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We introduce a system with competing self-focusing (SF) and self-defocusing (SDF) terms, which have the
same scaling dimension. In the one-dimensional (1D) system, this setting is provided by a combination of the SF
cubic term multiplied by the delta function δ(x) and a spatially uniform SDF quintic term. This system gives rise
to the most general family of 1D Townes solitons, with the entire family being unstable. However, it is completely
stabilized by a finite-width regularization of the δ function. The results are produced by means of numerical and
analytical methods. We also consider the system with a symmetric pair of regularized δ functions, which gives
rise to a wealth of symmetric, antisymmetric, and asymmetric solitons, linked by a bifurcation loop, that accounts
for the breaking and restoration of the symmetry. Soliton families in two-dimensional (2D) versions of both the
single- and double-δ-functional systems are also studied. The 1D and 2D settings may be realized for spatial
solitons in optics and in Bose-Einstein condensates.
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I. INTRODUCTION

The creation of various self-trapped modes (loosely called
“solitons” in this paper) in many physical systems is com-
plicated by competition between self-focusing (SF) and self-
defocusing (SDF) nonlinearities. The first example, which has
been studied in detail, is the competition between the second-
harmonic-generating, i.e., quadratic, and cubic nonlinearities
in optics. In such systems, the adjustment of the mismatch be-
tween the fundamental and second harmonics makes it possible
to render the quadratic nonlinearity effectively self-focusing,
while the cubic term may be self-defocusing. The interplay
of these competing interactions gives rise to diverse soliton
states, both one- and two-dimensional (1D and 2D) [1,2].

Furthermore, the competition between cubic SF and quintic
SDF terms has been the subject of many studies. The cubic-
quintic (CQ) nonlinearity, which usually has opposite signs for
the two terms, occurs in the various photonic media. Known
examples include light propagation in diverse fluids [3],
specialty glasses [4], ferroelectric films [5], and colloidal
suspensions of metallic nanoparticles [6]. The colloids offer
remarkable flexibility, making it possible to adjust parameters
of the CQ nonlinearity (the signs and magnitudes of both the
cubic and quintic terms) through the selection of the diameter
of the nanoparticles and the filling factor of the suspension.

The realization of the CQ nonlinearity was also theoreti-
cally elaborated in terms of the Gross-Pitaevskii equation [7]
for Bose-Einstein condensates (BEC), where the quintic term
accounts for three-body collisions, provided that inelastic
effects may be neglected [8]. In this context, the adjustment of
the nonlinearity may be provided by the Feshbach resonance,
which affects the sign and strength of the cubic term [9].

It has been theoretically demonstrated that the use of the
CQ nonlinearity combining the SF and SDF terms opens
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a way to the creation of stable multidimensional solitons,
including 2D [14] and three-dimensional (3D) [10] self-
trapped vortices (see a review in Ref. [11]). Recently, 2D fun-
damental solitons of this type were produced experimentally
in colloidal waveguides [12]. The use of the CQ nonlinearity
is necessary for this purpose because the SF cubic interaction
can create only the family of Townes solitons in the 2D setting,
which is fully destabilized by the occurrence of the critical
collapse in the same geometry [13]. The Townes family is
degenerate in the sense that the norm (total power) of the
solitons takes the single value, which does not depend on
the propagation constant. However, the 2D system including
the SDF quintic term suppresses the collapse and thus lends
stability to the self-trapped states, with both the fundamental
and vortical internal structures [11,14].

A degenerate family, the Townes-like solitons, which are
subject to the instability driven by the critical collapse, is
known in the 1D setting as well. It is described by the
nonlinear Schrödinger (NLS) equation with the quintic SF
term in the absence of cubic ones [15]. The addition of the
SF cubic nonlinearity does not eliminate the collapse, but it
lifts the degeneracy and stabilizes all the solitons against small
perturbations [16]. It is well known too that, while the 1D NLS
equation with the CQ combination of nonlinear terms is not
integrable, it admits an exact analytical solutions for the full
soliton family [17].

A remarkable peculiarity of the 1D NLS equation is that
it admits another type of the nonlinearity, which gives rise to
another degenerate soliton family that may also be considered
a variety of the Townes solitons. This equation contains the
SF cubic nonlinear term concentrated, in the ideal form, at
a single spatial point, x = 0, i.e., multiplied by Dirac’s delta
function δ(x). This model was introduced in Ref. [18], and
it was later shown that the entire family of solitons, whose
norm does not depend on the propagation constant either
(the characteristic feature of solitons of the Townes type), is
completely unstable [19]. Lifting of the degeneracy and partial
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FIG. 1. (Color online) Families of stationary soliton solutions to
Eq. (31) found numerically for the 1D single-well configuration. The
dependence of the total power on the propagation constant N (μ) is
shown for several values of the quintic coefficient: (a) σ = 0, (b)
σ = 0.05, (c) σ = 0.075, (d) σ = 0.1, and (e) σ = 0.15. All these
curves represent stable solitons. The dashed curve shows analytical
approximation (18) for σ = 0. The horizontal dotted line corresponds
to N (μ) ≡ 1, σ = 0. The latter family, given by Eqs. (7) and (8), is
unstable. Qualitatively, the shape of the N (μ) curves is explained by
the Thomas-Fermi approximation based on Eqs. (35)–(37).

or complete stabilization of the latter family are possible in the
system with two δ functions [20,21] or if the ideal δ function
is replaced by its finite-width counterpart [19].

The fact that two different nonlinear terms in the 1D NLS
equation, δ(x)|U |2U and |U |4U , where U (x) is the complex
wave field, give rise to Townes-like soliton families is a unique
feature of the 1D setting, which is explained by the coinciding
scaling dimension of both of these terms. This circumstance
suggests we consider a general family of the Townes solitons
produced by the 1D NLS equation including both terms. In
this work, we demonstrate that such a family can be found
in an exact form, and it remains degenerate (with the norm
independent of the propagation constant); hence it is unstable
too. In fact, another situation is more interesting, which is the
main subject of the present work, viz., the competition between
such cubic SF and quintic SDF terms, which still share the
identical scaling dimension. This situation is relevant to both
physical settings mentioned above: in optical waveguides, the

FIG. 2. (Color online) The thin and thick solid curves show an
example of a pair of stable 1D solitons pinned to the single regularized
δ function in the model with σ = 0.1. The dashed curve depicts
profile (15) of the regularized δ function. These solitons pertain to a
common value of the propagation constant, μ = 0.1, and their total
powers (norms) are N1 = 11.16 and N2 = 2.66, respectively.

local cubic nonlinearity may be induced by means of locally
implanted resonant dopants [22], while in BEC it can be
implemented by means of the Feshbach resonance imposed
by a tightly focused laser beam [23].

The most interesting issue to be considered in the frame-
work of these systems is the stability of the solitons. We
conclude that, in the case of the ideal Dirac’s δ function
multiplying the SF cubic term, the soliton family can be
found in an exact analytical form, remaining degenerate and
unstable. However, the regularization, which replaces the
ideal δ function by an approximation with a finite intrinsic
scale, immediately stabilizes the entire family. This result,
which is meaningful in terms of the above-mentioned physical
realizations because any locally induced nonlinearity has a
finite spatial size, is obtained below by means of a combination
of numerical and analytical methods. Interestingly, parts of
the soliton families for which the SF or SDF term is the
dominant one turn out to be stable according to the Vakhitov-
Kolokolov (VK) criterion [13,24] or the anti-VK one [25–27],
respectively. Regarding the analytical methods, we use the
perturbation theory and the Thomas-Fermi approximation
(TFA) and also produce particular exact solutions in the model
with the regularized δ function. Using numerical methods,
we subsequently extend the analysis to the system with two

FIG. 3. (Color online) (a) Dependences N (σ ) for soliton families produced by Eq. (31) with μ = 10−1 (curve V), μ = 10−2 (curve IV),
μ = 10−4 (curve III), and μ = 10−5 (curve II). The dashed curve (curve I) represents the exact result (10) obtained with the ideal δ function
(in this case, N does not depend μ). (b) Dependence N (σcr), where σcr is the largest value of the quintic coefficient σ for which the solitons
exist in (a).

023841-2



SPATIAL CONTROL OF THE COMPETITION BETWEEN . . . PHYSICAL REVIEW A 90, 023841 (2014)

FIG. 4. (Color online) Examples of the evolution of stable and unstable symmetric solitons in the 1D double-well model for (a) x0 = 5,
σ = 0.1, μ = 0.14 and (b) x0 = 5, σ = 0.05, μ = 0.008.

regularized δ functions and, finally, to the 2D version of the
model, with both the single and double regularized δ functions.

The rest of this paper is organized as follows. The 1D
system is formulated in Sec. II, where we present the basic
equations and analytical solutions. Numerical and additional
analytical results for the 1D systems, with the single and
double regularized δ functions, are reported in Sec. III. The 2D
systems are introduced in Sec. IV, where numerical results are
reported for them as well. The paper is concluded in Sec. V.

II. ONE-DIMENSIONAL MODELS

A. Basic equations and solutions

We start by considering the 1D NLS equation which
includes competing SF cubic and SDF quintic terms:

iUz = − 1
2Uxx − δ(x)|U |2U + σ |U |4U, (1)

where the constant σ is positive in the case of the competing
SF and SDF nonlinearities and δ(x) is Dirac’s δ function. It

imposes a condition for the jump of the first derivative at x = 0:

Ux(x = +0) − Ux(x = −0) = −2|U (x = 0)|2U (x = 0),

(2)

where the function U (x) is continuous at this point. Note that,
although Eq. (1) admits the invariance with respect to the
scaling transformation,

z ≡ x2
0 z̃, x ≡ x0x̃, U ≡ x

−1/2
0 Ũ , (3)

with an arbitrary factor x0, it cannot alter the coefficient σ

in front of the quintic term due to the above-mentioned fact
that both nonlinear terms in Eq. (1) have the same scaling
dimension. The presence of the irreducible parameter σ is an
essential peculiarity of the system.

In the absence of the SDF quintic term (σ = 0), Eq. (1)
has an exact stationary solution with an arbitrary propagation
constant μ > 0, in the form of a soliton pinned to the δ

FIG. 5. (Color online) A stable antisymmetric soliton with norm N = 26.394 (the thick curve in the top frame and the bottom right frame)
produced by Eq. (29) with σ = 0.01 compared to an unstable antisymmetric one with N = 18.816 (the thin curve in the top frame and the
bottom left frame) obtained (as in Ref. [20]) for σ = 0. The other parameters are x0 = 0.9 [the dashed curve in the top frame depicts the profile
of the cubic nonlinear regularization in Eq. (32)] and μ = 3.8688 [see Fig. 8(b) in Ref. [20]].
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FIG. 6. (Color online) Evolution of unstable (x0 = 5, σ = 0.2, μ = 0.003) and stable (x0 = 4, σ = 0.1, μ = 0.025) asymmetric solitons
in the 1D double-well model.

function [18,19]:

U (x,z) ≡ U (x)eiμz = (2μ)1/4e−√
2μ|x|+iμz. (4)

The total power (norm) of this pinned state is

N =
∫ +∞

−∞
|U (x)|2dx = 1, (5)

which is independent of the propagation constant μ [note
that the norm is invariant with respect to transformation (3)].
According to the VK criterion, which states that the inequality

dN/dμ > 0 (6)

is a necessary stability condition for solitons supported by a
SF nonlinearity [13,24], all solutions (4) might be neutrally
stable, but, in fact, they are unstable [19].

In the presence of the SDF quintic term (σ > 0), a family
of exact solutions to Eq. (1) can be found in the analytical form
as well:

U (x,z) = eiμzU (x) = eiμz (3μ/σ )1/4√
sinh(

√
8μ|x| + ξ )

, (7)

ξ = ln

(√
3

2σ
+

√
3

2σ
− 1

)
. (8)

As follows from Eq. (8), this solution exists provided that the
coefficient in front of the SDF quintic term is not too large,

0 < σ < σmax ≡ 3/2. (9)

The total norm of the solution family (7) is again degenerate
(it does not depend on μ but depends on σ ):

N (σ ) =
√

3

2σ
ln

(√
3 + √

3 − 2σ + √
2σ√

3 + √
3 − 2σ − √

2σ

)
. (10)

In particular, in the limit of σ → 0, expression (10) contin-
uously goes over into norm (5), N (σ = 0) = 1, while in the
opposite limit of σ → σmax [see Eq. (9)], the norm diverges,
N ≈ (1/2) ln[1/(σmax − σ )]. In the latter limit, the peak power
(squared amplitude) of the solution given by Eqs. (7) and (8)
diverges too:

U 2(x = 0) =
√

3μ/σ

sinh ξ
≈

√
3μ

σmax − σ
. (11)

FIG. 7. (Color online) (left) Bifurcation diagram for the 1D double-well system, shown in terms of N (μ) curves, for x0 = 5 and σ = 0.05
and (right) the close-up of the symmetry-breaking part for smaller values of μ. Here and in Fig. 8, red, blue, and black curves represent
symmetric, antisymmetric, and asymmetric modes, respectively, while solid and dashed segments of the curves refer to stable and unstable
solitons.
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FIG. 8. (Color online) The asymmetry parameter (30) vs total
power N for the same set of soliton branches in the 1D double-well
system with x0 = 5 and σ = 0.05 as shown in Fig. 7.

Once again, the fact that dN/dμ = 0 formally suggests that
the soliton family (7) might be neutrally stable according to
the VK criterion, but in reality such a family of solitons with
degenerate total power is completely unstable [19]. Thus the
combination of the cubic and quintic terms in Eq. (1) gives
rise to the family of solitons of the Townes type (with the
μ-independent norm) even in the case when the two terms are
set to compete.

In the case of σ < 0 (the cooperating, rather than compet-
ing, nonlinearities), when both nonlinear terms in Eq. (1) have
the SF sign, a family of exact soliton solutions can also be
readily found:

U (x,z) = eiμz (−3μ/σ )1/4√
cosh(

√
8μ|x| + ξ̃ )

, (12)

ξ̃ = ln

(√
− 3

2σ
+ 1 +

√
− 3

2σ

)
; (13)

see the exact solutions given by Eqs. (7) and (8) for the
competing nonlinearities, with σ > 0. The total power of this

family is

N (σ < 0) =
√

− 6

σ
arctan

(√
− 3

2σ
+ 1 −

√
− 3

2σ

)
. (14)

Like the respective expression (10) for σ > 0, this norm
does not depend on the propagation constant μ; hence this
family too is the degenerate one, of the Townes type, and
is completely unstable. However, unlike its counterpart (10),
Eq. (14) demonstrates that, with the increase of −σ from zero
to infinity, the total power drops from N (σ → −0) = 1 to
N (σ → −∞) = 0. Thus the interplay of the cubic and quintic
terms in Eq. (1) gives rise to the most general Townes soliton
family, which comprises cases of both the competing and
collaborating types.

The solitons can be stabilized by a regularization of Dirac’s
δ function, for which we adopt the commonly known Gaussian
form:

δDirac(x) → δGauss(x) ≡ (1/
√

πa)e−x2/a2
, (15)

with scale constant a > 0. Indeed, rewriting, accordingly, the
corrected jump condition (2) in the form of

Ux(x = +0) − Ux(x = −0)

= − 2√
πa

∫ +∞

−∞
|U (x)|2U (x)e−x2/a2

dx (16)

and looking for a stationary solution to Eq. (1) with σ = 0 as
A exp(−√

2μ|x| + iμz) [see expression (4)], the calculation
of the integral on the right-hand side of Eq. (16) yields the first
correction to the squared amplitude for small a (or for small
μ if a = 1 is fixed; see below),

A2 ≈
√

2μ(1 + 3
√

2μ/πa), (17)

and the respective correction to norm (5),

N ≈ (1 + 3
√

2μ/πa), (18)

which satisfies the VK criterion (6). The consistent stability
analysis for the model with the δ function regularized as per
Eq. (15) is developed below in a numerical form.

FIG. 9. (Color online) Stability areas for symmetric, antisymmetric, and asymmetric solitons [red (light gray) vertical, blue (dark gray),
and black lines, respectively] in the plane of (σ,N ) in the 1D double-well system based on Eq. (29). The half distance between the wells is
x0 = 5 and 1.25 in the left and right panels, respectively.
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FIG. 10. (Color online) Numerical results for the 2D single-well model represented by Eq. (40). The top panel shows a set of N (μ) curves
for the following values of the SDF quintic coefficient: (a) σ = 0, (b) σ = 0.01, (c) σ = 0.015, (d) σ = 0.02, and (e) σ = 0.025. The bottom
left panel shows a close-up of the region of small μ, where the transition from stable (solid) branches to unstable (dashed) ones occurs. In the
bottom right panel, the domain where the system supports stable solitons is shown by oblique lines.

To further illustrate the effects of the regulariza-
tion of the δ function, it is worth briefly considering
another functional form of the smoothing, with scale

constant b:

δDirac(x) → δsech(x) ≡ (πb)−1sech(x/b), (19)

FIG. 11. (Color online) (left) An example of an unstable 2D soliton in the single-well model based on Eq. (40) with σ = 0.02. The
propagation constant and total power of the soliton are μ = 0.25 and N = 5.2517, respectively. (middle) The linear spectrum of small
perturbations around the soliton. (right) The transformation of the unstable soliton into a robust breather, which features regular oscillations of
the amplitude.
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FIG. 12. (Color online) A stable symmetric double-peak soliton
of Eq. (41) with x0 = 0.83, σ = 0.0288, and μ = 5.76, N = 49.02.
Thick blue (dark gray) circles in the left panel and in similar figures
below depict the shape of the regularization of the δ functions per
Eq. (42). Here and in similar figures below, the right panel shows the
spectrum of stability eigenvalues for small perturbations around the
soliton.

which satisfies the standard normalization condition,∫ +∞
−∞ δsech(x)dx ≡ 1. It is easy to see that Eq. (1) with the

δ function replaced by expression (19) admits two exact
solutions for pinned solitons,

U (x,z) = exp(iμbz)Ub

√
sech

(
x

b

)
,

(20)

μb = 1

8b2
, U 2

b = 1

2πσb

(
1 ±

√
1 − 3

2
π2σ

)
,

which exist for 0 < σ < σ̃max ≡ 2/(3π2) [see Eq. (9); the
exact solution (20) with the upper sign is relevant for σ < 0
too]. The total power of these solutions does not depend on
the scale constant b:

N
(±)
b = 1

2σ

(
1 ±

√
1 − 3

2
π2σ

)
. (21)

B. The linear-stability analysis

To study the stability of solitons pinned to the effective
δ-functional nonlinear potential well, we first concentrate
on solutions of Eq. (1) with the δ functions regularized as

per Eq. (15). The stationary solution is taken as U (x,z) =
eiμzU (x), where U (x) is assumed to be real, with the
propagation constant μ > 0. A small perturbation is added
to the solution in the form of

Ũ (x,z) = [U (x) + δu(x,z)]eiμz, (22)

with |δu(x,z)| � |U (x)|. Substituting this into Eq. (1)
and linearizing, we derive the evolution equation for the
perturbation,

i(δu)z = − 1
2 (δu)xx + [3σU 4(x) − 2δ(x)U 2(x) + μ]δu

+ U 2(x)[2σU 2(x) − δ(x)]δu∗. (23)

We rewrite this equation in matrix form,

i

(
(δu)z
(δu∗)z

)
=

(
Â B̂

−B̂ −Â

) (
δu

δu∗

)
, (24)

Â ≡ −(1/2)∂xx + 3σU (x)4 − 2δ(x)U (x)2 + μ, (25)

B̂ ≡ 2σU (x)4 − δ(x)U (x)2. (26)

Eigenfunctions of perturbation δu(x,z) are looked for in the
form of

δu(x,z) = f (x)eλz + g∗(x)eλ∗z, (27)

where λ is a complex stability eigenvalue and {f (x),g(x)} are
respective complex eigenfunctions. The substitution of per-
turbation (27) into Eq. (24) leads to the following eigenvalue
problem:

i

(
0 Ĉ

D̂ 0

) (
η

χ

)
= λ

(
χ

η

)
. (28)

Here η ≡ f (x) + g(x), χ ≡ f (x) − g(x), and Ĉ ≡ Â +
B̂, D̂ = Â − B̂. Equation (28) was solved numerically. Obvi-
ously, the soliton is unstable if there is at least one eigenvalue
with λr > 0. Alternatively, the stability of the soliton can be
tested in direct simulations, in which perturbations are applied
to initial conditions for Eqs. (1) and (29). In the next section,
we use both methods.

FIG. 13. (Color online) An unstable symmetric single-peak soliton of Eq. (41) with x0 = 0.45, σ = 0.0484, and μ = 1.452, N = 6.1614.
Here and in similar figures below, the right panel shows the cross section y = 0 of the wave field in the course of its evolution.
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FIG. 14. (Color online) An unstable symmetric double-peak soliton of Eq. (41) with x0 = 0.83, σ = 0.0288, and μ = 2.88, N = 11.95.

C. The double-δ structure

Next, we consider the model with two identical δ functions,

iUz = − 1
2Uxx − [δ(x − 1) + δ(x + 1)]|U |2U + σ |U |4U,

(29)

where coefficient σ � 0 remains irreducible, while the dis-
tance between the δ functions may be set equal to 2 by means of
rescaling (3). Exact analytical solutions to Eq. (29) with σ = 0
were found for symmetric, antisymmetric, and asymmetric
solitons pinned to the two δ functions [20], with the asymmetry
parameter being defined as

ν = N−1

[ ∫ +∞

0
|U (x)|2 dx −

∫ 0

−∞
|U (x)|2dx

]
. (30)

In the case of σ = 0, the symmetric solitons are completely
stable, while the antisymmetric and asymmetric ones are
completely unstable. Stabilization of the asymmetric and
antisymmetric solitons is possible, as shown in Ref. [20], by
replacing each ideal δ function with its regularized version as
per Eq. (15).

D. Rescaling of the parameters

The rescaling transformation (3) also applies to Eqs. (1)
and (29), in which the δ function is replaced by its reg-
ularized version (15). We use this degree of freedom to
fix the regularization spatial scale as a ≡ 1, thus replacing

FIG. 15. (Color online) A stable asymmetric soliton of Eq. (41)
with x0 = 0.45, σ = 0.0484, and μ = 3.267, N = 17.246; the
asymmetry parameter is ν = 0.474.

Eq. (1) by

iUz = −1

2
Uxx − e−x2

√
π

|U |2U + σ |U |4U. (31)

In the model with the double δ function, we again fix a = 1;
hence the distance between the two attraction centers is no
longer 2 [see Eq. (29)] but becomes an independent parameter,
2x0. Thus the regularized version of Eq. (29) is

iUz = −1

2
Uxx − 1√

π
[e−(x−x0)2 + e−(x+x0)2

]

× |U |2U + σ |U |4U. (32)

It is easy to check that the function multiplying the SF cubic
term in Eq. (32) keeps the double-well structure at

x0 > (x0)min = 1/
√

2. (33)

III. NUMERICAL AND ANALYTICAL RESULTS FOR THE
ONE-DIMENSIONAL SYSTEMS

In our numerical calculations, we chiefly used the
imaginary-time-propagation method for finding stationary
solutions and the split-step Fourier algorithm for simulations of
their perturbed evolution. To obtain antisymmetric structures,
we have additionally used the Newton conjugate-gradient
method [28,29]. The linear eigenvalue problem represented
by Eq. (28) was solved by means of the Fourier collocation
method.

A. The single-well setting: Numerical results

First, we address soliton solutions generated by Eq. (1) with
the δ function regularized as per Eq. (15), and we expect the
stabilization of these states, at least for small μ, according to
the analytical result (18), which satisfies the VK criterion. The
setting is fully characterized by two independent parameters,
σ and N . A summary of the results is presented in Fig. 1.

A salient feature of Fig. 1 is the presence of upper and lower
branches in dependences N (μ), connected at the rightmost
turning point. To highlight the difference between solitons
pertaining to the same value of μ but lying on the upper and
lower branches, in Fig. 2 we display profiles of such a pair of
solitons with strongly differing values of the total power.
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FIG. 16. (Color online) An unstable asymmetric soliton of Eq. (41) with x0 = 0.45, σ = 0.0484, and μ = 0.557, N = 5.324; the asymmetry
parameter is ν = 0.131.

The numerical analysis, including both the computation of
eigenvalues for small perturbations on the basis of Eq. (24)
and direct simulations, demonstrates that all the 1D solitons
trapped in the single-well nonlinear potential are indeed stable
if the Gaussian regularization (15) is used instead of the ideal δ
function. In particular, the stability of the solution branch with
σ = 0 in Fig. 1, which is produced by the SF-only nonlinearity,
complies with the evident fact that this branch satisfies the VK
criterion. The stability of the branches for σ > 0 for relatively
small values of N , which are beneath the turning points, where
the SF term dominates, may also be explained by the VK
criterion. On the other hand, above the turning points, where
the SDF term is the dominant one due to large values of N , the
stability agrees with the anti-VK criterion, dN/dμ < 0, which
applies to solitons supported by the SDF nonlinearity [25].
In fact, such an effective switch between the VK and anti-
VK criteria at a turning point, which secures the stability of
the entire soliton branch, occurs in other systems featuring
competition between SF and SDF terms [26,30].

Dependences N (σ ) for different values of μ are displayed
in Fig. 3(a) and are compared to the dependence given by
Eq. (10), which was obtained in the exact form for the ideal δ

function and does not depend on μ. As seen in Fig. 3(a), the
largest value of the quintic SDF coefficient σcr up to which
the solitons exist in the system is close to absolute maximum,
σmax = 3/2 [given by Eq. (9)], for small μ, at which point
there are broad solitons similar to those supported by the ideal

δ function (except they are stable, in contrast to the case with
the ideal δ function). With the increase of μ, the solitons
become narrower, and σcr decreases, so that the dependence
between N and σcr displayed in Fig. 3(b) appears.

B. The single-well setting: Analytical results

The shape of the N (σ ) curves in Fig. 3(a), i.e., the fact
that at small σ one has two solitons corresponding to a
common value of μ, one with the total power N close to 1
and another with apparently larger N , can be explained by
the particular exact solutions given by Eqs. (19)–(21). Indeed,
both solutions pertain to the common propagation constant,
μb = 1/(8b2), and at small σ one has a moderate value of
the power, N

(−)
b ≈ 3π2/8, while the other features a large

power,

N
(+)
b ≈ 1/σ. (34)

Another qualitative explanation for the existence of the
upper and lower solution branches in Fig. 3(a) is offered by
the Thomas-Fermi approximation (TFA), which is an efficient
method for describing the shape of solitons supported by
the SDF nonlinearity [31,32]. In its simplest form, the TFA
neglects the second derivative in Eq. (31). For given μ > 0,
this approximation yields a pair of localized solutions, which
may be interpreted as those representing the upper and lower

FIG. 17. (Color online) An unstable antisymmetric soliton of Eq. (41) with x0 = 0.45, σ = 0.0484, and μ = 1.21, N = 13.7.
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FIG. 18. (Color online) A stable antisymmetric soliton of Eq. (41) with x0 = 0.83, σ = 0.0288, and μ = 5.04, N = 16.96.

branches in Fig. 3(a):

U (x,z) = 1√
2
√

πσ
eiμz

⎧⎨⎩
√

exp(−x2) ±
√

exp(−2x2) − 4πσμ at |x| � x0 ≡
√

− 1
2 ln(4πσμ),

exp
[ − x2

0/2 − √
2μ(|x| − x0)

]
at |x| > x0.

(35)

The second line in Eq. (35) represents spatially decaying
tails attached to the TFA-predicted core part of the soliton.
The tails are produced by the linearized version of Eq. (31),
where the second derivative is kept (see a similar combined
approximation developed for gap solitons in Ref. [32]). The
TFA given by Eq. (35) is valid under the condition that the
expression under the square root is positive at x = 0, i.e., at

μ < μ(TFA)
max ≡ (4πσ )−1. (36)

The latter condition offers a qualitative explanation of the
existence of the turning points in Fig. 3(a). Further, the TFA
makes it possible to find the asymptotic value of the total power
corresponding to the upper branches of N (μ) in Fig. 3(a):

lim
μ→0

{N (μ; σ )}TFA = 1/σ, (37)

which, incidentally, agrees with Eq. (34). An essential corol-
lary of Eq. (37) is the fact that N (μ) remains finite (does not
diverge) at μ → 0 along the upper branches in Fig. 3(a).

C. The double-well setting

The double-well configuration based on Eq. (32) is con-
trolled by three parameters, x0, σ , and N . In the limit of
σ → 0 (no SDF quintic term), this system turns into the
one considered in Ref. [20] (a similar system with a two-
component field, which demonstrates an extremely complex
picture of transitions between symmetric, antisymmetric, and
antisymmetric states, was considered in Ref. [21]). Therefore
we started the numerical analysis of the double-well setting
with small values of σ , aiming to produce new results at larger
σ .

In the simulations, symmetric and asymmetric states, with
the symmetry defined with respect to the two identical
nonlinear-potential wells, were generated using the initial
guess

{u(x)}(in)
sym,asym = P sech(x + x0) + Q sech(x − x0), (38)

with constants P = Q and P 	= Q for the symmetric and
asymmetric states. Antisymmetric states were created starting
from the input

{u(x)}(in)
antisym = P sech(qx) sin(kx), (39)

with some constants q and k.
We start by presenting in Fig. 4 examples of stable and

unstable symmetric solitons. As shown in Fig. 4, unstable
symmetric solitons spontaneously transform themselves into
asymmetric breathers trapped in a single well.

Further, examples of stable and unstable antisymmetric
solitons are displayed in Fig. 5. It is seen that even a weak SDF
term (with σ = 0.01) is able to stabilize the antisymmetric
soliton, while an unstable one spontaneously transforms into a
nearly stationary strongly asymmetric state trapped in a single
well. Asymmetric solitons may also be stable or unstable,
as shown in Fig. 6, where the unstable one transforms into a
breather which stays trapped in the original nonlinear-potential
well.

Families of stable and unstable symmetric, antisymmetric,
and asymmetric solitons are linked into a rather complex
bifurcation diagram, which is presented in Fig. 7. The left
panel of Fig. 7 demonstrates that the asymmetric soliton
family branches out from the symmetric one at a very small
value of the total power, N ≈ 1.3, and then it disappears
at N ≈ 19, merging into a common turning point of the
symmetric and antisymmetric branches. Further, it is worth
noting that the stability of the symmetric and antisymmetric
families obeys the anti-VK and VK criteria, respectively, while
the asymmetric branches may feature either type of stability.

Another adequate picture of the set of soliton families in the
double-well system is provided by the symmetry-breaking bi-
furcation diagram displayed in Fig. 8. A characteristic feature
of this picture is the loop connecting the symmetry-breaking
and symmetry-restoring bifurcations. A similar feature was
earlier found in dual-core systems carrying spatially uniform
competing SF cubic and SDF quintic nonlinearities [33]. Note
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FIG. 19. (Color online) (left) The total power vs the propagation constant N (μ) for solitons in the 2D double-well system with σ = 0.0288
and x0 = 0.83 [i.e., with nonoverlapping circles in Eq. (41)]. (right) Close-up of a region at small μ where the asymmetric branch splits off
from the symmetric one. Here and in similar figures below, the solid and dashed curves (or chains of symbols) represent stable and unstable
families of solitons, respectively. Red (light gray), blue (dark gray), and black designate symmetric, antisymmetric, and asymmetric modes,
respectively.

that the loop shown in Fig. 8 has a concave shape. For a stronger
coupling between the two wells, which corresponds to smaller
values of x0, it is expected that the loop will shrink and acquire
a convex form (see the loops in the 2D model displayed below
in Figs. 19 and 22). Eventually, the loop will disappear at still
smaller x0 [33].

The results are finally summarized in Fig. 9, which displays
stability domains for the symmetric, antisymmetric, and
asymmetric solitons in the plane of the quintic SDF coefficient
σ and the total norm N . Figure 9 demonstrates that the stability
areas for the antisymmetric and asymmetric models shrink
with the increase of the SDF coefficient σ as well as with
the decrease of the distance (2x0) between the two wells.
The latter trend is quite natural because at x0 < 1/

√
2 [see

Eq. (33)] the double-well structure turns into the single-well
one, which cannot support states different from the symmetric
ones. The former feature is natural too because the increase
of the SDF strength makes the modes broader, favoring the

FIG. 20. (Color online) The symmetry-breaking diagram ν(N ) in
the 2D double-well model (41) with σ = 0.0288 and x0 = 0.83, i.e.,
nonoverlapping circles.

simple symmetric profiles. Note that the system exhibits
bistability in the form of the overlap between the stability
regions of asymmetric solitons and those of the symmetric
and antisymmetric ones.

IV. TWO-DIMENSIONAL MODELS

A. The formulation

The 1D models considered above can be naturally extended
to 2D, similar to how the 1D system with two nonlinear
potential wells [20] was generalized into the 2D setting in
Ref. [34]. Here we model our 2D systems by

iUz = − 1
2 (Uxx + Uyy) − δ̃2D(x,y)|U |2U + σ |U |4U (40)

in the case of a single potential well and

iUz = − 1
2 (Uxx + Uyy) − [δ̃2D(x − x0,y) + δ̃2D(x + x0,y)]

× |U |2U + σ |U |4U (41)

for the double-well case. The regularized 2D counterpart of
the δ function used in these equations is defined as

δ̃2D(x,y) =
{

(πa2)−1 at x2 + y2 < a2,

0 at x2 + y2 > a2,
(42)

which satisfies the normalization condition,∫∫
δ̃2D(x,y)dxdy = 1. By means of the rescaling, we

set the regularization scale a = 1/2 in Eq. (42). We consider
cases of separated circles in Eq. (41), with x0 > 1/2, and
partly overlapping ones, with x0 < 1/2. In addition to x0,
Eq. (40) is governed by two independent parameters, σ and
the two-dimensional total power (norm),

N =
∫∫

|U (x,y)|2dxdy (43)

(or the respective propagation constant μ), while Eq. (41)
features three parameters, σ , N (or μ), and the distance
between the wells, 2x0. The asymmetry of 2D modes with
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FIG. 21. (Color online) (left) N (μ) curves for the 2D double-well system described by Eq. (41) with partly overlapping circles, with
x0 = 0.45 and σ = 0.0484. (right) Close-up of the region of small μ, where the symmetry-breaking transition from symmetric to asymmetric
solitons occurs.

respect to the two identical circles in Eq. (41) is defined as the
counterpart of the 1D definition (30):

ν=N−1
∫ +∞

−∞
dy

[ ∫ +∞

0
|U (x,y)|2dx−

∫ 0

−∞
|U (x,y)|2dx

]
.

(44)

The 2D models were investigated only in the numerical
form because an analytical approach would be too diffi-
cult in this case. Stationary solutions were constructed by
means of the Newton conjugate-gradient method [28,29]. The
imaginary-time-integration method does not converge in this
case, but we used intermediate states generated by it as an input
for the Newton method. The stability of the 2D states was tested
by means of the split-step Fourier method in direct simulations.
Results of the direct simulations were confirmed by the
computation of eigenvalues for small perturbations, which was
carried out with the help of the Newton conjugate-gradient
method and the Fourier collocation method.

B. The single-well model

Figure 10 shows curves N (μ) for solitons produced by
Eq. (40) for selected values of the quintic coefficient. In
the bottom left panel, we show a close-up of the picture
at small values of propagation constant μ, where one can
observe the transition from stable to unstable solutions. In
fact, curve (a), pertaining to σ = 0, reproduces the results
reported in Refs. [34,35], with the norm of the stable solitons
bounded from above by the collapse [13]. In this case, the
stability of the solitons is secured by the VK criterion. In
the presence of the quintic term [curves (b)–(e) in Fig. 10],
additional (upper) stable soliton branches appear which obey
the anti-VK criterion, making the situation similar to that in
1D (see Fig. 1).

Additional unstable branches specific to the 2D setting that
do not satisfy the VK criterion exist at small values of μ,
as shown in detail in the bottom left panel of Fig. 10. In
direct simulations, displayed in Fig. 11, solitons belonging to
an unstable branch at first lose a part of the norm through
the emission of radiation and later transform themselves into
robust breathers. With respect to the shape of the boundary of

the region where stable 2D solitons exist in the bottom right
panel of Fig. 10, the necessary value of the quintic coefficient
σ grows (roughly linearly) with N because the sufficiently
strong SDF quintic term is necessary to stabilize the solitons
against the collapse.

C. The double-well model

Extending the analysis to the 2D model with two regularized
δ functions, described by Eq. (41), we have found that
the model can support stable symmetric, antisymmetric, and
asymmetric states, where, as in the 1D setting, the asymmetry
is defined with respect to the two identical regularized δ func-
tions, i.e., the circles in Eq. (41). The respective asymmetry
measure ν is defined by Eq. (44).

Typical examples of symmetric, asymmetric, and anti-
symmetric solitons are displayed in Figs. 12–18. Note that
symmetric solitons may feature both single-peak and double-
peak shapes. In particular, unstable single-peak symmetric
solitons spontaneously turn into excited asymmetric solitons,
while unstable double-peak symmetric solitons radiate away
a part of their norm before turning into strongly excited
asymmetric solitons (see Figs. 13 and 14). A typical example
of the evolution of an unstable asymmetric soliton is presented
in Fig. 16, where we observe its spontaneous transformation
into a robust asymmetric breather, following its shedding off
a part of its norm with transient radiation.

The results of the numerical analysis of the 2D double-well
system are summarized in Figs. 19–22, which address the
existence of and stability of the supported solitons [represented
by curves N (μ)] and the symmetry breaking bifurcations
[represented by the ν(N ) curves] for two generic situations,
which correspond to separated circles (x0 > 1/2) or partly
overlapping ones (x0 < 1/2). In the latter case, the N (μ)
curves are similar to their counterpart in the 1D model (see
Fig. 1). In particular, different branches are stable according
to the VK or anti-VK criterion, depending on whether the SF
or SDF term is the dominant one. Collapse of 2D modes never
occurs in the presence of σ > 0.

The bifurcation loop accounting for the breaking and
restoration of the symmetry is concave for the weak coupling
between the circles (x0 = 0.83; see Fig. 20) and convex for the
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FIG. 22. (Color online) The symmetry-breaking diagram ν(N ) [the asymmetry measure ν is defined as per Eq. (44)] for the 2D
double-well system based on Eq. (41) with partly overlapping circles, with x0 = 0.45 and σ = 0.0484. The two bottom panels are
close-ups of regions where the symmetry-breaking and -restoring bifurcations (opening up and closing down of the bifurcation loop) take
place.

strongly coupled (partly overlapping) circles (with x0 = 0.45;
see Fig. 22). This observation agrees with what was found
before in the above-mentioned dual-core systems carrying
the competing SF-SDF cubic-quintic nonlinearity [33]. Note
that the concave and convex bifurcation loops correspond
to strongly differing sets of N (μ) curves, as seen from the
comparison of Figs. 19 and 21.

V. CONCLUSIONS

The first objective of this work was to address the compe-
tition of SF and SDF nonlinearities in the system where both
nonlinear terms have the same dimension (scaling behavior).
The 1D system offers a physically relevant setting for the real-
ization of such a system in the form of the combination of the
SF cubic term localized with the δ-functional coefficient and
the spatially uniform SDF quintic term. We have found, in the
exact form, the most general family of the 1D Townes solitons.
This family remains degenerate and unstable irrespective of the

relative sign between the cubic and quintic terms. However, a
weak regularization of the δ function immediately stabilizes
the solitons in the case of the competing (opposite) signs of the
SF cubic and SDF quintic terms. These results were obtained
and mutually verified in the numerical and analytical forms.
Then, the analysis was extended to the 1D system with a pair
of regularized δ functions and, eventually, to the 2D single-
and double-δ-function systems. In all the cases, stable families
of solitons have been identified.

In the 2D geometry, a remaining problem is to construct
vortex solutions. A challenging possibility is to extend the
analysis to 3D settings, which may be as physically relevant
as the BEC model.
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