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Discrete-Gauss states and the generation of focusing dark beams
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Discrete-Gauss states are a new class of Gaussian solutions of the free Schrödinger equation owning discrete
rotational symmetry. They are obtained by acting with a discrete deformation operator onto Laguerre-Gauss
modes. We present a general analytical construction of these states and show the necessary and sufficient
condition for them to host embedded dark beam structures. We unveil the intimate connection between discrete
rotational symmetry, orbital angular momentum, and the generation of focusing dark beams. The distinguishing
features of focusing dark beams are discussed. The potential applications of discrete-Gauss states in advanced
optical trapping and quantum information processing are also briefly discussed.
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I. INTRODUCTION

In quantum mechanics, Gaussian pure states are repre-
sented by Gaussian wave functions in position or momentum
variables [1]. Pure Gaussian states play an important role in
nonrelativistic quantum mechanics because their evolution is
also described by simple Gaussian wave packets, which, in
addition, minimize the Heisenberg uncertainty relation [2]. In
classical optics, the concept of Gaussian beam is ubiquitous,
since it represents an excellent approximation for the spatial
distribution of many realistic light beams in the so-called
paraxial approximation [3]. Gaussian beams are solutions
of the paraxial scalar wave equation (PWE) for the optical
field, formally identical to the two-dimensional (2D) linear
Schrödinger equation (2DLSE) for the wave function in
quantum mechanics [4]. For this reason, the free spatial
propagation of these beams is described by means of Gaussian
wave functions with identical properties of Gaussian wave
packets in quantum mechanics [4]. Besides, the fact that
Gaussian beams present simple transformation rules under
the action of arbitrary optical elements makes them a very
convenient tool for the description of a wide variety of optical
systems [3].

It is also known in quantum mechanics that the 2DLSE
admits vortex line solutions with quantized orbital angular
momentum (OAM) presenting nontrivial dynamics [5]. In
classical and quantum optics, solutions of the PWE with
well-defined OAM play also an important role [6,7]. In the
free propagation case, the PWE supports Gaussian solutions
with well-defined OAM, which are the optical counterparts
of vortex lines in quantum mechanics. Mathematically, these
solutions are given by the so-called Laguerre-Gauss (LG)
modes [3]. LG modes are eigenstates of the OAM operator
and, consequently, also of the O(2) continuous rotation group
operator. They present a phase singularity located at the axis
of symmetry. Since the field intensity is zero at the singularity,
the associated vortex line forms a dark ray propagating in a
straight line. The flux around the singularity forms an optical
vortex and it is quantized in such a way that the associated
topological charge equals the OAM of the LG mode [6,7].

Nevertheless, in more recent years it has been proven that
the 2DLSE (from now on, we use this notation to refer also to
the PWE) admits more complex solutions with more intricate
phase profiles. In this way, multisingular solutions forming

dark ray bundles, or dark beams, in (2 + 1)D have been
reported in the context of quantum mechanics [5] and in optics.
In the latter case, a considerable variety of dark beam solutions,
based on Gaussian LG modes have been reported [8–19].
Solutions of the 2DLSE with an intricate dark ray structure
forming knots and loops can also be obtained by superposition
of LG modes [20–23]. Even nontrivial dark ray solutions of full
Maxwell’s equations can be approximated by superpositions
of LG modes [24–27].

Closely related to the appearance of multisingular solutions
is the phenomenon of the breaking of continuous rotational
symmetry. The breaking of O(2) symmetry into discrete rota-
tional symmetry in the nonlinear 2D Schrödinger equation is
responsible for the so-called vortex transmutation rule [28,29],
which is univocally linked to the generation of multisingular
solutions [30,31]. However, the generation of these multisin-
gular solutions—in the form of symmetric dark ray bundles—
using media with discrete rotational symmetry has proven
to be an essentially linear property of the 2D Schrödinger
equation [32,33]. Recently, both the vortex transmutation rule
and the generation of off-axis singularities forming straight
dark rays have been experimentally demonstrated in optics
for free linear propagation using discrete diffractive optical
elements (DOE) [34,35]. Remarkably, these experimental
techniques based on discrete diffractive elements represent
a simple form of generation of multisingular Gaussian beams.

Multisingular solutions, particularly those forming part of
a Gaussian beam, are excellent candidates for applications
in optical trapping. This is so because it is known since
long ago that the momentum of light can be used for the
acceleration, trapping, and levitation of particles by means
of radiation pressure [36–38]. Gradient forces generated by
single beams exhibiting adequate intensity gradients consti-
tute the physical mechanism on which optical tweezers are
based [39,40]. Furthermore, it has been recently proven that
not only intensity but phase gradients can provide useful
optical forces for optical trapping, including the transfer of
the OAM of light to particles [41]. Moreover, optical forces
arising from phase gradients can be used complementarily to
intensity-gradient traps to design force profiles for improved
optical trapping [42]. In this way, the control of the properties
of both the phase and the intensity profiles of an optical beam
turns out to be an essential ingredient for advanced optical

1050-2947/2014/90(2)/023844(14) 023844-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.023844


ALBERT FERRANDO PHYSICAL REVIEW A 90, 023844 (2014)

trapping [43]. The possibility of generating optical beams
with a controllable and rich phase and intensity structure is
then a source for potential applications in this field. Easily
manipulable multisingular Gaussian beams can thus play an
important role in this context.

Multisingular Gaussian states with an embedded nontrivial
dark beam structure can also play a relevant and complemen-
tary role in quantum information experiments. OAM states
of light, physically implemented as Gaussian LG modes, have
been proposed to realize high-dimensional quantum spaces for
quantum information applications [44]. In a similar manner to
OAM states, other bases of the Hilbert space of the solutions
of the 2DLSE can be also used for similar purposes. In this
context, recent experiments in which photons associated to a
particular type of multisingular Gaussian modes (Ince-Gauss
modes) have been entangled demonstrate the feasibility and
the potentiality of this approach [45].

In this paper we show an explicit construction of multi-
singular Gaussian solutions of the 2DLSE owning discrete
rotational symmetry of any order, the so-called discrete-Gauss
(DG) states. The construction of these new DG states is general
and systematic thus permitting one to unequivocally elucidate
the intimate relation between discrete rotational symmetry and
the generation of multisingular solutions. We shall show the
necessary and sufficient conditions to generate multisingular
Gaussian solutions by the action of an operator that breaks
continuous rotational symmetry and which can be easily
implemented using diffractive optical elements. Likewise,
we will analyze the nature of the rich focusing dark beam
structures, i.e., symmetric dark ray bundles with a focusing
point, which can be embedded within DG states. Finally, we
shall also demonstrate that this set constitutes a basis of the
Hilbert space of solutions of the 2DLSE by showing that they
verify a biorthogonal relation, completely analogous to that
fulfilled by LG modes.

II. DISCRETE DEFORMATION OPERATOR

We start by writing the free 2DLSE in complex variables
(w = x + iy, w = x − iy) and use τ as a evolution parameter:

−i
∂φ

∂τ
+ ∂2φ

∂w∂w
= 0. (1)

In optics, τ = λz/π , λ being the wavelength of light and z the
axial coordinate. In quantum mechanics, τ = (2�/M)t , where
M is the particle mass, � is the Planck’s constant, and t is time.
The equation above admits a rotationally symmetric Gaussian
wave-packet solution [3]:

φ00(w,w,τ ) = iτR

q(τ )
exp

(
− iww

q(τ )

)
, (2)

where q(τ ) = τ + iτR (in optics τR = λzR/π , where zR is the
Rayleigh length). The complex-argument “elegant” Laguerre-
Gauss (LG) modes can be constructed by reiteratively applying
the differential operators ∂/∂w and ∂/∂w to the fundamental
solution φ00 [46,47]. For interested readers, the relation
between elegant and “standard” Hermite-Gauss and Laguerre-
Gauss modes is extensively discussed in Siegman’s book [3]. In
this sense, all the LG modes entering our subsequent analyses
will be considered in their elegant version.

LG modes are eigenfunctions of the third component of the
orbital angular momentum operator (OAM), L̂zφ

LG
lp = lφLG

lp .
LG modes with l �= 0 present a single phase singularity at the
origin, where the axis of rotational symmetry is also located.
The topological charge of this single phase singularity [q =
(2π )−1

∮
dl · ∇ arg φLG

lp calculated along a circuit enclosing it]
equals its OAM, q = l. The value of the field at the τ = 0
plane determines completely the solution for every value of
τ . For LG modes, this plane is particularly characteristic
since all modes reach here, like the generating φ00 function,
their minimal width (in optics, this plane is known as the
waist). In addition, at τ = 0 LG modes with p = 0 take
the simple form of a Gaussian vortex φLG

l0 (0) ∼ �l
wφ00(0),

where �l
w ≡ {w|l| (l > 0),w|l| (l < 0)}. The Gaussian vortex

is obtained thus by simply multiplying φ00(0) by a transfer
function t , given in this case by �l

w. Interestingly enough, for
LG modes with p = 0 the difference between their standard
and elegant versions does not exist. The reason is that this
difference stems from the real (for standard) or complex (for
elegant) nature of the argument of the generalized Laguerre
polynomials appearing in the expression of LG modes, so
that since for p = 0 all these polynomials equal just 1, this
distinction completely disappears [3].

We analyze now a related but different problem. The τ = 0
condition can be chosen differently to change the rotational
symmetry properties of the solution. This can be done by
properly selecting the t function. Let us consider the most
general case given by a condition of the form

φ(w,w,0) = t(w,w)φ00(w,w,0), (3)

in which now t(w,w) is an arbitrary nonsingular analytical
function in w and w. We write this function as t = a exp iV ,
where a is an arbitrary complex function and V is a real
analytical function. The τ = 0 condition is then

φ(0) = exp iV (w,w)ψ(0), (4)

where ψ = aφ00 is now an arbitrary complex function.
Although we are finding solutions of the Schrödinger equation
with no potential, the particular form of the τ = 0 condition is
equivalent to the action of the quasi-instantaneous potential V

at τ = 0 on the wave function ψ [33]. We consider then a real
local potential owning purely discrete rotational symmetry of
order N (i.e., invariance under the CN point symmetry group)
with respect to the origin at leading order:

V (w,w) = v(wN + wN ), (5)

where v = εν, ε being a small interval τ = ε > 0 indicating
the extension of the quasi-instantaneous action of the potential
in the τ domain, whereas ν is the leading-order symmetry
parameter characterizing the Nth-fold symmetry of the local
potential V . The CN point symmetry group of discrete rotations
of N th order is cyclic, which means that all the N elements of
this group can be obtained by repeatedly applying the group
operation on a single element of the group, called its generator
GN . Under the action of this elementary transformation GN ,
the complex coordinates change as

w
GN→ εNw, w

GN→ ε∗
Nw, (6)
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where εN = exp(2πi/N ) is the complex elementary finite
rotation of N th order. Thus wN and wN are CN invariants and,
therefore, V is an explicitly invariant potential. The potential
V is real if we choose v to be real, as we shall do. Moreover,
V is the most general form (up to an irrelevant constant)
of the leading term in a local Taylor expansion of a purely
invariant CN real potential around w = 0. It is easy to prove
that the alternative combination vwN + v∗wN with complex
v is equivalent to Eq. (5) up to a global rotation.

A. Construction of the discrete deformation operator

We consider now that the function ψ in Eq. (4) is a Gaussian
vortex, i.e., an elegant LG mode with p = 0, and use V as a
way to change the rotational properties of the solution at the
waist of this mode. For this reason, we define a new modified
function at τ = 0 given by

φlNv(w,w,0) = eiV (w,w)φLG
l0 (w,w,0)

O(v2)∼ [1 + iv(wN + wN )]φLG
l0 (w,w,0). (7)

This function gives the first-order correction in the small
interval τ = ε for the output field scattered by the quasi-
instantaneous discrete potential V . A solution of the
2DLSE (1) fulfilling the condition (7) is obtained simply by
formally replacing w and w by the differential operators:

l̂+ ≡ ŵ + τ p̂, l̂− ≡ ŵ + τ p̂, (8)

where ŵ and ŵ are the complex position operators and p̂ =
−i∂/∂w and p̂ = −i∂/∂w are their corresponding momentum
ones. These operators belong to the Lie algebra of symmetries
of the free (2 + 1)D Schrödinger equation [48,49]. In this way,
the modified field by the presence of the discrete potential takes
the form

φDG
lNv

(w,w,τ )
O(v2)∼ [1 + iv(l̂N+ + l̂N− )]φLG

l0 (w,w,τ ). (9)

The previous replacement rule can be proven as follows. Since
complex position and momentum operators fulfill standard
commutation relations, [ŵ,p̂] = i = [ŵ,p̂], the commutation
relations with respect the evolution operator of Eq. (1) U (τ ) =
exp(iτ Ĥ ), where Ĥ = p̂p̂, are

[ŵ,U (τ )] = −τ p̂U (τ ), [ŵ,U (τ )] = −τ p̂U (τ ).

These relations determine that the position operators ŵ and ŵ

transform into l̂+ and l̂−, respectively, under the action of the
evolution operator. So, we have

U (τ )ŵ = l̂+U (τ ), U (τ )ŵ = l̂−U (τ ). (10)

This property justifies the step from Eq. (7) to Eq. (9) since
φDG

lNv
(τ ) = U (τ )φlNv(0).

We can see the important role played by the operator

D̂v(N ) ≡ exp[iv(l̂N+ + l̂N− )], (11)

which transforms an LG mode into a new Gaussian state, which
in bra-ket notation can be written as

|DG(l,p,N )〉v = D̂v(N )|LG(l,p)〉. (12)

Inasmuch as |LG(l,p)〉 is a solution of the free 2DLSE and
U (τ )eiV = D̂vU (τ ), we immediately show that the new state
|DG(l,p; N )〉v also verifies this equation.

According to the complex transformations (6) and to their
definition (8), the operators l̂± transform tensorially under

CN rotations as l̂+
GN→ εN l̂+ and l̂−

GN→ ε∗
N l̂−, where εN =

exp i2π/N . As a consequence, D̂v is an invariant operator
under the CN group. Moreover, the operator D̂v is unitary:
D̂†

vD̂v = 1. This is a consequence of the relation l̂+ = l̂
†
−,

which makes the operator v(l̂N+ + l̂N− ) self-adjoint for v real.
Since D̂v changes the rotational symmetry properties of the
LG mode from continuous to discrete, we refer to it as the
discrete deformation operator.

B. Physical implementation of the discrete
deformation operator

In optics, it is well established that the experimental
generation of LG modes carrying nonzero OAM can be
realized by means of diffractive optical elements (DOE) acting
on fundamental Gaussian beams [50,51]. DOE’s are thin
optical elements that modify the phase of an optical field
at the plane where they are located in the way given by
Eq. (3), thus transforming the subsequent diffraction of the
beam. A spiral phase plate is a DOE consisting of a thin
layer of variable width in the form of a spiral surface with
a step discontinuity [50,51]. Since the spiral surface forms the
period of a helix, the width of this DOE is proportional to
the polar angle. Thus an optical field traversing the spiral
phase plate experiences a phase shift proportional to this
angle at the output. In this way a spiral phase plate with
the appropriate design can be used to convert a fundamental
|LG(0,0)〉 mode into a higher-order |LG(l,0)〉 mode with
topological charge q = l. Mathematically, the action of a spiral
phase plate can be represented by a transfer function of the
form t = exp(ilθ ) = w/|w| in Eq. (3). The transfer function
t defined at τ = 0 acts then as a mode converter transforming
the fundamental |LG(0,0)〉 mode for τ < 0 into an |LG(l,0)〉
mode for τ > 0. This standard conversion is represented in
Fig. 1(a). In a completely analogous way, we can find a DOE
acting at τ = 0 whose mathematical representation is a transfer
function t = exp(iV )—like in Eq. (4)—generated now by the
real local potential with discrete rotational symmetry (5). In
this case, a higher-order LG mode for τ < 0 is converted
into a DG state for τ > 0 according to the construction in
terms of the discrete deformation operator (9) or (12), as
represented in Fig. 1(b). Different designs of DOE’s can
be used to generate this type of discrete-symmetric transfer
function and we will refer to them generically as discrete
symmetry diffractive elements (DSDE) [33]. Remarkably, the
mode conversion presented in Fig. 1(b) has been recently
experimentally demonstrated using as a DSDE a square matrix
of black dots impressed in a transparent substrate [35], in which
the discrete modulation introduced by the dots is responsible
for the discrete symmetry of the transfer function. Analogous
experiments using instead polygonal lenses as DSDE’s—in
which discrete symmetry is implemented in this case by
means of polygonal apertures—leads to qualitatively identical
results [34].

In this sense we can consider a DSDE as the physical
implementation of a discrete deformation operator in optics.
However, it is true that, assuming that the DSDE is located
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FIG. 1. (Color online) Diffractive optical elements as mode con-
verters: (a) a spiral phase plate transforms the fundamental |LG(0,0)〉
mode into a higher-order |LG(3,0)〉 mode with q = +3; (b) a DSDE
with rotational order N = 4 converts a |LG(3,0)〉 mode into a
multisingular |DG(+3,0,4)〉v = |DG(−1,1,4)〉v state (see Sec. III
for the definition of the later notation in terms of m and k). The
amplitude of the field is represented as a yellow 3D surface (in
this case, the one corresponding to 1/6 maximum). Trajectories of
positively (negatively) charged singularities are represented in green
(red).

at τ = 0, the conversion of an LG mode into a DG state
is produced only for positive values of τ and not for the
entire space. Strictly speaking, we only have a faithful physical
representation of the discrete deformation operator for τ > 0.
On the other hand, we can conceive of the use of an appropriate
combination of different DSDE’s to generate DG states also
for negative values of τ .

In quantum mechanics the role of the DOE is played by
the instantaneous potential V . The relation between the two
elements is provided by the definition of the complex transfer
function t in its polar form:

t(w,w̄) = b(w,w̄)eiV (w,w̄). (13)

In optics the DOE is completely defined mathematically
by its transfer function t . So that, if we deal with DOEs
that only act on the phase of the field and do not change
its amplitude—the so-called phase DOEs, t is given by a
pure phase transfer function |t | = 1. According to Eq. (13),
the quantum mechanics counterpart of a phase DOE is an
instantaneous real potential V . For instance, the counterpart
of a spiral phase plate would be an instantaneous potential of
the form V (θ ) = lθ . However, in the general case in which
both the amplitude and phase of the input field are modified by
the DOE, we no longer can characterize the system quantum
mechanically by a real instantaneous potential. Nevertheless,
we still can use the polar form of t (13) to define a complex
“instantaneous” potential Vc = V − i ln b in such a way that
t = exp(iVc). In conclusion, in quantum mechanics it is
possible to emulate all kinds of transfer functions t by using

both dissipative and nondissipative instantaneous potentials. In
terms of operators, it is easy to convince oneself by following
the construction in Sec. II A that only real potentials generate
unitary discrete deformation operators, whereas in the general
case the unitarity property is not preserved.

III. DISCRETE-GAUSS STATES AND DISCRETE
ROTATIONAL SYMMETRY

The states generated by the discrete deformation operator
D̂v by means of the deformation equation (12) are discrete-
Gauss states. We recognize that Eq. (9) is, up to O(v2) terms,
nothing but the deformation equation (12) for p = 0 states.
Consequently, φDG

lNv
is a discrete-Gauss (DG) state with p = 0.

Although it is not strictly necessary from the formal point
of view, we will restrict ourselves from now on to discrete
deformations of LG modes with p = 0, so the index p will be
ignored unless explicitly mentioned.

By construction, the rotational symmetry group of a
|DG(l,N )〉v is no longer O(2) but CN . Examples of two
DG states O(v2) corresponding to two different discrete
deformations of an LG mode, which clearly reflect this feature,
are given in Fig. 2.

According to Eq. (12), |DG(l,N )〉v states are eigenfunctions
of the discrete rotation operator ĜN :

ĜN |DG(l,N )〉v = εl
N |DG(l,N )〉v, (14)

where εN = exp i2π/N . However, they are not eigenfunctions
of the OAM operator L̂z. Nevertheless, despite the fact that l is
not the OAM of the state, it is still a good quantum number for a
DG state. Now, it is interpreted as the “unfolded” value of the
discrete angular momentum (or angular pseudomomentum)
m, which is the real conserved quantity associated to the CN

symmetry of the DG state [29]. According to group theory,
since the real rotational symmetry of the solution is CN and
this is a cyclic group, the eigenvalues of a DG state are given by
the roots of unity of N th order. In other words, the |DG(l,N )〉v
also satisfy

ĜN |DG(l,N )〉v = εm
N |DG(l,N )〉v, (15)

where −N/2 � m � N/2 in such a way that εm
N =

exp(i2πm/N ) constitute all the N th roots of unity.
The discrete angular momentum m is the corresponding

folded value of l, since it is bounded |m| � N/2 and
l = m + kN , where k ∈ Z. The relation between l and m

is forced by the uniqueness of the ĜN eigenvalues εl
N =

exp(2πil/N ) = εm
N . This feature is an important characteristic

of DG states since it clearly unveils the relation between l

(OAM) and m (discrete angular momentum), i.e., between the
two conserved quantities associated to spatial rotations in the
O(2) (continuous) and CN (discrete) cases.

Since k plays an essential role in our discussion, we will
provide more physical insight about the relation between
l, m, and k. For this purpose, we will follow the line of
reasoning presented in Ref. [52]. The characterization of
any discrete-symmetry potential V of N th order in terms of
the angular variable θ is simply V (r,θ + 2π/N ) = V (r,θ ).
We can map the unit circle where the angular variable is
defined θ ∈ [−π,π ] into the finite interval of the real axis
[−D/2,D/2] by means of the mapping θ → s = θD/(2π ).
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FIG. 2. (Color online) Amplitude (3D surface at half-maximum)
and singularity structure of a Laguerre-Gauss mode |LG(l,0)〉 and
two of its discrete deformations |DG(m,k,N )〉 in the xyτ space [right
column, top view; green (red) color indicates positive (negative) q;
τR = 1; v = 0.1]. (a) |LG(3,0)〉 mode; single dark ray trajectory is
shown. (b) DG state with k = 0 and its single associated dark ray
with qax = +3. (c) DG state with k = 1 generating a focusing dark
beam with qax = −2 and N = 5 off-axis q = +1 singularities.

In this way the invariance under finite rotations of the original
potential becomes a periodicity property in terms of the
noncompact coordinate s: V (r,θ ) = Ṽ (r,s) = Ṽ (r,s + D/N ).
We can apply now our knowledge on 1D periodic potentials
to our “flattened” potential Ṽ (r,s), for which the period is
a = D/N . The eigenstates of the Hamiltonian for such a
potential are the well-known Bloch waves characterized by the
so-called Bloch momentum q: φq(r,s) = eiqs ũq(r,s), where
ũq(r,s + a) = ũq(r,s) has the same periodicity of the potential.
These Bloch waves are also eigenstates of the finite translation
operator Ta so that Taφq(r,s) = φq(r,s + a) = eiqaφq(r,s).
Unlike ordinary linear momentum p, which can take all
possible real values, the Bloch momentum q is, in fact,
restricted to lie in the interval [−π/a,π/a], the so-called
first Brillouin zone, inasmuch as the eigenfunctions φq(r,s)
and their corresponding eigenvalues are periodic in q with
a periodicity given by a vector (1D in this case) called the
reciprocal lattice vector Q = 2π/a. Therefore, two Bloch
momenta q and p are equivalent if they differ in an integer

multiple of the reciprocal lattice vector Q: p − q = kQ. Using
this relation any Bloch momentum p can be mapped into their
univocally defined counterpart q within the first Brillouin zone
[−π/a,π/a], which is characterized by the index k = 0. On
top of that, since the size of the spatial interval [−D/2,D/2]
is finite, the Bloch momentum is also discretized according
to the condition eiqmD = 1, which implies that qm = m2π/D,
where m ∈ Z.

All these arguments apply to the functions written in terms
of the noncompact variable s, but we can undo the mapping
and analyze these results for our original functions in terms
of the angular variable θ . Since DG states will transform
under finite rotations exactly as these Bloch modes, these
arguments necessarily apply to them as well. From the relation
qm = m2π/D, the Bloch waves in terms of the angular variable
become simply ϕm(r,θ ) = um(r,θ )eimθ . We see that the Bloch
momentum q becomes the integer m, which for obvious
reasons we refer to as the Bloch angular momentum. The
Bloch, or discrete, angular momentum m is restricted to lie
in the first angular Brillouin zone [−N/2,N/2] in the same
way its counterpart q is in the first linear Brillouin zone
[−π/a,π/a]. When we write the relation p − q = kQ for
two equivalent discretized Bloch momenta, one outside the
first Brillouin zone pl = l(2π/D) and the other restricted to
the first Brillouin zone qm = m(2π/D), we immediately find
the relation

l − m = kN, (16)

where the integer k can be naturally interpreted as the index
of the angular Brillouin zone for l. We can see here clearly
the physical interpretation of l as the “unfolded” value of
the “folded” discrete angular momentum m lying in the first
angular Brillouin zone, characterized by k = 0. The previous
relation along with the first angular Brillouin-zone restriction,
m ∈ [−N/2,N/2], establishes a univocal relationship between
the unfolded value l and the folded one m. Both represent the
same angular Bloch wave and, therefore, the characterization
in terms of l or of the pair (m,k) is completely equivalent.

IV. MATHEMATICAL CONSTRUCTION
OF DISCRETE-GAUSS STATES

A. Scattering modes

An LG mode with p = 0 takes the form of a Gaussian vortex
at τ = 0, so that φLG

l0 (0) ∼ �l
wφ00(0), where �l

w ≡ {w|l| (l >

0),w|l| (l < 0)}. Using the replacement rule (10), this implies
that its value for τ �= 0 can be obtained simply by replacing the
complex function �l

w by the operators l̂
|l|
sgn(l). This means that

we can also write the LG mode in Eq. (9) as φLG
l0 ∼ l̂

|l|
sgn(l)φ00.

Consequently, the DG state in Eq. (9) appears as a linear
combination of modes of the form

�nn = l̂n+ l̂n−φ00. (17)

The operators l̂± belong to the Lie algebra of symmetries of the
free 2DLSE (1). They commute with the Schrödinger differen-
tial operator L0 = i∂/∂τ + H that defines this equation. Since
φ00 is a solution, and thus L0φ00 = 0, and, on the other hand,
[l̂±,L0] = 0, it is automatically guaranteed that the �nn modes
are also solutions of Eq. (1) [48,49]. Due to the linearity of the
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2DLSE, another consequence of this property is that any linear
combination of �nn modes is also a solution. This provides
another alternative proof that DG states are solutions of Eq. (1).

In fact, these modes solve a more general problem, namely,
that of the scattering of a Gaussian wave packet by an
arbitrary instantaneous potential V (w,w) acting at τ = 0.
Let us consider the most general form for an analytical
quasi-instantaneous potential at τ = 0 acting on a fundamental
Gaussian wave packet. Since V is analytical we take its
Taylor expansion in w and w̄ around w = 0 in Eq. (4) with
ψ(0) = φ00(0). We would have

φ(w,w̄,0)
O(v2)∼

[
1 + iv

∑
n,n̄

Vnn̄w
nw̄n̄

]
φ00(w,w̄,0). (18)

According to the replacement rule (8), the solution for the
field scattered by the quasi-instantaneous potential V would
be given by

φ(w,w̄,τ )
O(v2)∼

[
1 + iv

∑
n,n̄

Vnn̄l̂
n
+ l̂ n̄−

]
φ00(w,w̄,τ )

= φ00(w,w̄,τ ) + iv
∑
n,n̄

Vnn̄�nn(w,w̄,τ ). (19)

For this reason, we refer to the �nn modes as scattering modes
(SM).

We determine next the functional structure of SM by
analyzing their symmetry properties. Due to its form in terms
of the complex position and momentum operators (8), the
operators l̂± transform under continuous rotations as

l̂+
G(α)→ εl̂+, l̂−

G(α)→ ε∗ l̂−, (20)

where ε = exp iα is a complex O(2) rotation of angle α. In
this way, under a O(2) rotation Ĝ(α), SM in Eq. (17) transform
as

Ĝ(α)�nn = exp iα(n − n)�nn = εl�nn. (21)

Consequently, SM are eigenfunctions of the continuous rota-
tion operator Ĝ(α) with eigenvalue εl . Therefore, l = n − n is
the OAM of the SM. In terms of their OAM, we can rearrange
operators in Eq. (17), so that SM can also be written as

�lp = l̂
|l|
sgn(l)	̂pφ00, (22)

where 	̂ ≡ l̂+ l̂− is an O(2)-invariant operator and p ≡
min(n,n). Since the function �l

w ≡ {w|l| (l � 0),w|l| (l < 0)}
transforms under continuous rotations as �l

w → εl�l
w, i.e.,

exactly as �lp does, rotational symmetry determines that the
functional form of a generic SM can always be given by

�lp(w,w,τ ) = �l
wflp(|w|2,τ )φ00, (23)

where flp is an O(2)-invariant function depending exclusively
on the modulus of w (as φ00.) However, the O(2)-invariant
functions flp can be explicitly constructed by successive
application of the operators l̂± on φ00 according to Eq. (22).
Note that, due to the form of the differential l̂± operators (8),
their action on the Gaussian function φ00 (2) always provides
products of polynomials in w and w times the original function
φ00. According to symmetry considerations, these products can
always be rearranged as in Eq. (23) in a systematic manner,

TABLE I. Coefficients of the lower-order F |l|
p polynomials.

p = 1 p = 2 p = 3

c
|l|
pi c

|l|
10 c

|l|
11 c

|l|
20 c

|l|
21 c

|l|
22 c

|l|
30 c

|l|
31 c

|l|
32 c

|l|
33

l = 0 1 −1 2 −4 1 6 −18 9 −1
l = ±1 2 −1 6 −6 1 24 −36 12 −1
l = ±2 3 −1 12 −8 1 60 −60 15 −1
l = ±3 4 −1 20 −10 1 120 −90 18 −1
l = ±4 5 −1 30 −12 1 210 −126 21 −1

so that an analytical procedure to obtain any function flp is
established. An accurate analysis of this construction of flp

functions permits one to identify a general structure for them,
given by

flp(|w|2,τ ) = α|l|βpF |l|
p (x), (24)

where α = iτR/q(τ ), β = ττR/q(τ ), and F
|l|
p (x) is a polyno-

mial of pth order in x = [q(τ )τ ]−1τR|w|2:

F |l|
p (x) =

p∑
i=0

c
|l|
pix

i . (25)

All coefficients in F
|l|
p (x) are known in this construction. As

an example, the value of the coefficients for the lower-order
F

|l|
p polynomials is given in Table I. In addition, F

|l|
0 (x) = 1

for all l.
The SM modes �lp constitute a nonorthogonal basis in

which any analytical solution of the 2DLSE (1) can be
expanded. In particular, they can be used to expand both
elegant and standard LG modes. The general form of an LG
mode (up to a normalization constant) can be written in the
τ = 0 plane as

φLG
lp (w,w̄,0) ∼ �l

wL|l|
p [a(0)ww̄]φ00(w,w̄,0), (26)

where L
|l|
p is the generalized Laguerre polynomial of order p

and φ00 is the fundamental Gaussian mode (2). Let us note
here that the particular form of a differs in the elegant and
standard cases [3], although, nevertheless, our argument will
remain valid for both versions of LG modes. If we write
the generalized Laguerre polynomial explicitly—L

|l|
p (x) =∑p

i=0 b
|l|p
i xi—we have

φLG
lp (w,w̄,0) ∼

p∑
i=0

b
|l|p
i a(0)i

[
�l

wwiw̄iφ00(w,w̄,0)
]
. (27)

As before, the value at an arbitrary τ is obtained by means of
the replacement rule (8), which, in this case, takes the form
�l

w → l̂
|l|
sgn(l) and wiw̄i → �̂i . After this replacement is made,

we immediately recognize the definition of a SM mode (22)
between the square brackets in the previous expression. Thus,
indeed an arbitrary LG mode carrying OAM l can be written
as a linear combination of p + 1 SM modes with the same
OAM:

φLG
lp (w,w̄,τ ) ∼

p∑
i=0

b
|l|p
i a(τ )i�li(w,w̄,τ ). (28)
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The expressions of both the a(τ ) and b
|l|p
i coefficients are

perfectly known from the particular form of the LG mode,
so that the previous linear combination is unique (up to the
normalization constant of the LG mode). Note that, for p = 0,
LG and SM modes are identical up to a normalization constant.
When p > 0, however, we need p + 1 SM modes to describe
a given LG mode, and vice versa.

B. Constructing discrete-Gauss states from scattering modes

Taking into account that we can write φLG
l0 ∼ l̂

|l|
sgn(l)φ00, it is

immediate to obtain an analytical expression for a |DG(l,N )〉v
state in terms of SM using the definition of SM (22) in Eq. (9):

φDG
lNv

∼
{

�l0 + iv�l+N,0 + iv�l−N,N , l � 0,

�l0 + iv�l+N,N + iv�l−N,0, l � 0,
(29)

where N = min(|l|,N ). Because of the univocal relation-
ship between the unfolded and folded values l and (m,k),
an alternative notation for a DG state is |DG(l,N )〉v =
|DG(m,k,N )〉v . As we will see next, the singularity structure
of a DG state crucially depends on the value of its “folding”
parameter k.

Since SM are found analytically so are DG states. This
property can be made explicit by substituting the expression
for SM (23) into Eq. (29). However, as just mentioned, the role
of k is essential, so that we want to transform the conditions for
l in Eq. (29) in conditions for k. We need to distinguish between

the k = 0 and k �= 0 case. In the latter case (k �= 0), which
is the one we will study first, there is a biunivocal relation
between the values of k and l. Due to the fact that l = m + kN

and |m| � N/2, it is easy to check that the conditions l � 0
and k � 1 are equivalent provided k �= 0. In the same way, it
is proven that l � 0 is equivalent to k � −1. For this reason
and following Eq. (29), we distinguish the k � 1 (l � 0) and
k � −1 (l � 0) cases in our first analysis for k �= 0.

We start by considering that k � 1. We use a symmetry
argument to find the general structure of DG states. This is the
counterpart of the argument we used to determine the structure
of SM (23) by means of their transformation properties under
O(2). Now, the transformation property of DG functions under
the CN symmetry φDG

mkNv → εm
NφDG

mkNv tells us that they have
to be proportional to the �m

w function (which transforms as
�m

w → εm
N�m

w) times a CN -invariant function. We write φDG
mkNv

then in the following way:

φDG
mkNv(w,w,τ ) = �m

ww(k−1)NFmkNv(wN,wN,|w|2,τ )φ00,

(30)

where FmkNv is an explicitly invariant CN function, in the
same way as w(k−1)N and φ00. The comparison of the result
obtained after substituting Eq. (23) into Eq. (29) with the
general expression for the DG state (30) provides us with an
explicit construction for the FmkNv functions in terms of the
analytical CN -invariant functions flp found previously.

Thus, for k � 1 (l � 0), we have

FmkNv =
{

fm+kN,0w
N + ivfm+(k+1)N,0w

2N + ivfm+(k−1)N,N , m � 0 (l = l1),

|w|−2|m|(fm+kN,0w
N + ivfm+(k+1)N,0w

2N + ivdmkfm+(k−1)N,l), m � 0 (l = l2),
(31)

where dmk = |w|2|m| if k = 1 and 1 if k � 2. We see that for
a given value of k � 1 and |m|, there are two possible values
for l, l1 = |m| + |k|N and l2 = −|m| + |k|N , depending on
whether m = |m| or m = −|m|. Since |m| � N/2, these two
values are positive and verify that l1,l2 > N , except when k =
1, in which l2 < N . Note that, due to this fact, N = min(|l|,N )
equals N in the former case and |l2| in the latter. As we will
see next, these different values give rise to different types of
solutions.

For k � −1, one can still use the previous expressions
by invoking an important w ↔ w duality symmetry of DG
states. Under the exchange between w and w, the funda-
mental Gaussian function φ00 (2) is invariant. On the other
hand, we immediately see from their definition (8) that this

transformation exchange the l̂± operators: l̂+
w↔w→ l̂−. For this

reason, the LG functions with p = 0 (φLG
l0 ∼ l̂

|l|
sgn(l)φ00) change

under this duality transformation between w and w simply as

φLG
l0

w↔w→ φLG
−l0. Since the discrete deformation operator (11) is

invariant under the exchange of l̂+ and l̂−, the very definition
of DG states (12) imply that DG states transform as LG modes
under the duality transformation w ↔ w:

φDG
−l,N,v(w,w,τ ) = φDG

l,N,v(w,w,τ ) (32)
or, equivalently,

φDG
−m,−k,N,v(w,w,τ ) = φDG

m,k,N,v(w,w,τ ). (33)

In terms of the FmkNv functions, this property reads

F−l,Nv(w,w,τ ) = Fl,N,v(w,w,τ ) (34)

or, in terms of (m,k),

F−m,−k,N,v(w,w,τ ) = Fm,k,N,v(w,w,τ ). (35)

For k � −1 (l � 0), by applying this duality symmetry to
Eq. (31), we have

FmkNv =
{

|w|−2|m|(f−m+|k|N,0w
N + ivf−m+(|k|+1)N,0w

2N + ivdm|k|f−m+(|k|−1)N,|l|), m � 0 (l = −l2),

f|m|+|k|N,0w
N + ivf|m|+(|k|+1)N,0w

2N + ivf|m|+(|k|−1)N,N , m � 0 (l = −l1).
(36)

In this way, we have extended the expression of the FmkNv functions to all nonzero values of k.
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However, for k � −1 the form of the DG functions also changes according to Eq. (33). Instead of Eq. (30), we have

φDG
mkNv(w,w,τ ) = �m

ww(|k|−1)NFmkNv(wN,wN,|w|2,τ )φ00, (37)

where FmkNv is now the extended function defined for all k �= 0.
For k = 0, we have that l = m and the previous construction has to be changed accordingly. Although the symmetry arguments

used to construct the DG state functions still hold, we need to define a new set of CN -invariant functions. Therefore, instead of
Eqs. (30) and (37), we have

φDG
m0Nv(w,w,τ ) = �m

wGmNv(wN,wN,|w|2,τ )φ00, (38)

where the function GmNv has a similar, but not identical, structure than that of FmkNv in terms of the flp functions:

GmNv =
{

fm0 + ivfm+N,0w
N + iv|w|−2mfN−m,N−mwN, l = m � 0,

f|m|0 + ivf|m|+N,0w
N + iv|w|−2|m|fN−|m|,N−|m|wN, l = m � 0.

(39)

The final property of DG states we want to deal with in
this section is biorthogonality. As complex-argument elegant
LG modes, DG states are not orthogonal but biorthogonal.
The complex-argument elegant LG modes |LG(l,p)〉 form a
biorthogonal set, which means that there exists a different set
of states, known as adjoint states |LG(l′,p′)〉, which satisfy
〈LG(l′,p′)|LG(l,p)〉 = δll′δpp′ [53]. By defining a discrete
deformation of these states using the operator D̂v analogously
as we did in Eq. (11),

|DG(l′,p′,N )〉v = D̂v(N )|LG(l′,p′)〉, (40)

we immediately realize that the {DG(l,p,N ),DG(l′,p′,N )} set
is also biorthogonal. Indeed, inasmuch as the deformation
operator is unitary, as proven in the previous section, it is true
that D̂†

vD̂v = 1, and therefore the scalar product is preserved,
so that

〈DG(l′,p′,N )v|DG(l,p,N )v〉 = 〈LG(l′,p′)|LG(l,p)〉
= δll′δpp′ . (41)

C. Amplitude and phase of DG states

Despite the apparent complexity of the previous construc-
tion, the main qualitative properties of a DG state are given by
the set of numbers that characterize it in a rather simple way.
Therefore, the amplitude of a |DG(m,k,N )〉v state explicitly
exhibits the discrete rotational symmetry of N th order for all
values of the evolution parameter τ . Besides, since this DG
state is a discrete deformation of a standard LG mode, its
amplitude behaves like a Gaussian vortex modulated now by
a discrete rotational symmetry. We can clearly visualize this
fact in Figs. 3 and 4, in which the evolution of two different
DG states with the same rotational order N = 3 are presented.
In the left column of these two figures we can appreciate
the vortex-Gaussian-like evolution of the amplitudes of a
|DG(−1,1,3)〉v (Fig. 3) and a |DG(1,1,3)〉v (Fig. 4) state. Like
a Gaussian beam, both states focus for τ < 0 and defocus
for τ > 0 reaching its minimum width at τ = 0 (the beam
“waist,” in optical notation). This is a general feature for all
DG states constructed by means of the mechanism presented
previously. However, besides the obvious discrete modulation,
we also observe a crucial difference with respect to ordinary
LG modes. Both DG states exhibit a multisingular structure
visible in amplitude and phase (right column). This a direct

consequence of the fact that k = 1 for both states. As we will
prove in the next section, the multisingular structure appears
whenever a DG state presents k �= 0.

The qualitative structure of the phase of a |DG(m,k,N )〉v
state is also easily understood in terms of its values of m,
k, and N . By analyzing the phase of the |DG(−1,1,3)〉v and
|DG(1,1,3)〉v states in Figs. 3 and 4, we immediately recognize
that the total charge of all off-axis singularities is given by the
order of symmetry or, to be more precise, by the product
sgn(k)N , which in this particular case is +3 for both states.
We can also appreciate that in this case the value of m provides
the topological charge at the axis of symmetry for all values
of τ except for τ = 0. As we will see later, this is a particular
case, valid for |k| = 1 DG states, of a general rule stating
that this axial charge equals m + sgn(k)(|k| − 1)N for τ �=
0. Therefore, the |DG(−1,1,3)〉v presents an antivortex with
q = −1 at the rotation axis for τ �= 0, whereas |DG(1,1,3)〉v
exhibits a single q = +1 at the same position.

Interestingly enough, the properties of the phase at the
τ = 0 plane are closely linked to the value of the unfolded
discrete angular momentum l = m + kN as given in Eq. (16).
The |DG(−1,1,3)〉v and |DG(1,1,3)〉v states differ only in
the sign of their index m. However, this difference provides
two different values for l: l = +2 for the former and l = +4
for the latter. This is precisely the topological charge at
the τ = 0 plane, as one can clearly appreciate in the phase
representation at the τ = 0 plane in Figs. 3 and 4. These two
values of l—l = l1 and l = l2—correspond to the two different
functional structures presented in Eq. (31) for k � 1. The value
of the unfolded discrete angular momentum l provides then
the topological charge of the phase singularity located at the
symmetry axis at the beam waist, i.e., at τ = 0.

We will prove all these properties in the next section by
introducing the concept of focusing dark beam, which is
just a natural consequence of the symmetry properties of the
analytical CN -invariant function FmkNv .

V. FOCUSING DARK BEAMS

As already mentioned, the singularity structure of LG
modes is simple. In the case that the mode carries OAM, i.e.,
when l �= 0, there exists a single phase singularity located at
the symmetry axis of the mode. The topological charge of this
singularity coincides with the OAM of the mode q = l. In a
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FIG. 3. (Color online) Evolution in τ of the amplitude [left
column] and phase [right column] of a |DG(−1,1,3)〉v state. Using the
equivalent notation |DG(l,N )v〉 in terms of the “unfolded” discrete
angular momentum l, this state is identical to the |DG(+2,3)〉v state.
The dashed white square in the τ = −3 snapshot indicates the region
that is enlarged for the representation of the phase.

representation of the field amplitude, the trajectory followed
by this singularity in the xyτ space is just a straight line. This
straight line constitutes a dark ray where the intensity of the
field vanishes. A characteristic example of such a dark ray
is shown in Fig. 2(a), where we can see a view of the mode
from two different viewpoints. We also observe in this figure
that the amplitude profile of the mode hosting this dark ray
exhibits at the same time the perfect O(2) symmetry of LG
modes. It is clear that the action of the discrete deformation
operator changes the continuous rotational properties of the
LG mode by transforming it into a DG state with discrete
rotational symmetry. However, as Figs. 2(b) and 2(c) unveil,

FIG. 4. (Color online) Same as in Fig. 3 but for the
|DG(−1,1,3)〉v state, or |DG(+4,3)〉v state, using equivalent
|DG(l,N )v〉 notation.

this transformation can occur in two completely different
ways. We can see that two different discrete deformations
of the same LG mode—Fig. 2(a)—can produce either a
simple modulation of the amplitude without changing the
original dark ray—Fig. 2(b)—or give rise to a completely new
multisingular structure formed by a bundle of rays converging
at the waist plane—Fig. 2(c). We shall refer to this bundle of
converging dark rays as the focusing dark beam associated to
the DG state. We will show next how the previous mechanism
of generation of focusing dark beams is linked to the properties
of the DG states analyzed in the previous section. In particular,
we will learn the key role played by the folding parameter k to
understand the generation or not of dark beams embedded in
a given DG state.
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A. Singularity structure of discrete-Gauss states

The singularity structure of DG states arises from the
condition φDG

mkNv = 0. According to Eqs. (30), (37), and (38),
the zeros of φDG

mkNv occur when one of the following conditions
are met: (i) �m

ww(k−1)N = 0 (k � 1), (ii) �m
ww(|k|−1)N = 0

(k � −1), (iii) FmkNv=0 (k �= 0), (iv) �m
w = 0 (k = 0), or (v)

GmNv = 0 (k = 0).
In the quest for singularities of DG states, it is important to

know what occurs with singularities on axis. In this context,
an important property of the FmkNv and GmNv functions is that
they do not show zeros at w = 0 when τ �= 0 (provided |m| <

N/2; the case |m| = N/2 should be analyzed separately.)
This property can be proven by taking the limit w → 0 in
Eqs. (31), (36), and (39). In all cases, both functions tend to
a quantity proportional to some flp function evaluated at w =
0, its corresponding proportionality constant being always
different from zero if τ �= 0. In addition, according to the
form of flp functions (24), when τ �= 0, flp(0) is nonvanishing
since the polynomial F

|l|
p (x) always shows nonzero values for

its zero-order terms.
The fact that both FmkNv and GmNv have no zeros at w = 0

determines that axial singularities at w = 0 and τ �= 0 are
given by one of the three previously presented conditions:
(i) or (ii), if k �= 0; or, alternatively, (iv) if k = 0. A simple
analysis of these expressions permits one to establish that a
generic |DG(m,k,N )〉v = |DG(l,N )〉v state with l �= 0 neces-
sarily presents a singularity located at the axis w = 0 with
topological charge:

qax = m + sgn(k)(|k| − 1)N = l − sgn(k)N (τ �= 0).

(42)

On the other hand, the value of the axial topological charge at
the waist (τ = 0) is always l. This is due to the unitary nature
of the deformation operator. According to the modified waist
condition (7), the action of this operator at τ = 0 on the LG
mode is simply a multiplication by the unimodular complex
function exp iV (recall V is a real function.) Inasmuch as
exp iV cannot be zero, the zero of the DG state at τ = 0 is the
same as that of the LG mode, i.e., it is located at w = 0 and it
has topological charge qax = l.

We immediately recognize an important qualitative differ-
ence in the axial topological function qax(τ ) when comparing
the k �= 0 and k = 0 cases. For k = 0, Eq. (42) tells us that
the axial charge function qax is continuous for all values of
the evolution parameter τ . Moreover, it is a constant function
that takes always the value qax = l, exactly as occurs in the LG
mode from which it is derived. However, when k �= 0, the axial
charge function experiences two qualitative changes: first, it
develops a discontinuity at τ = 0, and, second, its value for
τ �= 0 is no longer l but l − sgn(k)N . We can understand now
better the results already presented in Fig. 2, which provide
a neat visualization of this analysis. We see that the DG state
in Fig. 2(b) is a k = 0 state. Consequently, in agreement with
our previous argument, the axial topological charge function
is continuous and constant and it physically corresponds to
a single dark ray with charge qax = l, identical to the one of
the LG mode in Fig. 2(a). In Fig. 2(c) we present a discrete
deformation of the same LG mode in Fig. 2(a), but now with

k �= 0. We see that the axial topological charge at τ = 0 is
still l. However, for the rest of the values of τ , qax = l − N .
The physical process associated to this discontinuity in the
axial charge is clearly visualized in Fig. 2(c). We see how
this discontinuity is produced by the presence of N off-axis
singularities focusing at τ = 0 and symmetrically distributed
around the symmetry axis. So, the discontinuity in the qax(τ )
function is intimately related to the generation of a focusing
dark beam. Since the discontinuity in the axial charge function
occurs only for k �= 0 DG solutions, we have here a clear signal
that the generation of a focusing dark beam is determined by
the nonzero value of the unfolding parameter k.

We can rigorously prove our last statement by analyzing
the w → 0 and τ → 0 limits of the FmkNv = 0 and GmNv = 0
conditions. In this way, we can unveil the off-axis singularity
structure of a given DG state. We first go to Eqs. (31)
and (36) and find the form of FmkNv functions by taking into
account that in this regime we can neglect the O(w2N ) terms
and that flp functions in Eq. (24) can be approximated as
flp ∼ (−iτ )pF

|l|
p (0).

For k � 1 (l � 0), we find that for a given DG state
characterized by the indices (l,N ) ⇔ (m,k,N ), theFmkNv = 0
condition becomes, near the origin,

wN + iv(−iτ )NγlN ≈ 0

(for l = l1 or l = l2 with k � 2) ⇔ l > N,

wN + iv|w|2|m|(−iτ )lγ ′
lN ≈ 0

(for l = l2 with k = 1) ⇔ 0 < l < N,

(43)

where γlN ≡ F
|l|−N

N (0) and γ ′
lN ≡ F

|l|−N

l (0). This property
shows that, indeed, N off-axis zeros of FmkNv occur at the
same radial position r0 = |w0| given by

r0 ≈ v1/Nγ
1/N

lN τ

(for l = l1 or l = l2 with k � 2) ⇔ l > N,

r0 ≈ v1/Nγ
′1/N

lN τ
l

2l−N

(for l = l2 with k = 1) ⇔ 0 < l < N. (44)

Both types of phase singularities tend to zero in the τ → 0
limit. In the second case, let us emphasize that the exponent of
τ in this expression is always finite and positive since l = l2 >

0 and 2l2 − N = N − 2|m| > 0 because we are excluding
explicitly the |m| = N/2 case and, therefore, our constraint on
m is |m| < N/2. Therefore, there is no singularity at τ = 0.
Consequently, we have shown that there exist N singularities
with charge q = +1 approaching symmetrically the axis when
τ → 0. For k � −1 (l � 0), we would obtain an equivalent
property but for q = −1 charges corresponding to the w ↔ w

duality symmetry of the FmkNv functions. The two different
behaviors in Eqs. (43) and (44) would correspond then to
|l| > N in the first case and to |l| < N in the second. In all
cases we conclude that any DG state with k �= 0 will generate
a focusing dark beam.

However, the situation is completely different for k = 0
since GmNv does not show any zero approaching w = 0 when
τ → 0. We can see this property by writing the condition
GmNv = 0 close to the origin in a similar way as we did
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before—we use now Eq. (39). We have

1 + iv|w|−2|m|(−iτ )NγmNwN ≈ 0 (m � 0),

1 + iv|w|−2|m|(−iτ )NγmNwN ≈ 0 (m � 0).

The zeros of these complex equations are located at the radial
position r0 ∼ τ−|m|/(N−2|m|), so that they diverge when τ → 0
since |m| < N/2. Hence the zeros of GmNv cannot connect to
the point w = 0 in the τ → 0 limit.

In summary, we have demonstrated that DG states with
k = 0 do not show any bifurcation at τ = 0. On the contrary,
all DG states with k �= 0 exhibit a focusing point at (w,τ ) =
(0,0), where all trajectories of phase singularities converge.
Therefore, a focusing dark beam structure is embedded in a
DG state if and only if k �= 0—see Fig. 2(c). For k = 0, a single
axial dark ray is present when l �= 0 and only a modulation
in the amplitude reveals the discrete nature of the DG state as
compared to an LG mode with the same value of l—compare
Figs. 2(a) and 2(b). Because all dark rays of a DG state with
k �= 0 focus at τ = 0, we call the w = 0 point in this plane the
dark focusof the DG state.

B. Geometrical structure of focusing dark beams

The paradigmatic structure of characteristic focusing dark
beams corresponding to DG states with k �= 0 are given in
Fig. 5. For a given value of |m| and |k| there are four
possible DG states generated by combining the signs of
m = ±|m| and k = ±|k|. As we have seen in the previous
section, these four states are related by the w ↔ w duality
symmetry—see Eqs. (32) and (33). These four states are
|DG(±l1,N )〉v and |DG(±l2,N )〉v—where l1 = |m| + |k|N
and l2 = −|m| + |k|N—or, equivalently using (m,k) indices,
|DG(±|m|, ± |k|,N )〉v and |DG(∓|m|, ± |k|,N )〉v . Our pre-
vious analysis of the trajectories of phase singularities close
to the origin reflected in Eq. (44) points out a qualitatively
different behavior for focusing dark beams generated by
the states |DG(±l2,N )〉v when |k| = 1 as compared to their
quadruplet counterparts |DG(±l1,N )〉v . In order to explicitly
visualize this difference, we present in Fig. 5 a quadruplet of
states corresponding to the |k| = 1 and |m| = 1 case, in which
the pair of states |DG(±l2,N )〉v fulfilling the condition |l| < N

are shown in the left column and the other pair |DG(±l2,N )〉v
fulfilling |l| > N is shown in the right. According to Eq. (44),
when |k| = 1, the τ dependence of the radial coordinate of
phase singularities is different for |DG(±l2,N )〉v states, as
compared to the rest of cases. This feature can be clearly
appreciated in Fig. 5 by comparing the different behavior of
dark beams near the origin in the left and right columns.

The dark focus is one of the most distinguishing features of a
DG state. A general property of the dark focus is apparent in the
examples provided in Fig. 5. The axial charge, as dictated by
Eq. (42), is l − sgn(k)N for τ �= 0. However, the convergence
of the N dark rays of the DG state in τ = 0 determines the
topological charge of the dark focus to be precisely l: qdf = l.
In this way, Eq. (42) can be understood now as a conservation
law for the topological charge: qdf = qax + sgn(k)N . For k > 0
(k < 0), off-axis dark rays correspond to +1 (−1) charges.
The conservation of l, despite being no longer the OAM of the
state, can be interpreted as the topological conservation law

FIG. 5. (Color online) Structure of focusing dark beams embed-
ded in lower-order states near the dark focus for a quadruplet with
|k| = 1 and |m| = 1 for N = 3. The two states on the left column
correspond to l = ±l2 = ±2, whereas the ones in the right column
correspond to l = ±l1 = ±4. [τR = 1; v = 0.1; τmin = −3; τmax = 3;
transverse range: left L = 0.75 and right L = 1.5.]

associated to the CN discrete rotational symmetry of the DG
state.

Besides, DG states with qdf = ±|l| present a dark beam
structure that is related by the w ↔ w duality symmetry. In
Cartesian coordinates this symmetry is equivalent to the mirror
reflection:

Rx : (x,y)
Rx→ (x,−y), (45)

together with a simultaneous charge conjugation q → −q of
all topological charges. We can check this symmetry in Fig. 5
as well. Position of dark rays for the states in the lower row
can be obtained, respectively, by properly mirror reflecting
with respect to the x axis the dark beams of the upper row
along with charge conjugation (red-green color exchange in
Fig. 5).

DG states with k �= 0 exhibit a rich diversity of dark beam
structures embedded in their Gaussian-like amplitudes. The
form of a generic solution of a DG state, such as given in
Eqs. (30) and Eqs. (37), indicates that the properties of the
dark beam, encoded in the FmkNv function, and of the bright
part of the beam, encoded in the Gaussian function φ00, present
a certain degree of independence. We see that the v parameter
only affects the dark beam function FmkNv , whereas τR and
the beam parameter q(τ ) appear in both functions, but in
completely different functional ways. Thus we expect some
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FIG. 6. (Color online) Dark focus structure of a DG state with
m = 0 and no axial dark ray [τR = 1; v = 0.25]. (a) Amplitude at
1/4 maximum and dark beam with qax = 0 and qdf = −4; 3D box is
8 × 8 × 20. (b) Dark focus xz section. (c) 3D representation of the
dark focus region (1/30 maximum); 3D box is 1×1×2.5.

type of interplay between dark beams and bright amplitudes in
terms of these parameters. In Fig. 6 we present an interesting
case of the DG state characterized by m = 0 and k = −1. In
such a state, the dark focus does not exhibit a dark ray on axis
since, according to Eq. (42), its axial charge is qax = 0 for all
τ �= 0. The only on-axis singularity is located at τ = 0 being
absent for τ �= 0. Besides, the interplay between the bright
part of the beam and the dark beam here is strong. This fact is
reflected in the remarkable modulation of the amplitude near
the dark rays, visible in Fig. 6(a). In this case, as mentioned
before, a strong interplay between the bright and dark parts
of the beam is achieved by increasing the value of v (larger
than in previous cases.) The 2D and 3D representations of
the dark focus region near the origin in Figs. 6(b) and 6(c)
reveals a combination of high intensity gradients with high
phase contrasts (note that the topological charge at the focus
is qdf = 4.)

In discrete symmetry media, the presence of a CN -invariant
potential owning discrete rotational symmetry and extending
infinitely in τ forces the axial charge of a vortex to be
constrained by the rule |qmax| < N/2 [30,31]. On the contrary,
DG states with highly charged singularities on axis are allowed
by the topological law (42) beyond this cutoff provided
|k| � 2. In Fig. 7 we present an example of such a state with
k = 2. The dark beam pattern is, nevertheless, the same as
for any other DG state. N single off-axis phase singularities

FIG. 7. (Color online) DG state with k = 2 generating a focusing
dark beam with a highly charged singularity on axis [τR = 1; v =
0.1]. Phase profiles are represented at τ = −5, 0, and +5. 3D box is
7 × 7 × 12.

merge with the axial singularity at the dark focus once and then
diverge. The difference now is that the axial charge qax = 3
exceeds the maximum value for the axial charge allowed by the
previous rule for discrete potentials (in this case, |qmax| = 1,
for N = 4.) Note that the later rule applies to potentials that
act during an infinitely long period in τ , whereas DG states
are associated to the action of instantaneous potentials. In this
way, the seeming contradiction is removed.

VI. CONCLUSIONS

Generation of DG states is possible because the discrete
deformation operator, generated by the instantaneous CN

potential, acts as a “state converter” changing an LG mode
for τ < 0 into a DG state for τ > 0. Since the form of the
potential appearing in the discrete deformation operator D̂v

is valid for general real discrete potentials for small w (up
to a global rotation), approximated DG states are expected to
appear in scattering or diffraction experiments in which O(2)
symmetry is broken. Recent experiments of vortex diffraction
in optics using discrete diffractive optical elements (DOE)
show, in fact, output states that can be assimilated to DG
or quasi-DG states [34,35,54–57]. These experiments can be
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reinterpreted as examples of discrete deformation operators
generating DG states in τ > 0 out of LG modes in τ < 0.

The general framework here presented opens the door to
the control of DG states and dark beams beyond previously
proposed strategies [33]. It is feasible to find other types
of instantaneous potentials—not necessarily real—leading to
different deformation operators acting as generalized state
converters between arbitrary DG states. As an example, it is
possible to design potentials transforming a DG state with a
dark focus on a given value of τ into a DG state with a dark
focus in a different position. This designed potential would act
as a lens for dark rays imaging one dark focus onto the other.
Its experimental feasibility in optics is realistic using current
encoding techniques to design DOE with arbitrary phase
profiles [58]. A similar strategy including reflecting optical
elements [4] would permit the design of DG resonators acting
as dark beam cavities. A novel geometrical optics for dark rays
can be then envisaged in analogy to the classical geometrical
optics used for the manipulation of ordinary bright rays [33].

Besides the control of dark rays, DG states present a rich
and versatile structure for the gradients of both the phase and
amplitude of the field. Thus the present formalism can be of
help to design adequate optical forces for optical trapping of
small neutral particles, atoms, and molecules [38,41–43]. We
have seen that DG states present the possibility to manipulate
their dark (i.e., phase) and bright (i.e., intensity) profiles with
a certain degree of independence. This feature combined with
the potential control of dark beams using DOE, which are

also standard tools for manipulating Gaussian beams, permits
one to foresee interesting applications in optical trapping. It is
remarkable here that DG states are experimentally obtained
by simple diffraction using discrete DOE [34,35], instead
of by multiple interference of LG modes, as required in the
generation of other multisingular solutions [8–19].

Finally, the potential application of DG states in quantum
optics and quantum mechanics should not be ignored, which
is based in the fact that DG states form a biorthogonal set in
the same way as the complex-argument LG modes from which
they are derived [53]. So, DG states can be legitimately used as
a basis for operator expansions of the quantum field in the same
way as plane waves (momentum expansion) or LG modes (an-
gular momentum expansion). The advantage here is that they
present a richer phase singularity structure than other Gaussian
modes. Besides, they provide an expansion in a different
quantum number, namely, the discrete angular momentum m.
Quantum states based on the discrete angular momentum m

can provide an alternative to high-dimensional quantum spaces
based on OAM [44]. Additionally, they present a different
quantum operational algebra and a more complex spatial
mode structure that can bring a new perspective for quantum
information processing [45].
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