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Complex structures in media displaying electromagnetically induced transparency:
Pattern multistability and competition
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Spatially periodic and localized structures in the transverse plane of a medium displaying electromagnetically
induced transparency in an optical cavity and under the action of two pumps are investigated. The system supports
a multitude of different complex spatial structures depending on the chosen initial condition. We explore regimes
of multistable patterns, filaments, stable defects, scrolling structures, nested patterns, fronts, and the spontaneous
occurrence of multiple cavity solitons. To simulate realistic conditions of operation, we replace periodic boundary
conditions with pumps of finite size. Many of the multistable features are recovered apart from the scrolling of
patterns with defects.

DOI: 10.1103/PhysRevA.90.023840 PACS number(s): 42.65.Sf, 42.50.Lc, 42.50.Dv, 42.65.Yj

I. INTRODUCTION

The formation of regular and localized structures in spa-
tially extended systems far from thermodynamical equilibrium
has been the subject of a vast amount of research in the
past two decades [1–5]. For optical systems, spatiotemporal
phenomena arise in the structure of the electromagnetic field
in the plane orthogonal to the direction of propagation as a
result of the nonlinear response of the materials to intense
laser beams and the spatial coupling provided by diffraction.
Diffraction in the paraxial approximation is described by a
transverse Laplacian operator. Particularly interesting is the
case of nonlinear materials contained in optical cavities under
the action of external pumps. In the mean-field approximation,
such systems are described by complex partial differential
equations [3,5,6] with two spatial dimensions plus time.
Stationary solutions of partial differential equations can be
seen as single points in an infinite-dimensional phase space.
The identification of families of coherent structures (or modes)
allows, however, reduction of the infinite degrees of freedom
to a finite number of relevant variables and movement within
a finite-dimensional subspace. When a bifurcation occurs,
the associated unstable trajectories move away from the
original stationary point but remain typically confined to a
lower-dimensional subspace of the fully available volume.
This subspace is attracting in the sense that trajectories starting
outside such space will converge to it, so that the degrees of
freedom outside the attractors are effectively irrelevant [7,8].
It is for this reason that it is possible to describe several
pattern-formation problems near thresholds of instability with
a limited number of families of solutions (modes). After
an instability has produced a growing disturbance from one
of the stationary modes, intrinsic nonlinearities move the
system toward a new state. In some cases, local disturbances
grow to finite amplitudes and the new state resembles a
deformation of the original structure with stable defects. In
other cases, the new structure, which can be a stationary
state or a dynamical regime (including spatiotemporal chaos),
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looks nothing like the linearly unstable deformation from
which we have started [9]. The system may evolve in entirely
new directions as determined by the nonlinear dynamics,
multistable solutions, and the initial condition. The importance
of initial conditions for the asymptotic behavior of the system is
well known from the basic concepts of nonlinear dynamics and
complex systems. In our case, sensitivity to initial conditions
means that each point in phase space may be very close to other
points with significantly different future evolutions. Thus, an
arbitrarily small perturbation of the current trajectory may
end in one of the many stable solutions. Once the evolution
has stabilized, memory of the initial condition can affect the
sequence of bifurcations of the asymptotic structure observed
when changing a control parameter.

The complex spatial structures forming in nonlinear cavities
displaying electromagnetically induced transparency (EIT)
[10] show generalized multistability of the kind described
above. In particular, it will be shown that different spa-
tially periodic structures (optical patterns) are obtained for
different initial conditions but the same parameter values.
Local perturbations lead to stable patterns with defects. When
changing a control parameter, the sequence of observed
structures including distorted, oscillating, and scrolling (DOS)
solutions displays memory of the chosen initial condition.
These effects survive the presence of optical pumps of
finite size. The simultaneous presence of a multitude of
extended and localized spatial structures, defects, disorder,
front instabilities, and filamentation provides EIT media in
optical cavities with unique flexibility and control of operation
with possible applications in optical processing of information,
novel memory functions, and self-organized compensation of
diffraction.

The paper is organized in the following sequence: the
model and associated equations are discussed in Sec. II
along with the stationary solutions and their stability anal-
ysis. Section III describes the variety of solutions obtained
by using different initial conditions. We then describe the
spontaneous appearance of a cavity soliton gas in Sec. IV,
while the effects of the finite pump are presented in Sec. V.
Conclusions and topics for future research are discussed
in Sec. VI.
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FIG. 1. (Color online) (a) The cavity configuration with the
three-level atomic medium and the holding EI and coupling E2

beams. (b) The � atomic scheme with two ground states |1〉, |2〉,
and a single excited level |3〉.

II. THE MODEL

The system of interest is a Fabry-Perot-type cavity filled
with three-level atomic vapor (for example, Rb atoms) in a �

configuration and under the action of two optical pumps. The
schematic representation of the cavity and the configuration of
atomic vapor are shown in Fig. 1. The injected field EI (holding
beam) is detuned by � from resonance of the atomic transition
|3〉 → |1〉, while the coupling beam E2 is kept at resonance
with the transition |3〉 → |2〉. The cavity mirrors resonate the
field E which is detuned from the injection EI by θ . In the
present model, the field E2 is not resonated in the cavity,
which is realistic if the atomic frequencies are well separated.
Many EIT experiments, however, use the ground states of alkali
atoms with a small frequency difference (few GHz) between
the two optical fields. In such cases, polarizing beam splitters
can be used to introduce orthogonal polarizations so that the
coupling beam E2 is not oscillated in the cavity [11].

The mean-field equation for a beam propagating in the �

medium inside the optical cavity of Fig. 1 is [10]

∂tE = EI − (1 + iθ )E − 2iCρ13 + i∇2E, (1)

where E is the complex intracavity field, EI is the normalized
amplitude of the pump field (considered to be a real function
without loss of generality), θ is the detuning between the cavity
resonance and the frequency of the injected pump beam, and
ρ13 is the off-diagonal density-matrix element proportional to
the field amplitude E and the complex susceptibility χ via the
relation

ρ13 = χE = �|E2|2(|E2|2 + |E|2 − i�)

(|E2|2 + |E|2)3
E. (2)

C is the cooperative parameter directly proportional to the
atomic density na through

2C = naμ
2kL

2�γ ε0T
, (3)

where μ is the atomic transition dipole moment, k is the wave
number of the field, L is the length of the cavity, γ is the

FIG. 2. (Color online) (a) The imaginary (solid line) and real
(dashed line) parts of the complex susceptibility χ for |E|2 = |E2|2 =
1. (b) Bistability in the input and output intensities for � = 0.2,
θ = −1, |E2|2 = 1, and 2C = 20.

atomic linewidth, ε0 is the permittivity of free space, and T is
the cavity mirror transmittivity. The diffraction term is given by
the Laplacian operator in two transverse dimensions and time
is normalized to the photon lifetime. Details of the derivation
of the diffractive Maxwell-Bloch equation (1) for the case of
a two-level medium are provided in Refs. [6,12]. Equation (1)
is a generalization of the model introduced in Ref. [10] since
in the evaluation of ρ13 we used a less stringent condition
of |�|2 � |E2|2 instead of |�| � |E2|2. The bistable nature
of the light-atom interaction and the capability of the system
for displaying EIT in the present model (1) are extended to a
wider parameter space than that of [10] [see, for example,
Figs. 2(a) and 2(b) where the complex susceptibility and
the input-output curve are displayed, respectively]. Note that
the detuning parameter � is considered here to be positive,
indicating the self-focusing regime. The homogeneous steady
states are given by the implicit complex equation

EI = (1 + iθ )Es + 2iC�|E2|2(|E2|2 + |Es |2 − i�)

(|E2|2 + |Es |2)3
Es, (4)

where Es is the steady value of the intracavity complex field.
The linear stability analysis of the homogeneous steady-state
solutions determines the Turing instability domain where they
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FIG. 3. Turing instability domains for pattern formation of wave
vector K vs (a) increasing 2C and (b) increasing stationary intensities.
Parameter values are � = 0.2, θ = −1, |E2|2 = 1. (a) |Es |2 = 1
(solid line), |Es |2 = 1.1 (dashed line), and |Es |2 = 1.2 (dotted line).
(b) 2C = 19 (solid line) and 2C = 20 (dashed line). The line traced
by the small circles determines the wave vector of largest growth for
2C = 20.

bifurcate to patterned structures. The characteristic equation
for the critical wave vector K of the patterned structures is
obtained from linear stability analysis calculations and is given
by

K2 = −
[
θ + 2C�|E2|2(|E2|2 − |Es |2)

(|E2|2 + |Es |2)3

]

±
{[

2C�|E2|2|Es |2
(|E2|2 + |Es |2)3

]2 [
4 + 9�2

(|E2|2 + |Es |2)2

]

−
[

1 + 2C�2|E2|2(|E2|2 − 2|Es |2)

(|E2|2 + |Es |2)4

]2
}1/2

. (5)

For example, for the set of parameter values chosen in Fig. 2(b),
the dashed line indicates the region where the homogeneous
solution leads to patterns, while in Fig. 3(a) the Turing
bifurcation point occurs at 2C = 18.8 for Is = |Es |2 = 1. The
range of unstable wave vectors is displayed in Fig. 3(b) where
the entire region enclosed in the curves is Turing unstable. In

Fig. 3(b), we also display the line corresponding to the wave
vector with maximum growth rate,

K2
max = 2C�|E2|2(|Es |2 − |E2|2) − θ (|Es |2 + |E2|2)3

(|E2|2 + |Es |2)3
. (6)

It is obvious that for the case of Is = |Es |2 = |E2|2, one obtains
a straight line at Kmax = √−θ that is not displayed in Fig. 3(a).

Although the fundamental mechanism of spatial coupling
in optics is diffraction instead of diffusion, the nature and
character of the pattern-forming instabilities displayed here
are the same as those introduced by Turing in 1952 [13], as
discussed in Ref. [14].

III. MULTISTABLE SPATIAL STRUCTURES

We have numerically integrated Eq. (1) by using a split-step
method where we separate the algebraic and Laplacian terms
and solve the time derivative term by a Runge-Kutta algorithm
and diffraction term by fast Fourier transforms. Simulation
grids up to 256×256 points have been used while changing
the control parameter 2C that can be modified experimentally
by increasing or decreasing the atomic density na . In what
follows, three regimes based on different initial values of
the control parameter are discussed, each of them displaying
separate characteristics for the observed sequence of solutions.
Parameter values are kept fixed at � = 0.2, θ =−1, |E2|2 = 1,
and |Es |2 = 1 unless stated otherwise.

A. Stable periodic patterns

The bifurcation point of the homogeneous solution to
patterns in Fig. 3(a) is 2C = 18.8. In the first scan, the initial
value of 2C is selected below the bifurcation point. This leads
to the sequence of stable patterns changing from honeycombs
to rolls and from rolls to spontaneous cavity solitons towards
the end of the instability interval. Stable honeycombs start at
2C = 18.8 and end at 19.8, stable rolls start at 2C = 19.9
and end at 21.61, and cavity solitons are observed between
2C = 21.62 and 21.6265. Examples of these patterns along
with their far-field images are shown in Fig. 4 for 2C = 19.6
[Figs. 4(a) and 4(b)], 2C = 21.0 [Figs. 4(c) and 4(d)], and
2C = 21.62 [Figs. 4(e) and 4(f)].

The sequence of the patterns and the associated intensities
are shown in Fig. 5 versus the corresponding input intensity
|EI |2.

B. Distorted and scrolling structures

We turn our attention to a starting point of the simulations
just after the Turing instability point (2C = 18.9 for our
selected parameter values). A graph showing the sequence
of different transverse structures and their intensities versus
changes of the control parameter 2C is shown in Fig. 6. Struc-
tures with different characteristics from the regular patterns
described above are observed from the very beginning of the
scan. The black squares in Fig. 6 correspond to honeycomb
patterns with stable defects that alter their spatial periodicity.
For example, in Fig. 7 we present a stable honeycomb structure,
distorted by defects, and its far-field distribution obtained by
starting from random initial conditions. In general, defects
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FIG. 4. (a) Stable honeycomb structures for 2C = 19.6, (c) stable
roll patterns for 2C = 21.0, and (e) cavity solitons for 2C = 21.62,
with (b), (d), and (f) their far-field images, respectively. Note that in
(b), (d), and (f), the central point has been removed to increase the
clarity of the images.

appear when there is more than one attracting solution in
the dynamics of a given system. If the initial condition puts
the spatial configuration of the field somewhere between the
attracting solutions, stable fronts and defects between the

FIG. 5. (Color online) The instability domain of the 2C pa-
rameter vs the input intensity (lower part and left axis) and the
corresponding maximum intensities for different patterns (upper part
and right axis).

FIG. 6. (Color online) The instability domain of the 2C pa-
rameter vs the input intensity (lower part and left axis) and the
corresponding maximum intensities for different patterns (upper
part and right axis) when starting at 2C = 18.90. DOS: distorted,
oscillating, and scrolling.

two patterns can form, as described, for example, in Ref. [1]
(Chap. 7). In the cases where the two attracting solutions are
the same pattern but with different wave vectors, the formation
of defects is expected, while for the case of two different
patterns associated to the attracting solutions, nested patterns
can form [15], as discussed in the next section.

At first, transverse patterns with defects are stationary but
then they unlock to form scrolling structures that move across
the transverse space when increasing 2C. Scrolling structures
have been studied in Ref. [16], where a constant velocity
of scrolling has been observed in a variety of simulations
of optical systems. In Fig. 8(a), we show the frequency of
the scrolling motion (dotted line) and the oscillation of the
maximum intensity (solid line) that has a frequency around
eight times larger than that of the scrolling motion. When
increasing 2C further, the scrolling speed increases [see
Fig. 8(b)] until locking takes place again. Two ranges of
scrolling structures have been found in the simulations of
Fig. 6, from 2C = 18.88 to 18.89 and from 2C = 18.92 to
19.04. When further increasing the control parameter 2C,

FIG. 7. (Color online) (a) The distorted honeycomb pattern (left)
and its far-field image (right) for 2C = 18.84. The yellow circles
identify the position of the defects. Note that these patterns with
defects maintain their spatial shape basically unchanged when turning
into scrolling structures.
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FIG. 8. (Color online) (a) Oscillation of the maximum intensity
of a scrolling pattern with defects (solid line) and in the central point
of the structure (dotted line) for 2C = 19.0. (b) Speed of the scrolling
patterns vs 2C.

regular honeycombs are retrieved, although with different
orientation and slightly different wave number than those
described in Sec. III A. When these become unstable, roll
structures are formed but with an intensity and a wave vector
widely different from those observed in Sec. III A. This is not
surprising since the number of stable wave vectors increases
with 2C, as shown in Fig. 3. When roll patterns finally lose
stability, the regime of soliton gas has a stability range and
intensity that is different from what has been observed above,
thus confirming the sensitivity of the observed structures and
bifurcations upon the initial conditions of the scan.

C. Bistable patterns and wavy rolls

By setting the initial value of the control parameter 2C to
19.6 and scanning the Turing unstable interval up and down,
further dependencies from the initial conditions emerge. We
are now in a regime of bistable roll and honeycomb patterns.
Stable fronts separating the two patterns can develop during
the temporal evolution from random initial conditions. In the
simulations presented here, we find rolls surrounded by (nested
in) honeycombs in the 2C range of 19.55–19.75. Coexisting

FIG. 9. (a) Stable fronts separating roll patterns nested in a
honeycomb structure and (b) their far-field image for 2C = 19.6.

honeycomb and roll patterns in nonlinear optics were first
described in Ref. [17], although bistable hexagons and rolls
have been investigated much earlier [1,15]. A typical example
of such transverse structure is shown in Fig. 9. Note that nested
patterns have high intensity values at the location of the fronts.

In Fig. 10, we show that when decreasing 2C from the
honeycomb-roll structure, the sequence of patterns ends with
stable honeycombs at 2C = 18.6, i.e., below the instability
of the homogeneous solution at 18.8. When increasing 2C

from coexisting patterns, the honeycomb domain shrinks
until wavy roll structures occur up to 2C = 19.95, where
stable rolls finally set in. An example of a typical wavy roll
structure is shown in Fig. 11. An important and interesting
point, demonstrating again that the nature of the sequence
of solutions depends on the chosen initial condition, is that
the 2C-increasing scan of Fig. 10 does not end with the
spontaneous formation of cavity solitons as observed, for
example, in Figs. 5 and 6. In scans with increasing values
of 2C, the wavelength of the roll pattern is selected after
the instability of the honeycomb or the growth from the
unstable homogeneous state. This means that the roll patterns
of Figs. 5, 6, and 10 have wave vectors that are different
from that of maximum growth. When approaching the end of

FIG. 10. (Color online) The sequence of patterns in input in-
tensity vs 2C space and the corresponding intensities for different
patterns (right axis). These were obtained for an initial value of
2C = 19.60.
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FIG. 11. (a) Wavy roll pattern and (b) the corresponding far-field
image for 2C = 19.9.

the Turing unstable regions for large values of 2C, straight
roll structures can encounter different instabilities that are
wave-vector dependent, such as Eckhaus, cross-roll, zig-zag,
and skewed-varicose instabilities [1,4,18]. Depending on the
selected wave vector of the roll structure of a particular scan,
straight rolls may remain stable until the end of the Turing
region (see Fig. 10) or lose their stability to, for example,
gases of cavity solitons (see Figs. 5 and 6), as discussed in
the next section. Although there are similarities with what is
observed in standard models such as Swift-Hohenberg [1,4],
Brusselator [1,19], and Lugiato-Lefever [6], we note that
in our case, the stable homogeneous state for large 2C is
attained through a saddle-node bifurcation at K = 0 instead
of a Turing mechanism at finite wave vector. We note that
different instabilities for the same pattern with different wave
vector are not limited to the roll structures, as discussed, for
example, in Ref. [4] and in Ref. [20] for nonlinear optics.
There are detailed studies that show wave vector dependent
instabilities can also happen for states that are periodic in two
or more extended variables such as two-dimensional lattice
states; see, for example, Secs. 4.2 and 4.3 of Ref. [4] for
discussions on stability balloon.

The differences among the wave vectors obtained in the
three different scans presented above can be appreciated
in Fig. 12. These curves confirm that the presence of pat-
tern bistability and stable defects prevent the system from
relaxing to the structure of maximum growth rate when
changing a control parameter that simulates experimental
realizations.

D. Spontaneous formation of a gas of cavity solitons

An intriguing feature of the transverse solutions displayed
by EIT media in optical cavities is the spontaneous formation
of a gas of cavity solitons for large values of the control
parameter 2C as observed in Figs. 5 and 6. When adiabatically
following the branch of the roll solutions, sudden instabilities
perpendicular to the stripe structure occur. These instabilities
are referred to as cross-roll instabilities and lead, in general,
to the stabilization of roll patterns perpendicular to and with
a larger wave vector than the original structure [18]. In our
case, large wave-vector rolls are unstable and one observes a
transient formation of distorted hexagons (sometimes rhom-
boids). Distorted hexagonal periodic structures are unstable in
this regime. The low-intensity homogeneous state is instead
stable, leading to the spontaneous formation of intensity

FIG. 12. (Color online) Deviations of the wave vectors from that
of maximum growth as a result of starting the scan at different
distances from the threshold. Note that these values are for pure
patterns, i.e., stable honeycombs forming before 2C = 20 and rolls
thereafter. The missing parts in the curves are related to distorted
honeycombs, bistable patterns, and wavy rolls.

peaks that weakly interact with each other in a gas of cavity
solitons. The instability mechanism is illustrated in Fig. 13,
where the roll pattern is shown to lose stability to a distorted
hexagonal structure with a saddle stability and that later leads
to the formation of the soliton gas. The sequence of events
is also displayed in the far-field images of Fig. 13 for clarity.
During the transition from rolls to cavity solitons, considerable
variations of the maximum and minimum intensities are
observed. Note also that the final number of cavity solitons
is considerably smaller than the number of peaks of the
unstable distorted hexagonal structure. By further increasing
the control parameter 2C, one observes a progressive reduction
in the number of solitons in the gas. Unlike the formation
process, which is accompanied by the merging of unstable
hexagonal pattern peaks, the disappearance of cavity solitons
(CSs) occurs for individual CSs in the gas. Finally, the last
cavity soliton disappears and the stable homogeneous state is
recovered. Note that the CS merging process is intrinsically
associated to dissipation of energy since in the presence of
conservation, solitons travel through each other or form bound
states [21].

As the cavity soliton gas loses its peaks, the peak intensity
of the solution also reduces along with an increase in the
minimum intensity value. However, the minima of the CS
intensity remains well below the intensity of the homogeneous
state.

It is interesting to see what happens when decreasing the
control parameter 2C starting from a soliton gas state. As
shown in Fig. 14, one observes first an increase in the number
of cavity solitons and then the appearance of filaments until the
transverse space is covered by almost periodic structures made
of filaments. Note that filament structures are bistable with
regular rolls and further increase the number of multistable
states of the EIT system.

Finally, in Fig. 15 we show the great variety of possible
transverse structures that can be observed when changing the
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FIG. 13. Spontaneous formation of a gas of cavity solitons. We
start from (a),(b) a roll solution, and then (c),(d) cross an unstable
distorted hexagonal pattern to finally reach (e),(f) the stable cavity
soliton gas. Parameter 2C = 21.62.

control parameter 2C and the selected initial condition in
an absorber close to EIT in a cavity. It is evident that the
effect of the initial condition includes the range of stability of
pattern solutions, the presence or absence of stable defects, the
appearance of special structures such as wavy rolls, filaments,
or spontaneous cavity solitons, the onset of scrolling patterns
and the overlap of two distinct pattern solutions. We note that
this rich variety of structures and behavior is not restricted to
optics but is a universal feature of spatiotemporal nonlinear
systems and has been observed, for example, in models for the
calcification of the heart tissue [22].

FIG. 14. Formation of filaments from stable cavity soliton gas by
decreasing the control parameter. (a) 2C = 20.88, (b) 2C = 20.69,
and (c) 2C = 20.65.

FIG. 15. (Color online) Different progression of solutions as a
consequence of selecting different initial conditions. The structures
are stable honeycomb, stable roll, cavity solitons, distorted honey-
comb, scrolling honeycombs, coexisting roll-honeycomb, and wavy
rolls, respectively. Dashed arrows show the threshold for the patterns
of the type which solid and longer arrows are pointed at. The sequence
of scan in 2C for each set is shown by the arrows connecting the initial
value, either from noise (points on the horizontal axis) or by using
the memory of the last solution of a branch, to the set of solutions
in branches. Note that cavity solitons are in a regime where the
homogeneous background is stable, as seen from the right lowermost
sequence of solutions, which starts from noise and shows the stability
of the homogeneous branch up to 2C = 20.89, where a saddle-node
bifurcation occurs.

IV. FINITE-SIZE INPUT PUMP

To understand the physical relevance in optics of the
multistable solutions described in the previous section, it
is important to investigate the effect of periodic boundary
conditions used in the simulations. This can be properly done
by comparing the previous results with those obtained in
simulations with an input pump PI (r) of radial shape and finite
size. This makes the situation closer to possible experimental
realizations. In order to maintain a large aspect ratio in the
transverse plane, we have used a hyperbolic tangent profile
which simulates a flat-top injected beam with rapidly vanishing
tails,

PI (r) = EI

2
{1 − tanh[σ (r − r0)]}, (7)

where σ and r0 regulate the size of the tail and flat part
of the pump, respectively. PI (r) replaces EI in Eq. (1).
A grid of 128×128 points and size of 20λc is used, al-
though checks on a 256×256 grid have been performed
too.
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FIG. 16. Examples of transverse structures with a finite pump size
with σ = 1.67/λc and r0 = 9λc. (a) Honeycomb with defects (2C =
18.95), (b) coexistent honeycomb and roll structures (2C = 19.6),
(c) filaments (2C = 20.50), and (d) gas of cavity solitons
(2C = 21.55).

All features described in Sec. III have been replicated in
the simulations with finite-size pumps apart from the scrolling
structures with defects. Of course, the location of bifurcations
and the nature of the asymptotic solution changes with the
values of σ and r0, i.e., the size and shape of the input pump,
but the periodic, aperiodic, and localized structures displayed
in Fig. 15 have found a counterpart in the simulations with
circular injection. For example, Fig. 16 shows patterns with
defects, fronts between rolls and honeycombs (see [15] for
a roll-hexagon structure with circular boundaries), filaments,
and cavity soliton gases.

Of particular importance for our investigation is the
robustness of the coexistence of rolls and honeycomb patterns.
Figure 16(b) shows an example of stable roll patterns coexist-
ing with honeycomb structures in the presence of a finite-size
injected pump. The introduction of two new parameters in the
pump specification puts further emphasis on the crucial role of
initial conditions in determining the final solutions and their
sequence from the simple Eq. (1) because of the generalized
multistability of structures.

Differing from other multistable structures, the spontaneous
scrolling motion of distorted patterns disappears as soon as one
employs a finite pump size. The defects which are intrinsic
to scrolling strictures [16] are instead a robust feature that
survives the external imposition of circular symmetry, as
demonstrated in Fig. 16(a).

V. CONCLUSION

Complex and multistable spatial structures forming in the
self-focusing regime of a cavity close to EIT are discussed. The
multistability of the model is explored by putting emphasis on
the importance of initial conditions. Particularly, three routes
of solutions are studied by numerical simulations, proving
unique properties for each. It is seen that the selection of
initial value for the control parameter can affect the range of
pattern solutions, the presence or absence of specific patterns,
and their behaviors. We have also investigated nested patterns
formed of stable rolls and honeycomb structures separated
by stable fronts. Wave-vector-dependent roll instability is the
mechanism responsible for the spontaneous formation of a
gas of cavity solitons. Finally, the homogeneous pump has
been replaced with a finite-size injection to remove the effect
of periodic boundary condition and check the robustness of
the multistable solutions. All survived, showing their physical
relevance in experimental conditions, with the exception of
distorted scrolling patterns.

The multistability and rich variety of solutions are not a
consequence of the specific selection of the parameters that
have been kept at fixed values, i.e., �, θ , |E2|2, and |Es |2.
We expect transverse structure multistability and dependence
of the scans upon initial conditions over wide ranges of these
parameter variations too. In particular, we note that � controls
the ratio of absorption versus dispersion in the EIT system.
Its variation can be critical in the nature and bifurcations of
the spatial structures observed. The generalized multistability
observed here is a consequence of the feedback provided
by the cavity mirrors and is expected to affect the output
of the system even when medium propagation effects are
taken into consideration. The propagation of light in media
displaying EIT without a cavity leads to manipulation of
the susceptibility in momentum space, slow light, and even
elimination of diffraction [23]. Coupling these features with
our transverse cavity effects may offer a flexibility of operation
that is unprecedented in nonlinear optical devices.

Finally, the onset and interaction of localized solutions such
as cavity solitons and filaments in the EIT model appear to
be different from what is observed in typical optical pattern
formation with third-order and second-order nonlinearities.
The transition from cavity solitons to filaments, the long-range
interaction of the solitons, and the processes of control and use
of localized solutions in photonic devices that display EIT will
be the subject of future communications.
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