occupation amplitude C̄10 and
the three-photon occupation amplitudes C̄11 and C̄30 equal
zero, while the two-photon occupation amplitudes C̄01 and
C̄20 are much larger than that of four-photon occupation
under the weak driving limit |αjαk| 	 1; see Eq. (A1). The
point F in Fig. 2 corresponds to detuning 
b = 0. At this
point, g

(2)
b (0) 
 1, indicating strong bunching. This is due

to destructive interference that suppresses the population
on |01〉 (panel F, bottom of Fig. 2), steering the system
into a dark state, |dark〉 = − cos ϕ|00〉 + sin ϕ |20〉, where
tan ϕ = F/�. This is reminiscent of the electromagnetically
induced transparency [58,59]. Due to the weak coupling, |20〉
is almost not populated when the system occupies the dark
state. This induces the transition from |20〉 to |21〉, which in
turn is strongly coupled to |02〉. The net result is the transition
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where one photon is suppressed compared to the two-photon
transition, leading to the bunching at 
b = 0.

To confirm this point, we now show that two-photon
resonance is absent at 
b = 0. At first glance, the level diagram
in Fig. 1(b) together with bunching at point F in Fig. 2 suggest
a two-photon resonance at zero detuning 
b = 0, where the
energy of the two-photon state |02〉 is equal to the energy
of two incident photons in mode b. However, as discussed
above, the strong bunching effect at 
b = 0 comes completely
from the suppression of the one-photon population. Further,
we find that the expected two-photon resonance is canceled by
interference. This can be seen from a second-order perturbative
calculation of the two-photon Rabi frequency ω

(2)
00→02 for the

transition |00〉 → |02〉. The two-photon state |02〉 can be
populated by the drive ĥdr = F (b̂ + b̂†) from vacuum via two
intermediate one-photon eigenstates |2±〉 given by Eq. (7)
with energies ω2± = 
b ± √

2� in the rotating frame. The
resulting Rabi frequency is

ω
(2)
00→02 =

∑
m=2+,2−

〈20| ĥdr |m〉 〈m| ĥdr |00〉 /ωm, (19)

which vanishes at 
b = 0 as a consequence of destructive
interference between the two amplitudes. Although the exact
cancellation is lifted by including finite dissipation and the
full spectrum, this simple argument shows that the expected
two-photon resonance at 
b = 0 is strongly suppressed.

It is important to address that the photon blockade in the
case of cavity b being driven is a two-photon blockade from
the side of cavity a. Hence we refer to this type of photon
blockade as a two-photon blockade.

So far, we have demonstrated both analytically and numer-
ically a variety of quantum properties revealing the unique
nature of the one- and two-photon blockade. The results
suggest that by manipulating the detuning, optical diodes may
be realized in such a system based on the explicit one- and
two-photon blockade.

III. ONE-PHOTON AND TWO-PHOTON DIODE

By the use of the blockade features of the photonic
semiconductor microcavities and the χ2 nonlinearities, in this
section we present a scheme to realize a one-photon and two-
photon diode. We define a rectifying factor as the normalized
difference between the two output currents corresponding to
the system being pumped through the left and right cavities
(indicated by the wave vectors k and −k, respectively) [28],

R = 2Nb(k) − Na[−k]

2Nb(k) + Na[−k]
. (20)

Substituting Eqs. (14)–(17) into Eq. (20), we can obtain an
analytical expression of the rectifying factor,

R = κF 2 − κaS
[

1
2 ,0,0,0,1

]
κF 2 + κaS

[
1
2 ,0,0,0,1

] . (21)

By this definition, R = −1 implies maximal rectification
with enhanced transport to the left (left rectification), R =
0 indicates no rectification, while R = 1 describes maximal
rectification with transport to the right (right rectification).

FIG. 3. (Color online) Single-photon rectification in the semi-
conductor microcavities coupled via χ 2 nonlinearities. The equal-
time second-order correlation function when the system is pumped
on the cavity a [see analytical expression given by Eq. (17)] (log
scale). (a) is for cavity a and (b) is for cavity b. We set x =

b + 2
a , with detunings given by 
 = 
b − 2
a corresponding
to 
a = (x − 
)/4 and 
b = (x + 
)/2. Parameters chosen are
κa = 0.1κ, F = 0.1κ, x = 30κ. The very narrow region around 
 =
30κ , i.e., 
a ≈ 0, shows the complete single-photon blockade, the
corresponding transition is shown in (c), and the single-photon current
to right cavity b is illustrated in (d).

In Fig. 3, we plot the second-order correlation function
of the left cavity a [see Fig. 3(a)] and right cavity b [see
Fig. 3(b)] when the system is pumped on the cavity a. We
find that the normalized correlations of g

(2)
j (0) 	 1 reach

their minimum at 
 = 30κ (namely, 
a ≈ 0), implying the
well-known single-photon blockade. The diagram in Fig. 3(c)
illustrates the transition for this blockade.

In Fig. 4, we plot the correlation function of cavity a [see
Fig. 4(a)] and cavity b [see Fig. 4(b)] when the system is
pumped on the right cavity b. We observe that the minimum
of g

(2)
b (0) is on an ellipse defined by Eq. (22) and shown

in Fig. 4(c). This can be explained as the condition for the
two-photon blockade to happen in the system, i.e., two-photon
resonance 2ωL = ω2± follows


2 + 8�2 = x2, (22)

where x = 
b + 2
a and 
 = 
b − 2
a . Analogously, the
bunching of a pair of photons for the left cavity a takes
place due to the extreme antibunching of the right cavity
b. Figure 5 shows R, g(2), and N as a function of laser
frequency with a fixed 
 in the small �/κ limit. We find a local
maximum of left rectification in Fig. 5(a) at x = 30κ [marked
by B in Fig. 5(c)], which corresponds to the antibunching
in Fig. 5(b) at the left cavity a. The total photon current
N (k) = Na(k) + Nb(k) overcomes N (−k) in the area around
the x = 30κ; see Fig. 5(c). This can be explained as the
single-photon blockade. From Eq. (A4), we find that the
single-photon occupation amplitude C̄10 is sufficiently larger
than that of the multiphoton, e.g., two-photon occupation
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FIG. 4. (Color online) Two-photon rectification in the semicon-
ductor microcavities coupled by χ 2 nonlinearities. The equal-time
second-order correlation function [see the analytical expression given
by Eq. (15), log scale] of (a) cavity a and (b) cavity b. This figure
is plotted with the right cavity b pumped. We set x = 
b + 2
a

with detunings defined by 
 = 
b − 2
a . Parameters chosen are
κa = 0.1κ, F = 0.1κ, and x = 30κ. At the ellipse, 
2 + 8�2 = x2,
i.e., two-photon resonant transition from |0〉 → |2±〉 when 2ωL =
ω2±, the two-photon blockade happens in the semiconductor micro-
cavities. The corresponding transition is illustrated in (c). This causes
the two-photon current to the left cavity mode a; see (d). Note that
the two-photon current is symmetric for the symmetric coupling � in
(a) and (b); this is a direct reflection of Eq. (15).
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FIG. 5. (Color online) (a) The rectifying factor, correlation func-
tion, and total current as a function of frequency of the external
laser field x. The blue dashed line and red bold line denote the
rectification factor for the analytical expression given by Eq. (21)
and the fully numerical simulation in (a), respectively. (b) The
equal-time second-order correlation function g(2) [see the analytical
expression given by Eqs. (14)–(17)] of the output photon in both
directions. (c) The total current, N (k) = Na(k) + Nb(k) [see the
analytical expression given by Eqs. (14)–(17)]. Parameters chosen
are κa = 0.1κ, F = 0.1κ, and � = 10κ. We assume that 
 = 30κ

with 
a = (x − 
)/4 and 
b = (x + 
)/2.

amplitudes C̄01 and C̄20 in the limit of weak optical driving,
i.e.,

∣∣αjαk

∣∣ 	 1.
Two maxima of left rectification can be observed at x =

±10
√

17κ ≈ ±41.231κ (marked by A and C) from Fig. 5 due
to the two-photon blockade at the ellipse given by Eq. (22),
which corresponds to the antibunched effect in Fig. 5(b) at
the right cavity b with cavity b pumped (denoted by −k). The
total photon current N (−k) overcomes N (k) in the area around
the two points A and C in Fig. 5(c). This observation can be
explained by examining Eq. (A1). The contribution of the
four-photon terms C̄21 and C̄02 can be neglected compared to
the two-photon occupation amplitude C̄20 C̄01 when the weak
optical driving condition |αjαk| 	 1 is satisfied. The one-
photon occupation amplitude C̄10 and three-photon occupation
amplitudes C̄11 and C̄30 are equal to zero. Therefore, the one-
and three-photon processes have no contribution to the two-
photon diode.

IV. DELAYED CORRELATION FUNCTION

In addition to the equal-time second-order correlation
functions discussed above, quantum signatures can also be
manifested in photon intensity correlations with a finite time
delay. This motivates us to investigate the dynamical evolution
of the second-order time-delayed correlation function. The
two-time intensity correlations are defined by [42,54,60]

g2
a(τ ) = g2

a(τ = t1 − t,t → ∞) = 〈â†(t)â†(t1)â(t1)â(t)〉
〈â†(t)â(t)〉2 .

(23)

Rewriting this correlation in terms of a classical light photon
intensity I , g2(τ ) = 〈I (τ )I (0)〉〈I 〉2, and using the Schwarz
inequality, we obtain the inequality [36,57]

g2(τ ) � g2(0). (24)

Similar to the inequality g(2)(0) > 1 at zero time delay,
violation of the inequality at finite time delay is a signature
of quantum nature. We calculate the delayed second-order
correlation functions for both the left cavity a and right cavity
b when the system is pumped on the left cavity a.

The correlation functions g(2)
a (τ ) and g

(2)
b (τ ) are shown in

Fig. 6 for two strengths of the driving F . We can understand
the finite time-delayed intensity correlations in terms of the
simple eight-level model discussed in the previous section.
For this purpose, we rewrite Eq. (23) as

g2
a(t1 − t) = TrSTrE[â†âU †(t − t1)âρtot (t)â†U (t − t1)]

〈â†(t)â(t)〉2 ,

(25)

where the unitary evolution operator U (t) = exp(−iĤT t),
ĤT = ĤS + ĤE + ĤI , and ĤS is given by Eq. (6). ĤE and
ĤI are the Hamiltonians of the environment and the system-
environment interaction, respectively. We assume τ = t1−t

and t → ∞, when the system density matrix arrives at a steady
state ρs . Applying the Born approximation, we have

g2
a(τ ) = TrSTrE[â†âU (τ )âρs â

† ⊗ ρEU †(τ )]

n̄2
a

. (26)
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FIG. 6. (Color online) Finite temporal evolution of the second-
order correlation function for selected driving strength F with cavity
a being pumped. The blue dashed line and red bold line denote
the analytical expression [given by Eqs. (30) and (31)] and the
exact numerical simulation, respectively. Parameters chosen are
κa = 1.6κ, F = 0.72κ, � = 10κ, 
a = 0.48κ, and 
b = 0.4κ for
(a) and (c), and F = 2κ for (b) and (d).

A simple calculation follows,

g2
a(τ ) = TrS[Â†Âρnew(τ )], (27)

where

ρnew(τ ) = TrE[U (τ )ρnew(0) ⊗ ρEU †(τ )], (28)

where the new initial state is defined by ρnew(0) = âρs â
† and

Â = â/n̄a. From Eq. (27), we can find that the finite time-
delayed second-order correlation function can be thought of
as an expectation value of the effective photon number Â†Â
with a new density matrix given by Eq. (28). Note that the new
dynamical equation is the same as Eq. (8), i.e., ρ̇new(t) ≡ ρ̇(t),
except that the new initial condition ρ(0) is replaced by ρnew(0).

Writing the system steady state as ρs = |̄〉〈̄| and the new
time-evolved density matrix as ρnew(t) = |new(t)〉〈new(t)|,
we find |̇new(t)〉 ≡ |̇(t)〉 satisfying Eq. (16) within the non-
Hermitian Hamiltonian approximation. Therefore, the time-
delayed correlation function can be calculated by introducing
a new initial state,

|new(0)〉 = â|̄〉, (29)

with |̄〉 given by Eq. (16) (see Appendix B). With this initial
state, we have the time-delayed correlation function,

g2
a(τ ) = |C10(τ )|2

|C̄10|4
, (30)

for the left cavity a, while for the right cavity b,

g2
b(τ ) = |C01(τ )|2∣∣C̄01

∣∣4 . (31)

We note that the non-Hermitian Hamiltonian approximation
is a good approximation when

�2 
 κaκF. (32)

We find from Fig. 6 that when the strong-coupling
conditions (32) are satisfied [see Figs. 6(a) and 6(c)] and
cavity a is pumped, the finite time-delayed second-order
correlation functions given by the analytical expression of
Eqs. (30) and (31) are in good agreement with those given by
numerical simulations. When the driving strength is strong (32)
[see Figs. 6(b) and 6(d)], the analytical expression given by
Eqs. (30) and (31) deviates from the numerical simulations.
In addition, from Fig. 6, we can observe that the g(2)

a (τ ) and
g

(2)
b (τ ) increase above their initial value at finite time delay.

This is a violation of the inequality in Eq. (24), indicating that
photons emitted at different times prefer to stay together. See
the red bold line around τ ≈ ±0.827/κ , in Figs. 6(b) and 6(d).

This indicates that two subsequent emissions are suppressed
in a single-photon diode, leading to dynamical antibunching
both for zero and finite time delays. Hence our proposal
provides us with insight into the necessary time delay in
a single-photon diode in the semiconductor microcavities
coupled via χ (2) nonlinearities.

V. EXPERIMENTAL REALIZATION

Up to now, based on the model in Eq. (8), we have presented
a theoretical proposal for the quantum optical diode and have
studied the physics behind the scheme. In the following,
we evaluate the actual experimental possibilities to get the
proposed optical diode. From the discussion, we find that the
possibility to realize such a diode mainly depends on the ratio
�/κ and the resonators quality factor Q = ω/κ . So, we will
extensively focus on the parameters � and Q.

To simplify the calculation, we assume that the two modes
(mode a and mode b) are totally overlapped. This assumption
of course increases the coupling constant � beyond reality, but
it helps to get more insight into the physics of the scheme. On
the other side, our proposal works based on the model given
by Eq. (8), which does not restrict the two spatially separated
modes. With this assumption, we reduce Eq. (4) to

� = χ̃ (2)

√
�

ε0Veff

(
ωa

εr

)1.5

, (33)

where we have chosen ωb = 2ωa , and φa(r) = φb(r) = φ(r).
In this situation, an effective mode volume for the scalar field
profile can be defined in Eq. (33) as V

−1/2
eff = ∫

φ3(r)d3r.
Furthermore, we assume the real part of χ (2) constant, denoted
by χ̃ (2). This can be achieved in photonic crystal resonators
at near infrared wavelengths [61]. Taking a simple nor-
malized mode profile φ(r) = (2/πaxayd)1/2 exp(−x2/2a2

x −
y2/2a2

y) cos[(π/d)z] into account, we have Veff = 4πaxayd/3.
For dielectric photonic microcavities [62], we may take

ax = λ/(2
√

εr ), ay = d = ax/3, εr = 2. Using these param-
eters and taking λ = 1.5 μm, we find Veff = 0.07 μm3. The
value of χ (2) in GaAs is 200 pm/V at wavelengths of around
1.5 μm [63]. Collecting all these together, we get a realistic
order of magnitude for the coupling constant in Eq. (4) as
�� ∼ 27 μeV, which is sufficient to meet the requirement of

023849-7



H. Z. SHEN, Y. H. ZHOU, AND X. X. YI PHYSICAL REVIEW A 90, 023849 (2014)

the quantum optical diode operation. As to the cavity loss
rate, with state-of-the-art capabilities, the regime of quantum
optical diode operation can be achieved in standard III-V
semiconductor microresonators with quality factors on the
order of 105, so Qa = 5Qb = 7 × 105 [64] is reasonable.
This leads to �κb = 10�κa ∼ 2.3 μeV, which is about the ratio
used in our simulations, e.g., �/κ ≡ �/κb ∼ 10. Hence the
proposal is realizable within recent technologies.

VI. CONCLUSION

In summary, we have presented a scheme for creating an
optical diode, in which the diode is composed of two mi-
crocavities coupled via χ (2) nonlinearities. A master equation
to describe such a system is given. By solving this master
equation, one- and two-photon blockades are predicted. By the
use of this photon blockade, we design an optical diode, which
has the ability to combine photon rectification and one-photon
to two-photon conversion. To characterize the rectification,
we calculated both analytically and numerically the two-
order correlation function and the rectifying factor in the
weakly driven limit. The numerical simulation and analytical
expression agree well with each other. The proposal is within
reach by current technologies, especially in the state-of-the-art
III-V semiconductor microcavities. The ultimate goal of this
research would be to achieve complete control over quantum
transport, which includes perfect quantum state transfer and
rectification. We believe this type of quantum device might
become a key element in most integrated circuits for quantum
information science.
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APPENDIX A: ANALYTICAL EXPRESSION

In this appendix, we provide the analytical expression
used to calculate zero and finite time-delayed second-order
correlation functions in the steady state. First, zero time-
delayed correlations are calculated by the use of steady-state
solutions of Eq. (13). We set the time derivatives to zero and
solve the equations iteratively, order by order, in the weak
driving limit. With the right microcavity b being pumped,
simple calculation yields

C̄00 =1,

C̄10 =C11 = C30 = 0,

C̄20 = αaxb√
2(1 − xaxb)

,

C̄01 = − αb

1 − xaxb

,

C̄21 = −αaαb(2 + y)xb√
2(2 + y − 2xaxb)(1 − xaxb)

,

C̄02 = αaαb(2 + y + xaxby)√
2y(2 + y − 2xaxb)(1 − 2xaxb)

,

(A1)

where αj = −iF/δj (|αj |2 or |αjαk| 	 1), xj = −i�/δj , and
y = δb/δa . Using these amplitudes, we can express all equal-
time averages. The mean photon number is

n̄a = 2|C̄20|2, n̄b = |C̄01|2, (A2)

and the photon-photon correlation functions are

g
(2)
b (0) = 2|C̄02|2

|C̄01|4
, g(2)

a (0) = 1

2|C̄20|2
. (A3)

Therefore, Eqs. (14) and (15) can be obtained by substituting
Eq. (A1) into Eqs. (A2) and (A3), respectively. Next we
calculate these occupation amplitudes for pumping on the left
cavity a,

C̄00 = 1,

C̄10 = −αa,

C̄01 = αaαbxa

(xaxb − 1)
,

C̄20 = − α2
a√

2(xaxb − 1)
,

C̄30 = α2
aαb

(
2 + 3y + y2 + 2xaxb − 4x2

ax
2
b

)
√

6η(xaxb − 1)
, (A4)

C̄11 = −αaα
2
bxa

(
2 + 3y + y2 − 2xaxb − 2x2

a

)
η(xaxb − 1)

,

C̄21 =
√

2α2
aα

2
bxa(1 + y)

η(xaxb − 1)
,

C̄02 = −√
2α2

aα
2
bxaxb(1 + y)

η(xaxb − 1)
,

where the coefficient η = (2y−1 + 3 + y − 2x2
b − 6xaxb −

2x2
a + 4x2

ax
2
b ). The mean photon numbers and the photon-

photon correlation functions are

n̄b =|C̄01|2, n̄a = |C̄10|2,

g
(2)
b (0) =2|C̄02|2

|C̄01|4
, g(2)

a (0) = 2|C̄20|2
|C̄10|4

.
(A5)

Equation (17) can be obtained by substituting Eq. (A4) into
Eqs. (A5).

APPENDIX B: DELAYED CORRELATION FUNCTION

The dynamical evolution of the second-order correlation
function can be calculated within the same approach as in
Appendix A by the use of Eq. (29) as the initial condition and
assuming a pumping is on the left cavity a. Specifically, the
unnormalized state after the annihilation of a photon in the
left cavity a is â|̄〉 = C̄10 |00〉 + √

2C̄20 |10〉, where we have
ignored the high-order terms. With this understanding in mind,
Eq. (30) can be obtained by solving the first four equations of
Eq. (16) for the amplitudes with the initial condition.

The correlation function of the right cavity b mode g2
b(τ )

may be calculated similarly. The state after annihilation
of a photon in the b mode is b̂|̄〉 = C̄01|00〉 + C̄11|10〉 +
C̄21|20〉 + √

2C̄02|01〉. Using this as the initial condition,
Eq. (31) can be obtained by solving Eq. (16).

023849-8



QUANTUM OPTICAL DIODE WITH SEMICONDUCTOR . . . PHYSICAL REVIEW A 90, 023849 (2014)

[1] B.-W. Li, L. Wang, and G. Casati, Phys. Rev. Lett. 93, 184301
(2004).

[2] B.-W. Li, J.-H. Lan, and L. Wang, Phys. Rev. Lett. 95, 104302
(2005).

[3] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science
314, 1121 (2006).

[4] W. Kobayashi, Y. Teraoka, and I. Terasaki, Appl. Phys. Lett. 95,
171905 (2009).

[5] M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88,
094302 (2002).

[6] R. Scheibner, M. König, D. Reuter, A. D. Wieck, C. Gould,
H. Buhmann, and L. W. Molenkamp, New J. Phys. 10, 083016
(2008).

[7] V. F. Nesterenko, C. Daraio, E. B. Herbold, and S. Jin, Phys.
Rev. Lett. 95, 158702 (2005).

[8] L. J. Aplet and J. W. Carson, Appl. Opt. 3, 544 (1964).
[9] P. Yeh, Optical Waves in Layered Media (Wiley, New York,

1988).
[10] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics,

2nd ed. (Wiley, New York, 2007).
[11] M. S. Kang, A. Butsch, and P. S. Russell, Nat. Photon. 5, 549

(2011)
[12] A. Kamal, J. Clarke, and M. H. Devoret, Nat. Phys. 7, 311

(2011).
[13] L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan,

A. M. Weiner, and M.-H. Qi, Science 335, 447 (2012).
[14] L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling,

and C. A. Ross, Nat. Photon. 5, 758 (2011).
[15] Z. F. Yu and S. H. Fan, Nat. Photon. 3, 91 (2009).
[16] A. Alberucci and G. Assanto, Opt. Lett. 33, 1641 (2008).
[17] F. Biancalana, J. Appl. Phys. 104, 093113 (2008).
[18] Y. Shen, M. Bradford, and J.-T. Shen, Phys. Rev. Lett. 107,

173902 (2011).
[19] B. Liang, B. Yuan, and J. C. Cheng, Phys. Rev. Lett. 103, 104301

(2009).
[20] B. Liang, X.-S. Guo, J. Tu, D. Zhang, and J. C. Cheng, Nat.

Mater. 9, 989 (2010).
[21] D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and

S.-Y. Zhu, Phys. Rev. Lett. 110, 093901 (2013).
[22] C. Flindt, A. S. Sørensen, M. D. Lukin, and J. M. Taylor, Phys.

Rev. Lett. 98, 240501 (2007).
[23] D. Roy, Phys. Rev. B 81, 155117 (2010).
[24] G. Nikoghosyan and M. Fleischhauer, Phys. Rev. Lett. 103,

163603 (2009).
[25] J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynał, P. Atkinson,

I. Farrer, and D. A. Ritchie, Phys. Rev. Lett. 94, 067401 (2005).
[26] H. Lira, Z. Yu, S. Fan, and M. Lipson, Phys. Rev. Lett. 109,

033901 (2012).
[27] J. L. O’Brien, A. Furusawa, and J. Vučković, Nat. Photon. 3,
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