
PHYSICAL REVIEW A 90, 023843 (2014)

Capacitive coupling of two transmission line resonators mediated by the phonon number
of a nanoelectromechanical oscillator
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Detection of quantum features in mechanical systems at the nanoscale constitutes a challenging task, given
the weak interaction with other elements and the available technology. Here we describe the interaction
between two monomodal transmission-line resonators (TLRs) mediated by vibrations of a nanoelectromechanical
oscillator. This scheme is then employed for quantum nondemolition detection of the number of phonons in the
nanoelectromechanical oscillator through a direct current measurement in the output of one of the TLRs. For that
to be possible an undepleted field inside one of the TLRs works as an amplifier for the interaction between the
mechanical resonator and the remaining TLR. We also show how the nonclassical nature of this system can be
used for generation of tripartite entanglement and conditioned mechanical coherent superposition states, which
may be further explored for detection processes.
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I. INTRODUCTION

The nature of the movement of tiny electromechanical
oscillators has proved very intriguing, receiving attention since
the early years of quantum theory [1]. Recently, several groups
have been able to engineer nanoelectromechanical systems
(NEMSs) with oscillation frequencies up to the gigahertz scale,
despite the challenge to sensitively detect movement at that
small scale [2–6]. Indeed it was demonstrated recently that one
can cool down to almost the ground state of the mechanical
oscillator [7–9] and implement experiments near the zero-point
motion [10], therefore inside the quantum regime. Single
electron transistor devices are the natural choice for movement
detection, but recently electrical transducers of motion using
circuit quantum electrodynamic devices have been considered
[11,12]. Indeed, it is interesting to explore the possibilities that
a transduction and coupling to other circuit elements may offer
for detection purposes.

In this article we show that a direct capacitive coupling
between a mechanical oscillator and two transmission-line res-
onators (TLRs) [13] enables a quadratic coupling between the
TLRs and the mechanical displacement. This procedure leads
to an efficient method for measurement of the mean phonon
number of the mechanical oscillator by current measurements
on the device. The coupling between the mechanical oscillator
and the radiation field inside the resonators is amplified in
an undepleted regime, allowing a direct quantum nondemoli-
tion (QND) measurement of the mechanical resonator mean
number of phonons in a simple setup. As a secondary result,
given the nature of the interaction between the elements, an
entangled state can be generated between the TLR modes and
the mechanical resonator states, which might be useful for
further application in quantum-information processing, or for
detection purposes.
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II. MODEL

Quantum features for a mechanical oscillator manifest
only when its oscillation frequency ν reaches the ν > kBT /�

limit. For typical temperatures of a few millikelvins, ν must
be of the order of gigahertz. Since ν ∝ l−1, where l is a
typical dimension of the oscillator, this requires l to be of
the order of a few nanometers. To test the quantum nature
of those oscillations constitutes a real challenge. A natural
way for probing it is through the direct electrical coupling
of the mechanical oscillator to radiation at the microwave
scale, as has been recently demonstrated [7,10,14]. In those
cases standard electrical measurements can be used to monitor
the mechanical oscillations. In the same spirit, we consider
two TLRs capacitively coupled to a mechanical oscillator as
depicted in Fig. 1. Since the capacitance changes with the
distance, the mechanical oscillations of the NEMS change
the distributed capacitances of the circuit: CL(t) = ε0A

[d−x(t)]

between TLR 1 and the NEMS and CR(t) = ε0A

[d+x(t)] between
TLR 2 and the NEMS, where ε0 is the vacuum dielectric
constant, A is the lateral area of the NEMS, and d is
the equilibrium distance of both TLRs from the NEMS,
here assumed to be equal. Also x(t) is the time-dependent
displacement of the NEMS from its center of mass. At
the NEMS’s equilibrium position, we define the equilibrium
capacitance as Ceq = ε0A/d and we avoid a short circuit by
stating that max |x(t)| < d.

By considering the distributed voltage and current in the
corresponding circuit, after some algebraic manipulations we
derive the system Hamiltonian [see the appendixes for a
complete derivation of Hamiltonians (1) and (5)],

H = 1

2

2∑
i=1

(
1

Li

P 2
i + 1

C̃i

Q2
i

)
+ [d2 − x2(t)]

2dε0A
Q1Q2

−
2∑

i=1

[
[(−1)id + x(t)]

2d
VCT

(t)

]
Qi, (1)
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FIG. 1. (Color online) Capacitive coupling of two TLRs medi-
ated by an oscillatory NEMS. A double clamped mechanical resonator
(green) is electrically coupled to two transmission line resonators
(grey).

where Qi , Pi , and Li are, respectively, the charge, the magnetic
flux, and the impedance at the TLR, i = 1,2. We have also
defined VCT

≡ VCL
− VCR

= QL(t)CL(t)−1 − QR(t)CR(t)−1,
and C̃−1

i ≡ Ci
−1 + [d2−x2(t)]

2dε0A
, where Ci is the capacitance in

each TLR, i = 1,2. In that Hamiltonian we have assumed that
only one mode on each TLR is significant in the coupling with
the NEMS fundamental mode, as depicted in Fig. 2.

Before full quantization of Eq. (1), we assume a regime of
rapid oscillation of the NEMS, by writing

x(t) =
√

�

2mν
(be−iνt + b†eiνt ). (2)

For rapid oscillations (νt � 1), 〈x(t)〉 ≈ 0; furthermore,
〈x2(t)〉 ≈ �

mν
(〈b†b〉 + 1

2 ) ≡ x2
rms. Thus a relation between the

frequencies ω2
i ≡ (LiCi)−1 and ω̃2

i ≡ (LiC̃i)−1 is obtained as

ω̃2
i = ω2

i + ω2
i,eq

2

(
1 − x2

rms

d2

)
, (3)

where ω2
i,eq ≡ (CeqLi)−1. For the sort of device we are looking

for, it is reasonable to assume x2
rms/d

2 = 10−6 [15,16] and we
disregard it from Eq. (3) in a first approximation. Typical
experimental values settle ωi = 6 GHz [15], and if the second
term in Eq. (3) is of the same order it should also be
taken into account. We keep the maximal value the second
term can take, adopting ω̃2

i = ω2
i + ω2

i,eq/2, meaning that

FIG. 2. (Color online) Schematic circuit corresponding to
Hamiltonian (1); a single-mode approximation was considered for
both the TLRs and the NEMS.

C̃−1
i = Ci

−1 + (2Ceq)−1. Assuming

Qj =
√

�

2Lj ω̃j
(a†

j + aj ) and Pj = i

√
�Lj ω̃j

2 (a†
j − aj ),

(4)
which follow the standard commutation relation, we obtain

H = H0 + Hint + Hd, (5)

where

H0 = �ω̃1
(
a
†
1a1 + 1

2

) + �ω̃2
(
a
†
2a2 + 1

2

)
, (6)

Hint is the coupling between the two TLRs mediated by the
NEMS phonon number operator,

Hint = �
[
d2 − �

mν
(b†b + 1

2 )
]

4d2Ceq
√

L1L2ω̃1ω̃2
(a†

1 + a1)(a†
2 + a2), (7)

and Hd is the Hamiltonian due to the voltage induced by the
NEMS oscillations,

Hd =
√

�

8
VCT

(t)

[
(a†

1 + a1)√
L1ω̃1

+ (a†
2 + a2)√
L2ω̃2

]
. (8)

Assuming the two TLR fields are in resonance, ω̃1 = ω̃2 =
ω̃, in a referential rotating with ω̃ we can neglect the rapidly
oscillating terms appearing in the transformed Hd and Hint to
obtain (see Appendix C)

HI
int = �(θ0 + θb†b)(a†

1a2 + a1a
†
2), (9)

where θ0 = ω̃C̃1
4Ceq

(1 − �

2d2mν
) ≈ ω̃C̃1

4Ceq
, and θ ≡ − �

d2mν
θ0. Ac-

cordingly with the same assumptions for derivation of Eq. (3),
θ ≈ 10−6θ0 and therefore is very small, but now we keep it
since we show that important features appear due to the effects
of the coupling mediated by the NEMS vibration. Hamiltonian
(9) shows the effective coupling between the two TLR modes
mediated by the NEMS phonon number and allows two
direct applications which are discussed in what follows: (i)
the QND measurement of the NEMS phonon number and
(ii) the generation of a tripartite entanglement involving the
mechanical oscillator and the TLR fields, working as a probe of
the quantum character of oscillation of the mechanical device.

III. QND MEASUREMENT OF NEMS PHONON NUMBER

As a first application we develop a scheme for mean phonon
number QND measurement [17] of the NEMS through a
measurement carried out in one of the TLRs. Let us assume
that an external drive F (resonant with ω̃) is applied on TLR
2. The effective interaction Hamiltonian (9) together with this
external drive is then given by

HI = �(F∗a2 + Fa
†
2) + �(θ0 + θb†b)(a†

1a2 + a1a
†
2). (10)

The quantum stochastic differential equations (QSDEs) gov-
erning the evolution of a1 and a2 are

da1

dt
= −iθ0a2 − iθb†ba2 − κ1

2
a1 + √

κ1a1in, (11)

da2

dt
= −iθ0a1 − iθb†ba1 − κ2

2
a2 − iF + √

κ2a2in, (12)

023843-2



CAPACITIVE COUPLING OF TWO TRANSMISSION LINE . . . PHYSICAL REVIEW A 90, 023843 (2014)

where for j = 1,2, κj is the relaxation rate, and aj in is the cor-
responding noise operator induced by individual reservoirs for
the radiation mode at TLR j . In the limit where θ0/κ2,θ/κ2 

1 the radiation mode in TLR 2 relaxes to a stationary
coherent state due to the driving field. However, it affects
the radiation mode in TLR 1 as given by Eq. (11) contributing
with an additional noise term. In that situation the first two
terms in the second member of Eq. (12) can be neglected.
The steady state of the radiation mode in TLR 2 is then
given by

〈a2〉 ≈ −2iF
κ2

≡ α2.

We assume (without loss of generality) a purely imaginary
driving field F , so that α2 is real. We now take into account the
residual effect of (θ0/κ2) as an additional dissipative channel
for TLR 1. In that situation, the QSDE for a1, Eq. (11), then
becomes

da1

dt
= −iθα2b

†b − κ1

2
a1 − �

2
a1 + √

κ1a1in +
√

�ã1in,

(13)

where � = 2θ2
0 /κ2, and ã1in is an additive quantum noise term.

Equation (13) can be exactly solved to give

a1(t) = a1(0)e− �+κ1
2 t − 2iα2θb†b

� + κ1
(1 − e− �+κ1

2 t )

+√
κ1

∫ t

0
e

κ1+�

2 (t ′−t)a1in(t ′)dt ′

+
√

�

∫ t

0
e

κ1+�

2 (t ′−t)ã1in(t ′)dt ′. (14)

What is mostly relevant in this last equation is the
contribution of the TLR 2 radiation field amplitude α2 to
the coupling to the mechanical mode. In fact even though
θ is very small compared to θ0 the stationary coherent field
α2 can be made strong enough (through the driving field)
to amplify the interaction between the quantum radiation
mode in TLR 1 and the mechanical mode. This coupling
can indeed be explored to give a measurable experimental
quantity. For example, the average photocurrent in TLR 1,
defined as 〈I1(t)〉 = i

√
�ω̃/2L〈a†

1 − a1〉, can be calculated to
give (assuming 〈a1(0)〉 = 0, without loss of generality)

〈I1(t)〉 = − α2θ
√

8�ω̃√
L(� + κ1)

nb(1 − e− �+κ1
2 t ) (15)

with nb = 〈b†b〉. To illustrate the TLR 2 photonic current
profile in Fig. 3 we plot 〈I1(t)〉 by varying the NEMS
average phonon number. It is clearly seen that the average
number of phonons in the NEMS produces distinguishable
values for the saturation of the photonic current. On the
other hand, it is immediate to see that the current variance,
〈(	I1)2〉 = 〈I 2

1 〉 − 〈I1〉2, is proportional to the variance of the
phonon number, 〈(	b†b)2〉. Therefore, it can be used to infer
the number statistics of the mechanical system. This subject is
going to be considered further elsewhere.

FIG. 3. (Color online) The photonic current 〈I1〉(t) in TLR 1, as
given by Eq. (15) for three values of the NEMS Fock states with
average phonon number nb = 1,2,3. For t � 2/(k1 + �), all three
curves reach a stationary threshold given by the phonon number nb

in TLR 1 (remembering that θ < 0).

IV. ENTANGLEMENT GENERATION

Now we analyze the distribution of entanglement in our
tripartite system, as governed by the full quantized Hamilto-
nian (9). Since b†b is a conserved quantity we can solve the
Heisenberg equations of motion for the operators a1 and a2 to
obtain

ak(t) = √
1 − T ak(0) − i

√
T aj (0), j �= k, (16)

for j,k = 1,2. This is exactly the equation for a beam splitter
with intensity-dependent transmittance [17] T = sin2[(θ0 +
θ〈b†b〉t)]. It is well known that a beam splitter entangles only
bosonic fields which are nonclassical in the quantum optical
sense [18–20], i.e., when at least one of the individual inputs is
described by a negative Glauber-Sudarshan P distribution. For
that reason the term in T depending on θ0 does not entangle the
two radiation modes if they are initially in a classical state and
therefore can be neglected for simplicity. The transmittance
term dependent on the NEMS phonon number, however, allows
the three modes, the mechanical and the photonic ones, to be
entangled, even when their initial states are classical.

To illustrate this feature, let us consider that the system is
prepared in a triple product of coherent states for the NEMS
(index N) and for the two TLRs (indices 1, 2). Those states are
easily generated in the TLRs [by a classical source of radiation
such as the one in Eq. (10)] and can in principle be generated
in the NEMS with a similar external driving. The joint pure
initial state

|ψ(0)〉 = |α〉N |β〉1|γ 〉2 (17)

is a genuine example of a classical tripartite state, but the
evolution will generate the conditioned entangled state

|ψ(t)〉 =
∞∑

n=0

Cn |n〉N |βn(t)〉1|γn(t)〉2, (18)
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where |n〉 are the Fock state, with Cn = e− 1
2 |α|2αn/

√
n!, and

βn(t) = β cos(nθt) − iγ sin(nθt),

γn(t) = γ cos(nθt) − iβ sin(nθt). (19)

For example, considering θt = π , the state in Eq. (18) becomes

|ψ(t)〉 = |α+〉N |β〉1|γ 〉2 + |α−〉N | − β〉1| − γ 〉2, (20)

where |α±〉 ∝ (|α〉 ± |−α〉) are the even (+) and odd (−)
coherent states. So, not only are the three modes entangled,
but the NEMS is also left in a mesoscopic Schrödinger cat-like
state conditioned on the state on the TLR modes.

In a general way, when tracing over the partition N in
Eq. (18), one can see that the reduced state ρ̂12 is separable;
i.e., the NEMS is not able to generate entanglement between
the TLRs. However, an easy inspection of Eq. (18) or even
Eq. (20) shows that when tracing over 1 or 2 the remaining sys-
tem is entangled due to the nonorthogonality of coherent states,
being nonentangled only for large β and γ . Following the
classification of [21] this is a one-part separable state. For pure
global states, the universal measure of entanglement is the von
Neumann entropy, or the purity as given by the linear entropy
EA|B = 1 − Trρ̂2

B . Here ρ̂B represents the reduced density op-
erator after tracing over the part A of the total system with ρ̂ =
|ψ(t)〉〈ψ(t)|. The behavior of the bipartitions from Eq. (18) are
encoded in the following equations for linear entropies:

EN |12 = 1 −
∞∑

n,m=0

|Cn|2|Cm|2e−|βn−βm|2−|γn−γm|2 , (21)

E1|N2 = 1 −
∞∑

n,m=0

|Cn|2|Cm|2e−|βn−βm|2 , (22)

E2|N1 = 1 −
∞∑

n,m=0

|Cn|2|Cm|2e−|γn−γm|2 . (23)

By the Poissonian nature of |Cn|2 and the boundedness of
the exponentials, all above sums are convergent. In Figs. 4
and 5 we show EN |12 for some initial coherent states when
the summation is realized over 30 terms—the error in this
truncation is of the order of 10−17 for all the plotted curves.
As one can see, although the system recurs to a nonentangled
state after a period, it is usually highly entangled. At θt = lπ ,
with l = 1,3,5, . . . , the state is as in Eq. (20). This is a simple
scheme for tripartite entanglement generation involving
mechanical and photonic modes in a continuous-variables
regime, which can be easily implemented in a circuit.

This situation for the global pure state is useful for extension
to the case when the NEMS is in an arbitrary state

ρN =
∫

d2αP (α)|α〉〈α|, (24)

in terms of the Glauber-Sudarshan P distribution P (α), and
the two TLRs are again prepared in coherent states |β〉1 and
|γ 〉2. For that case the joint evolved state is given by

ρ =
∫

d2α

∞∑
n,m=0

P (α)CnC
∗
m

× |n,βn(t),γn(t)〉〈m,βm(t),γm(t)|N12. (25)

FIG. 4. (Color online) Linear entropy of the partition N |12 quan-
tifying the entanglement between the NEMS and the two TLRs as
a function of time t (here normalized with �) and |α|. We choose
α = β = γ ∈ R. Note the entanglement’s recurrence due to the
2π -periodic behavior of the functions in Eqs. (19).

However, the previous analysis in terms of the marginal
entropies cannot be applied here since the global state can be
mixed, and one has to resort to continuous-variable methods
for entanglement detection [22–24]. It is not difficult to infer
that the tripartite state will be entangled for a broad range
of NEMS states. For example, when it is in a thermal state,
P (α) = (πn̄)−1e−|α|2/n̄ is a regular Gaussian function, where
n̄ is the average number of thermal phonons. Therefore, the
NEMS state is classical, but after the evolution the tripartite
state is non-Gaussian and can be entangled or not depending
on n̄. We remark that since the global state is non-Gaussian,
the entanglement detection requires a more detailed analysis
dealing with the actual experimental limitations at hand. This
is left for further investigation.

FIG. 5. (Color online) Linear entropy of the partitions N |12
(solid) and 1|N2 (dashed) for α = β = γ = 2 as a function of
time t (here normalized with �). Since β = γ , E1|N2 = E2|N1. Inset:
The same linear entropies for distinct values of the initial state for
α = 2 and β = γ = 2 (blue); β = 3,γ = 4 (green); β = γ = 1 + 2i

(yellow); and β = 3 + 4i,γ = 1 + 2i (red).
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V. SUMMARY

In conclusion, in this paper we have investigated the
possibility to directly couple capacitively two TLRs and a
NEMS. The important feature here is that by treating the three
parts of the system quantum mechanically we could obtain
an interaction Hamiltonian that couples the NEMS phonon
number to the charges of the TLRs. We have considered
two simple applications of this setup. First, the circuit may
be considered for QND detection of the average number of
phonons in the NEMS by photonic currents at one of the
TLRs. We have shown that depending on NEMS average
phonon number the current at one of the TLRs will furnish
a characteristic and distinguishable behavior. This is quite
important for actual detection schemes, since it is independent
in principle of the inherent frequencies in the system. A second
application is devised as a beam splitter conditioned to the
NEMS phonon number and this is employed in a scheme
for generation of tripartite entanglement for a continuous-
variables system. This kind of device, an intensity-conditioned
beam splitter, is nonexistent for optical fields and could
in principle be used for quantum-information processing or
detection purposes.
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APPENDIX A: DERIVATION OF HAMILTONIAN (1)

Considering the source voltage for the circuit in Fig. 2,
VL1 + VC1 + VCL

= VL2 + VC2 + VCR
, we arrive at the equa-

tions for the charge:

L1
d2

dt2
Q1(t) + 1

C1
Q1(t) = −QL(t)

CL(t)
, (A1)

L2
d2

dt2
Q2(t) + 1

C2
Q2(t) = −QR(t)

CR(t)
. (A2)

Considering the total current in the system, I (t) = I1 + I2, we
obtain

I (t) = d

dt
Q1(t) + d

dt
Q2(t) = d

dt
QL(t) + d

dt
QR(t), (A3)

or

Q1(t) + Q2(t) = QL(t) + QR(t) + K, (A4)

where K is a constant which we assume as null, without
any loss of generality. Moreover, the voltage over the whole
capacitor is given by

VCT
= VCL

− VCR
= QL(t)

CL(t)
− QR(t)

CR(t)
. (A5)

Combining Eqs. (A4) and (A5), we obtain

QL(t) = CT

CR(t)
(Q1(t) + Q2(t)) + CT VCT

(t), (A6)

QR(t) = CT

CL(t)
(Q1(t) + Q2(t)) − CT VCT

(t), (A7)

where C−1
T = C−1

L (t) + C−1
R (t) = 2d

ε0A
= 2C−1

eq .
Inserting Eqs. (A6) and (A7) in Eqs. (A1) and (A2), we

obtain

L1
d2

dt2
Q1(t) +

(
1

C1
+ CT

CL(t)CR(t)

)
Q1(t)

+ CT

CL(t)CR(t)
Q2(t) = − CT

CL(t)
VCT

(t), (A8)

L2
d2

dt2
Q2(t) +

(
1

C2
+ CT

CL(t)CR(t)

)
Q2(t)

+ CT

CL(t)CR(t)
Q1(t) = + CT

CR(t)
VCT

(t). (A9)

Now, using the definitions for CL(t), CR(t) (see the main
text) and CT given below Eq. (A7), we have

CT

CL(t)CR(t)
= (d2 − x2(t))

2dε0A
, (A10)

and

CT

CL(t)
= (d − x(t))

2d
,

CT

CR(t)
= (d + x(t))

2d
. (A11)

By defining

1

C̃i

≡ 1

Ci

+ (d2 − x2(t))

2dε0A
, (A12)

the canonical variables in the circuit Pi(t) = LiQ̇i = LiIi(t).
Equations (A8) and (A9) can be written as

d

dt
Q1(t) = 1

L1
P1(t), (A13)

d

dt
P1(t) = − 1

C̃1
Q1(t) − [d2 − x2(t)]

2dε0A
Q2(t)

− [d − x(t)]

2d
VCT

(t), (A14)

d

dt
Q2(t) = 1

L2
P2(t), (A15)

d

dt
P2(t) = − 1

C̃2
Q2(t) − [d2 − x2(t)]

2dε0A
Q1(t)

+ [d + x(t)]

2d
VCT

(t), (A16)

which, finally, allow us to derive the system Hamiltonian (1).

APPENDIX B: DERIVATION OF HAMILTONIAN (5)

Two situations must be analyzed, when the NEMS be-
haves quantum mechanically and when it behaves classically.
Since the classical description can be derived from the
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quantum one we only describe the last one and later recast
the classical behavior. By writing x(t) =

√
�

2mν
(be−iνt +

b†eiνt ) we obtain x2(t) = �

2mν
[b2e−i2νt + (b†)2ei2νt + 2b†b +

1]. For rapid oscillations (νt � 1), x(t) ≈ 0, and x2(t) ≈ �

mν

(b†b + 1
2 ) ≡ x2

rms. Thus,

1

C̃i

= 1

Ci

+ d2 − �

mν

(〈b†b〉 + 1
2

)
2dε0A

. (B1)

Dividing both sides of Eq. (B1) by Li we obtain a relation be-
tween the two frequencies ω2

i ≡ (LiCi)−1 and ω̃2
i ≡ (LiC̃i)−1

as

ω̃2
i = ω2

i + d2 − x2
rms

2dε0ALi

, (B2)

or

ω̃2
i = ω2

i + ω2
i,eq

2

(
1 − x2

rms

d2

)
, (B3)

with ω2
i,eq ≡ (CeqLi)−1. We assume d ≈ 10−8 m, x2

rms/d
2 =

10−6 [15,16], and so it can be disregarded from Eq. (3). Typical
experimental values settle ωi = 6 GHz, and whenever the
second term in Eq. (3) is of the same order it should be taken
into account. In any case in ω̃2

i we keep the maximal value
the second term can take; i.e., we adopt ω̃2

i = ω2
i + ω2

i,eq/2,
meaning that

1

C̃i

= 1

Ci

+ 1

2Ceq
. (B4)

Thus, Hamiltonian (1) reduces to

H ≈ P 2
1

2L1
+ Q2

1

2C̃1
+ P 2

2

2L2
+ Q2

2

2C̃2

+ d2 − �

mν
(b†b + 1/2)

2dε0A
Q1Q2

+ 1

2
VCT

(t)Q1 − 1

2
VCT

(t)Q2. (B5)

Finally by assuming the conjugate variables (4), which
follow the standard commutation relation, we thus obtain
Hamiltonian (5).

APPENDIX C: DERIVATION OF HAMILTONIAN (9)

Let us assume in Hamiltonian (5) that the two TLRs are
at resonance with frequency ω̃1 = ω̃2 = ω̃, meaning here that
C1 = C2 and L1 = L2. Now we transform to a referential rotat-
ing with ω̃ : UHU †, U = exp[−iω̃t(a†

1a1 + a
†
2a2)], such that

HI
int = �(θ0 − θb†b)

× (a1a2e
−2iω̃t + a

†
1a

†
2e

2iω̃t + a
†
1a2 + a1a

†
2), (C1)

and

HI
d =

√
�

8ω̃L1
VCT

(t)

× [(a†
1 + a

†
2)eiω̃t + (a1 + a2)e−iω̃t )] (C2)

with θ0 = ω̃C̃1
4Ceq

(1 − �

2d2mν
) ≈ ω̃C̃1

4Ceq
, and θ ≡ − �

d2mν
θ0. For

frequencies ω̃ at the gigahertz scale the oscillating terms
in Eqs. (C1) and (C2) can be dropped and the remaining
time-independent term is exactly Hamiltonian (9).
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