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Phase dynamics in vertical-cavity surface-emitting lasers with delayed optical feedback and
cross-polarized reinjection
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We study theoretically the nonlinear polarization dynamics of vertical-cavity surface-emitting lasers in the
presence of an external cavity providing delayed optical feedback and cross-polarized reinjection. We show that,
far from the laser threshold, the dynamics remains confined close to the equatorial plane of a Poincaré sphere
with a fixed radius. It entails that the evolution of the system is described by two phase variables: the orientation
phase of the quasilinear polarization and the optical phase of the field. We explore the complex modal structure
given by the double reinjection configuration and how it evolves between the cases of single cross-polarized
reinjection and single optical feedback, hence disclosing the relationship with the Lang-Kobayashi model. We
also reinterpret the square-wave switching observed by J. Mulet et al. [Phys. Rev. A 76, 043801 (2007)] in terms
of phase kinks.
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I. INTRODUCTION

Vertical-cavity surface-emitting lasers (VCSELs) possess
several advantages compared to conventional semiconductor
edge-emitting lasers. The former are intrinsically single-
longitudinal-mode devices, which ensures mode-hopping-free
operation, and they exhibit a lower threshold with respect to
the latter. The circular aperture of the VCSELs induces a high
beam quality compared to the strongly astigmatic output of
edge emitters, thus enabling more efficient coupling of light
into optical fibers. In addition, VCSELs can be tested and
operated on the wafer, thus increasing the production yield
and reducing fabrication costs.

Vertical cavity lasers of large transverse dimensions may
present rich spatiotemporal transverse dynamics [1–3], which
can be harnessed, for instance, to create transverse localized
structures [4,5]. However, such complexity can be avoided
by sizing the VCSEL transverse section down to a few
micrometers, thereby allowing for a single-transverse-mode
emission.

On the other hand, VCSELs exhibit a nearly degenerate po-
larization orientation owing to their almost perfect symmetry
around the cavity axis. Usually, the two polarization modes
are aligned along the [1 1 0] and the [1 − 1 0] crystallographic
axes, although some randomness exists due to the presence
of hardly controllable strain [6]. In addition to the complex
problem of the elasto-optic effects [7], the application of a
voltage to the laser diode can also induce anisotropies via
an electro-optic effect [8]. The existence of such favored di-
rections is sufficient to weakly pin the polarization orientation
and to define two optical modes having slightly different losses
and frequencies as a result of residual anisotropies, which are
termed dichroism and birefringence of the cavity.

These two polarization modes share an identical transverse
spatial profile and the same carrier reservoir; thus their
coupling leads to complex polarization dynamics. These
devices are prone to display polarization switching [9–11]
accompanied, in some cases, by polarization bistability or even
by regimes where the polarization of the output oscillates in
time [12]. In addition, the quasidegeneracy of the orthogonal

polarization states enables efficient cross-gain modulation
when the device is used as an optical amplifier.

Such peculiar properties render VCSELs promising devices
for implementing useful dynamics by taking advantage of
their polarization degree of freedom [13]. When VCSELs
are subject to optical feedback, the polarization stability is
affected, and polarization dynamics appears even in the case of
perfectly isotropic feedback [14]. Polarization-rotated optical
feedback, where the two linearly polarized (LP) components,
LP-x and LP-y, are fed back after the LP-x component is
converted into the LP-y component and vice versa, induces a
regular polarization dynamics which can be as fast as ∼9 GHz
[15,16]. Such symmetrical polarized cross reinjection was
found to induce waveforms ranging from square waves to
sinusoidal oscillations.

Asymmetrical cross-polarization reinjection (XPR), where
a single polarization is fed back after being converted into the
orthogonal one, was also shown to promote the occurrence of
square-wave switching [17] between orthogonal polarizations
with a repetition period close to twice the reinjection delay.
The quasidegeneracy of the VCSEL polarization modes allows
us to find rather easily this regime, which also exists in
edge-emitting devices [18] for higher values of the XPR rate.
A few years ago, some of us proposed to combine XPR
with polarization selective optical feedback (PSF) in order to
achieve passive mode locking in VCSELs [19,20]. Recently,
we have also demonstrated that PSF can be used to tune and
control the existence of the square-wave switching generated
by XPR [21].

However, VCSELs must be described by a relatively
high dimensional dynamical system that would consider the
dynamics of the two polarizations as well as their interplay
for the two carrier reservoirs with opposite spin orientations.
In addition, the dynamics in the presence of multiple delays
is known to be particularly complex [22–25], although it is
known that it can have a broad range of applications, e.g., in
climatology [26]. Recently, the influence of multiple delays
has been studied in optics as demonstrated in the case of
the double-filtered feedback configuration [27,28] or in the

1050-2947/2014/90(2)/023838(12) 023838-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.76.043801
http://dx.doi.org/10.1103/PhysRevA.76.043801
http://dx.doi.org/10.1103/PhysRevA.76.043801
http://dx.doi.org/10.1103/PhysRevA.76.043801
http://dx.doi.org/10.1103/PhysRevA.90.023838


J. JAVALOYES, M. MARCONI, AND M. GIUDICI PHYSICAL REVIEW A 90, 023838 (2014)

temporal encoding of spiral defects [29]. The VCSEL intrinsic
dynamic, in addition to the presence of two different time
delays, renders the analysis a formidable problem, and a
reduction to a lower-dimensional system as presented, for
instance, in Ref. [30] for a solitary VCSEL close to its lasing
threshold would be highly beneficial.

In this paper we show that, far from the onset of laser
emission, the dynamics of the VCSEL remains confined close
to the equatorial plane of a Poincaré sphere with a given
radius. This allows us to decouple the relaxation oscillation
of the total emitted power as well as the fluctuations in the
ellipticity of the emitted light from the phases dynamics of the
vector state on the Poincaré sphere. We reduce the dynamical
system describing the polarization evolution to a simplified
one having only two phase variables: the orientation phase of
the quasilinear polarization and the optical phase of the field.

We believe that such a phase model and the general
methodology employed here can be useful to harness the phase
and orientation dynamics of VCSEL far from threshold, which
is of fundamental importance for most VCSEL applications.
Indeed, such a reduction not only allows simplifying the
analytical and numerical studies but may also be useful for
getting insight into future applications: while optical infor-
mation is usually encoded in binary levels of light intensity,
next-generation communication systems will also process
the phase and the polarization data. Here, the simplicity of
the phase model allowed us to explore the complex modal
structure given by the double-feedback configuration and also
to reinterpret the square-wave switching dynamics [19,20,31]
as polarization orientation kinks.

This paper is organized as follows. In Sec. II we recall
the basis of our model, and we fix the order of magnitude
of the parameters for which our analysis applies. Section III
is devoted to the phase reduction, and we discuss the modal
structure and the square-wave switching dynamics in Sec. IV.
Perspective is given and conclusions are drawn in Sec. V.

II. THE MODEL

We base our theoretical analysis on the so-called spin-flip
model (SFM) [32], suitably modified for incorporating the
effects of PSF and XPR. We assume that the LP-y mode is fed
back into itself (PSF) and cross reinjected into the LP-x mode
(XPR). While the most direct way to incorporate XPR and
PSF would be in terms of the linearly polarized components
of the field, X and Y , the derivation of the phase model is
more natural in the circular basis. The SFM model expressed
in circular component reads

Ė± = (1 + iα) (G± − 1) E+ − zE∓ + C±, (1)

T Ḋ± = 1 + P − D± − G± |E±|2 ∓ γJ (D+ − D−) , (2)

where E± are the amplitudes of the left- and right-circular
components of the field and D± are the scaled carrier densities
in the two spin channels. In Eqs. (1) and (2), time has been
scaled to the cavity decay rate κ , while T = κ/γe represents the
scaled carrier lifetime and γJ is the spin-flip carrier relaxation
rate normalized to γe. The rate of carrier density injected
into the active region above threshold is represented by P . In
addition, α stands for the linewidth enhancement factor [33],

and the complex parameter z = γa + iγp is composed of the
linear dichroism γa and the birefringence γp. We introduced
the effect of ultrafast gain saturation in the expression of the
gain as

G± = D±

(
1 − εg

2
|E±|2

)
, (3)

with εg being the parameter of self-saturation. Since each
component of the field interacts with only one of the two spin
channels, cross saturation between E+ and E− does not exist.
In the case where the Y component is being fed back at the
complex rate η exp (−i�) after a time τf and cross reinjected
into the X polarization at a rate β exp (−ia), the expression
for C± reads

C± = β

2i
e−ia(Eτr+ − E

τr− ) ± η

2
e−i�(E

τf

+ − E
τf

− ). (4)

A. Parameter range

The polarization-switching mechanisms in the SFM have
been exhaustively analyzed in the literature [30,34]. Here, we
consider the case where the VCSEL may display a large range
of bistability close to threshold, and as such we consider small
dichroisms and birefringences, typically of the order of a few
gigahertz. To fix the ideas, we take γp = +5.24 × 10−2, which
means that we denote by LP-x the reddest mode and γa = 0.
In addition, we assume standard values for Henry’s factor,
α = 2, a normalized carrier lifetime T = 500, and atypical
normalized spin-flip rate γs = 75. The other values of the
parameters are η ∼ 0.05, β ∼ 0.05, εg = 0.02, and P = 10,
and the variance of the Gaussian white noise used in the
numerical simulations is 2 × 10−2.

The presence of two kinds of feedback with possibly
dissimilar delays renders the analysis of Eqs. (1) and (2)
difficult. However, far from threshold, one expects the dy-
namics that involve the relaxation oscillations between the
total emitted power and the carrier reservoir to play only
a minor role. Hence, in the following we will assume a
large bias current is P � 10, which typically corresponds to
relaxation oscillations of the order of 10–15 GHz. In realistic
experimental situations, the strong damping of the relaxations
oscillations makes the laser almost a class-A system, although
such definition would be meaningful only for a monomode
system. Here, the standard “unsaturated” rate equations and
the bare SFM do not reproduce fairly this regime of strong
damping, which explains why we included in our analysis
the nonlinear saturation in Eq. (3). It is worth noting that a
phase reduction completely identical to the one we discuss
in this paper is possible without relying on gain saturation
but for unrealistic parameter ranges, i.e., P ∼ 100, which
corresponds to a device biased one hundred times above
threshold. Several physical effects can contribute to the gain
compression parameter εg , for instance, spatial hole burning in
the transverse plane of the VCSEL, spectral hole burning due
to saturation of the individual intraband transitions, and carrier
heating. In the following, we assumed that εg ∈ R, which is
consistent with a situation dominated by spatial hole burning,
i.e., interband saturation.
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FIG. 1. (Color online) Angular representation of the VCSEL
dynamics on the Poincaré sphere.

III. PHASE REDUCTION

Far from threshold, the fluctuations of the total intensity
die out rapidly, and the dynamics is confined on a Poincaré
sphere with a given radius. Without external perturbations,
one may not expect any complex residual dynamics since
the reduced dynamics is only two-dimensional. It consists
of the polarization angle 
 and the ellipticity parameter θ , with
the optical phase being decoupled from the rest (see Fig. 1). In
addition, strongly elliptical states would incur a large energetic
penalty due to the induced imbalance between the two carrier
reservoirs. This further confines the residual dynamics to the
vicinity of the equatorial plane, i.e., θ ∼ π/4. As such, the
dynamics takes place over an invariant circle corresponding to
the intersection between the equatorial plane and the Poincaré
sphere.

Notwithstanding, the coherent delayed retroactions im-
posed by the feedback terms in Eq. (4) couple back the
optical phase into the dynamics. As such, our reduced model
will consist of two coupled phases, i.e., a “vectorial phase”
for the orientation of the quasilinear polarization and the
optical phase of the field. It is worthwhile to notice that
these two phases have very different natures. While the
optical phase’s precise value is irrelevant due to the phase
invariance in an autonomous system, the orientation phase
defining the polarization direction is well fixed by the pinning
imposed by the dichroism and the birefringence of the VCSEL
cavity.

We now detail how the SFM with optical feedback and cross
reinjection can be reduced to such a phase model far from
threshold. We start by separating the modulus and phase of
the circular components by defining E± = R±

√
2 exp (iψ±),

which yields, with 
 = ψ+ − ψ−,

Ṙ+ = (N + n − 1) R+ − γaR− cos 
 − γpR− sin 


− εg (N + n) R3
+ + M+, (5)

Ṙ− = (N − n − 1) R− − γaR+ cos 
 + γpR+ sin 


− εg (N − n) R3
− + M−, (6)

ψ̇+ = α (N + n − 1) + γa

R−
R+

sin 
 − γp

R−
R+

cos 


−αεg (N + n) R2
+ + F+

R+
, (7)

ψ̇− = α (N − n − 1) − γa

R+
R−

sin 
 − γp

R+
R−

cos 


−αεg (N − n) R2
− + F−

R−
, (8)

T Ṅ = 1 + P − N − (N + n) R2
+ − (N − n) R2

−

+ εg[(N + n) R4
+ + (N − n) R4

−], (9)

T ṅ = −γsn − (N + n) R2
+ + (N − n) R2

−

+ εg[(N + n) R4
+ − (N − n) R4

−], (10)

where we define the average carrier density as N =
(D+ + D−) /2 and the imbalance between the two channels as
n = (D+ − D−) /2, with γs = 1 + 2γj . The expressions for
the feedback terms M± and F± are cumbersome and can be
found in the Appendix. As previously mentioned, we expect
the dynamics of the field to be restricted to the vicinity of
the surface of the Poincaré sphere when the VCSEL is biased
far from threshold. This can be evidenced by defining the
sphere radius I = (R2

+ + R2
−)/P normalized by the intensity

of the solitary laser. We also introduce the ratio of the
two circular components, which is a measure of the degree
of ellipticity θ = arctan (R−/R+); hence R+ = √

IP cos θ ,
and R− = √

IP sin θ . We can relate the left (right) circular
components E− (E+) in terms of the Stokes coordinates
(S0,S1,S2,S3) as described in Fig. 1 as

S0 = |E−|2 + |E+|2 = 2IP, (11)

S1 = 2Re(E�
−E+) = S0 sin(2θ ) cos 
, (12)

S2 = −2Im(E�
−E+) = S0 sin(2θ ) sin 
, (13)

S3 = |E−|2 − |E+|2 = S0 cos(2θ ). (14)

In addition we proceed to scale Eqs. (5)–(10) to the natural
time scale of the relaxation oscillation frequency ωr as s = ωrt

and define

ωr =
√

2P

T
, D = 2 (N − 1)

ωr

,

(15)
d = 2n

ωr

, � = ωr

2
(1 + P −1).

With our typical values of the parameters and for bias
current far from threshold, P ∼ 10, we find that ωr ∼ 0.2.
In the absence of gain saturation, the relaxation oscillations
are only mildly damped, as denoted by the parameter � ∼
0.1. In other words the laser performs approximately ten
oscillations (i.e., �−1) before reaching its steady state, in
complete disagreement with any experimental evidence. This
justifies the introduction of gain saturation, which strongly
contributes to reducing the number of oscillations necessary
to reach the equilibrium. Upon simplification of Eqs. (5)–(10)
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we get

dI

ds
= DI + dI cos(2θ ) − 2

γa

ωr

I sin(2θ ) cos 


− 2
εgP

ωr

I 2A + F
ωr

, (16)

dθ

ds
= −d

2
sin(2θ ) − γa

ωr

cos(2θ ) cos 
 + γp

ωr

sin 


+ εgP

4ωr

IB + G
ωr

, (17)

dψ+
ds

= α

2
(D + d) + γa

ωr

tan θ sin 
 − γp

ωr

tan θ cos 


−α
εgP

ωr

H+ + F+

ωrR+
, (18)

dψ−
ds

= α

2
(D − d) − γa

ωr

cotanθ sin 
 − γp

ωr

cotanθ cos 


−α
εgP

ωr

H− + F−
ωrR−

, (19)

dD

ds
= −�D −

(
1 + ωrD

2

)
(I − 1)

− ωrdI

2
cos(2θ ) + εgP

2
I 2 + · · · , (20)

dd

ds
= −ωr

2
d

(
γs

P
+ I

)
−

(
1 + ωr

2
D

)
I cos(2θ ). (21)

In Eqs. (16)–(19), we have separated the terms arising from
the SFM model in the first line from the ones due to
reinjections and to nonlinear gain compression in the second
line. The definitions of A,B,H±,F , and G are also given in the
Appendix. In addition, we neglect several terms in the carrier
equations (20) and (21) which are due to nonlinear saturation.
These terms are of order O(εgPωr ) and are immaterial to our
analysis.

A. Parameter scaling

Equations (16)–(21) can be further simplified if one
assumes the following scaling of the parameters. As a central
point in our analysis, we suppose that the device operates at
a large distance from threshold, e.g., P ∼ 10. In the presence
of gain saturation, this has the effect of inducing a strong
damping of the relaxation oscillations. We define ε as our
dimensionless smallness parameter such that ωr ∼ ε, and we
consider the case where η and β as well as γa and γp are of
order ε2. Typically, this corresponds to a birefringence and a
dichroism of the order of ∼10 GHz, while the feedback and
the cross-reinjection rates are of the order of less than a percent
in reinjected power. Importantly, we assume that the gain
compression coefficient εg is also of order ε2, although due
to the large distance from threshold, P ∼ 10, the contribution
εgω

−1
r P is considered to be of order 1. Finally, we assume that

the effective spin-flip decay term scales as γs ∼ ε−2, which
corresponds to a spin-flip decay time γ −1

J ∼ 20 ps. Since,
typically, our dimensionless smallness parameter is ε ∼ 0.2,
the errors induced by the neglect of the second-order terms in
the phase model discussed in the next section are ∼4%.

B. Multiple time scales

We expand the flow around a solution defined by a quasi-
linear, yet undefined, polarization. In other terms we assume
that there is a small ellipticity, i.e., θ0 ∼ π/4 and d0 = 0.
In addition, we assume that the radius of the Poincaré sphere
is close to its steady state value I ∼ I0, and consequently,
the carriers are also around their equilibrium value D = D0.
In order to make apparent the scale separation between the
orientation of the polarization angle and the rest of the
variables, we introduce two time scales, σ0 = s and σ1 = εs,
as

d

ds
= ∂

∂σ0
+ ε

∂

∂σ1
, (22)

along with the following series expansion:

I = I0 + εI1 (σ0,εσ1) + O(ε2),

θ = θ0 + εθ1 (σ0,εσ1) + O(ε2),
(23)

D = D0 + εD1 (σ0,εσ1) + O(ε2),

d = d0 + εd1 (σ0,εσ1) + O(ε2),

where ψ± (σ0,εσ1) is not expanded perturbatively. As such,
the orientation 
 = ψ+ − ψ− can evolve freely between 0
and 2π . At zeroth order, we get the following system:

∂I0

∂σ0
= D0I0 − εgP

ωr

I 2
0 ,

∂D0

∂σ0
= 1 − I0, (24)

where we notice that, for our values of the parameters, the
relaxation oscillations would not be damped in the absence of
the nonlinear gain saturation contribution. We find that I0 = 1
and D0 = εgPω−1

r . Nicely, the phases ψ± do not depend on
the fast time scale since the two zeroth-order contributions
cancel each other, i.e.,

∂ψ±
∂σ0

= 0. (25)

The first-order problem on the fast time scale σ0 reads

∂I1

∂σ0
= −D0I1 + D1 − 2

γa

ωr

cos 
 − εgP

2
D0 + F0

ωr

, (26)

∂θ1

∂σ0
= −d1

2
− γa

ωr

cos 
 + γp

ωr

sin 
 − εgP

ωr

θ1 + G0

ωr

, (27)

∂D1

∂σ0
= −�D0 − I1 + εgP

2
, (28)

∂d1

∂σ0
= −ωr

2

γs

P
d1 + 2θ1. (29)

We notice that Eqs. (26) and (28) and Eqs. (27) and
(29) correspond to two decoupled damped oscillators. While
ellipticity oscillations between d1 and θ1 in Eqs. (27) and (29)
are strongly damped with a rate ωrγsP

−1, the total intensity I1

and the carrier density D1 in Eqs. (26) and (28) oscillate and
are damped only because of nonlinear gain saturation. This
effect is actually hidden by the fact that D0 ∼ εg �= 0. These
two oscillators are forced by the feedback terms F0 and G0,
with these terms being evaluated at zeroth order since they are
proportional to η and β and therefore are already first-order
quantities. At this order in the expansion, these terms depend
only the slow time scale σ1 through their dependence on
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variables ψ±. We can therefore readily solve Eqs. (26)–(28)
at steady state and inject the adiabatic result in the first-order
problem for ψ± at the slow time σ1, which reduces to

dψ+
dσ0

= α

2
(D1 + d1) + γa tan θ sin 
 − γp tan θ cos 


−α
εgP

4
D0 − α

D0

2
I1 + α

εgP

ωr

θ1 + F 0
+

ωr

, (30)

dψ−
dσ0

= α

2
(D1 − d1) − γacotanθ sin 
 − γpcotanθ cos 


−α
εgP

4
D0 − α

D0

2
I1 − α

εgP

ωr

θ1 + F 0
−

ωr

. (31)

C. Vectorial phase model

Upon replacing D1 and d1 from the steady-state expression
of Eqs. (26) and (28), several contributions due to nonlinear
saturation εg cancel each other, leaving only the dichroism,
the birefringence, and the feedback terms to drive the motion
of ψ±. After defining u = arctan(α) and ζ = arctan 2(γp,γa),
we obtain the phase model for ψ+ and ψ−, which reads, with

|z| =
√

γ 2
a + γ 2

p ,

ψ̇±√
1 + α2

= |z| sin (u ± ψ+ ∓ ψ− − ζ )

+ β

2
[− cos(ψτr+ − ψ± − a − u)

+ cos(ψτr− − ψ± − a − u)]

± η

2
[sin(ψ

τf

+ − ψ± − � − u)

− sin(ψ
τf

− − ψ± − � − u)], (32)

where we reintroduced the original time scale in Eq. (32)
to clarify that the characteristic time scale is governed by
the amplitude of the terms γa,γp,η, and β. Nevertheless,
the dynamics does not necessarily need to be restricted to
a particularly slow time scale; in fact, our analysis holds
when the four aforementioned parameters remain smaller
than the damping of the relaxation oscillations, which is
typically 10–15 GHz. Hence multigigahertz dynamics can still
be described by our simplified approach. Finally, we stress that
the assumption by which the polarization dynamics is confined
to the equatorial component on the Poincaré sphere 
 does not
imply that the dynamics is limited to purely linear polarization
states. Indeed, we can express the ellipticity in the Stokes
components θ by solving Eqs. (27) and (29) as

θ (ψ+ − ψ−) = π

4
+ G0 − |z| cos(ζ + ψ+ − ψ−)

P
(
2γ −1

s + εg

) , (33)

and, similarly, for the spin imbalance n = 2P (θ − π
4 )γ −1

s .
Equivalent yet cumbersome expressions for the intensity and
total carrier variations can be obtained in the same way. From
Eq. (33), it is apparent that the typical deviations of θ with
respect to π/4 and the spin imbalance δn are

δθ ∼ ±π/10 , n ∼ ±0.1. (34)

Notice that δθ = π/4 would correspond to a purely circular
emission state.

IV. RESULTS

The modal structure of the VCSEL submitted to PSF and
XPR is more conveniently studied by defining the half sum
� = (ψ+ + ψ−) /2 and the difference 
 = ψ+ − ψ−. In the
case of a monomode solution the difference 
 fixes the
orientation of the quasilinear polarization and reaches a fix
point, while the half sum drifts at the frequency of the mode
under consideration. After some trigonometric simplifications
Eq. (32) transforms into

�̇√
1 + α2

= |z| cos 
 sin(u − ζ )

− η sin

τf

2
sin




2
sin(u + � + � − �τf )

−β cos



2
sin


τr

2
sin(u + a + � − �τr ), (35)


̇

2
√

1+α2
= |z| sin 
 cos(u − ζ )

+ η sin

τf

2
cos




2
cos(u + � + � − �τf )

−β sin



2
sin


τr

2
cos(u + a + � − �τr ). (36)

Interestingly, the symmetry properties of Eqs. (35) and (36)
are different with respect to � and 
. While Eqs. (35) and (36)
are phase invariant with respect to � → � + �0, this is not
the case for 
. It is an expected result since these two phases
do not have the same physical meaning: � is an optical phase,
while 
 is an orientation angle.

Monomode solutions correspond to � = ωt , while 
 is a
constant. Besides the values of ω and 
 we will represent the
associated ellipticity θ by using Eq. (33) and exploiting the
fact that the expression for G0 in the case of a monochromatic
solution simply reads

G0 = 2β sin2 


2
sin(ωτr + a) − η sin 
 sin(ωτf + �) (37)

A. Particular cases

Before studying the general case, we will discuss several
known situations as particular cases in the absence of any
feedback or with only PSF.

Solitary VCSEL. We first discuss the stability of the solitary
VCSEL that is governed by a single equation for 
 as given
by Eq. (36), which, after simplification, reads


̇ = 2(γa + αγp) sin 
; (38)

the solutions 
x = 0 and 
y = π correspond, respectively,
to a saddle and a node when γa + αγp > 0 and vice versa in
the opposite case. The frequency of two such modes can be
deduced from Eq. (35), which reads

�̇ = (αγa − γp) cos 
x,y = ωx,y. (39)

The stability diagram is depicted in Fig. 2. Notice that the
stability diagram of Fig. 2 is much simpler than, for instance,
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(X,Y)=(+,-)

(X,Y)=(-,+)

γp=-γa/α

−0.1 0 0.1
−0.1

0

0.1

γa

γ
p

FIG. 2. (Color online) Stability diagram of the solitary VCSEL
far from threshold. The condition γa + αγp = 0 separates the two
parameter regions where the stable emission is along the LP-y or the
LP-x axis. Stable (unstable) emission is depicted by a minus sign
(plus sign).

the analysis performed in Ref. [30], and no bistability is found
in our analysis since we are in the limit of bias current values
far from threshold. However, we have numerically checked the
accuracy of the stability information predicted by Eq. (38), and
we have found good agreement, in the sense that the condition
γa + αγp = 0 indeed separates monostable emission along
LP-x from LP-y. It is worth noting that, even in the limit of bias
current far from threshold, a very small region of bistability
has been found in the vicinity of the line γa + αγp = 0,
represented in Fig. 2. Since our simplified model is built
perturbatively upon an expansion, it is not surprising that
usually negligible terms may dominate the stability in small
regions of parameter space where the first-order terms vanish.

LP-x emission. Irrespective of the values of η and β,
pure emission along the X axis of the solitary VCSEL is
always possible since the existence of this mode is obviously
not affected by optical feedback into Y and cross-polarized
reinjection of Y into X. This formally corresponds to the
solution 
 = 0, which solves Eq. (36) while Eq. (35) reduces
to the expression of the frequency of the LP-x solution at
frequency −γp pulled by the interplay of the dichroism γa and
α, i.e.,

ωx =
√

1 + α2 |z| sin(u − ζ ) = αγa − γp (40)

where we used trigonometrical identities to simplify the last
result.

LP-y Lang-Kobayashi modes. In the case where there is
only optical feedback, i.e., β = 0, the solution 
 = π solves
Eq. (36). This case corresponds to a linear polarization along
the Y axis, and Eq. (35) reduces exactly to the locus of the
modes of the Lang-Kobayashi model,

ωy − γp + αγa + η
√

1 + α2 sin(u + � + ωyτf ) = 0, (41)

with the only difference being that the ellipse of the modes
is shifted by the birefringence γp, as well by the contribution
αγa .

General equation defining the modal structure. In the
general case, the presence of cross polarization makes it so that
the orientation cannot perfectly align with the LP-y direction;
hence 
 �= 0,π . This allows us to simplify Eq. (36) by dividing

by sin 
 and to express the orientation as a function of the
frequency as




2
= arctan

2 |z| cos(u − ζ ) + η cos(u + � + ωτf )

β cos(u + a + ωτr )
. (42)

Such a value of 
 must be replaced in Eq. (35) to yield the
locus of the quasilinear modes as solutions of

ω√
1 + α2

= |z| cos[
(ω)] sin(u − ζ )

− η sin2

[

 (ω)

2

]
sin(u + � + ωτf )

−β sin[
(ω)] sin(u + a + ωτr ). (43)

−5×10−2

0

0.1

0
π/2

π
3 π/2

2 π
0

π/4

π/2

(a)

ω
Φ

θ

−5×10−2

0

0.1

0π/2π3 π/22 π
0

π/4

π/2

(b)

Φ

θ

FIG. 3. (Color online) Monochromatic solutions of Eqs. (35) and
(36) for η = 0, β = 0.05, and τr = 1000. The solutions are arranged
around a tube defined by the function 
 (ω) and θ (ω) assuming ω is
a continuous variable. Stable and unstable solutions are represented
in green (light gray) and red (dark gray), respectively. The number of
stable and unstable solutions (S,U ) is (18,19).
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B. Cross-polarized reinjection only

In the case where the VCSEL is submitted to only XPR,
i.e., η = 0, we recover the results obtained in Ref. [17]. It
was shown in Ref. [17] that modes appear as saddle-node
bifurcations for increasing values of the reinjection rate β.
In addition, if the polarization selected for reinjection is the
LP-y mode, the pure Y solution of the solitary VCSEL will
evolve under the influence of the XPR rate, and the associated
polarization orientation will rotate when β is varied. Because
of the existence of this additional solution in addition to
the appearance of other modes via saddle-node bifurcations,
there are usually N/2 + 1 modes and N/2 antimodes. Notice,
however, that in Ref. [17] the modal structure was found
by solving exactly Eqs. (1) and (2) without exploiting the
particular scaling of the parameters. As such, the solution was
found as a determinant of a complex system of equations. Here,
one is able to recognize by inspecting Eq. (43) that the locus

−0.1

0
0.1

0
π/2

π
3 π/2

2 π
0

π/4

π/2
(a)

ωΦ

θ

−0.1
0

0.1

0π/2π3 π/22 π
0

π/4

π/2 (b)

ω

Φ

θ

FIG. 4. (Color online) Monochromatic solutions of Eqs. (35) and
(36) for η = 0, β = β� + 0.01, and τr = 1000. There are 127 unstable
solutions. Stable and unstable solutions are represented in green and
red, respectively.

for the modes is very similar to the one for the Lang-Koyabashi
model, i.e., a transcendental equation defining the frequencies.

In addition to the solution defined by the triplet (ω,
,θ ),
we have represented (black lines in Fig. 3) 
 (ω) and θ (ω)
as continuous functions of ω in a way similar to that in
Ref. [35]; the reason for doing so will be clarified in the next
section. The stability of the solutions has been analyzed using
DDE-BIFTOOL [36] on Eqs. (35) and (36). Importantly, one
notices in Fig. 3 that purely linear emission corresponding to
solutions for which θ = π/4 is possible. This demonstrates
that cross polarization can simply rotate the direction of
emission. The modal “ellipse” is centered around the frequency
ωy = γp − αγa of the pure LP-y emission state, and the states
closer to 
 = π , i.e., whose polarization is closer to the LP-y
mode, are the most unstable ones. In Fig. 3, which shows
the external part of the projection in the (ω,
) plane, the
stable modes are plotted in green (light gray) and correspond
to the polarization orientations differing the most from the
orientation of the LP-y orientation. Such modes may also
present a small ellipticity. Notice that in Fig. 8 of Ref. [17],
the variable n (equivalently, here θ ) presented a figure-eight-
shaped curve in the (θ |n,ω) plane. Such a difference from our
results is merely due to the larger values of β = 0.25 used in
Ref. [17], and similar figure-eight-shaped solution curves can
be found in our reduced model.

For increasing values of β more modes are created
via saddle-node bifurcations, and the ellipse grows,
but more and more stable modes at the exterior of the
figure-eight-shaped projection become unstable up to the
critical value β� = 2

√
γ 2

a + γ 2
p , where all the modes are

unstable (see Fig. 4). Such critical value corresponds to
the onset of square-wave switching [17,18], where the two
orthogonal polarizations X and Y alternate cycles of on-off
emission in antiphase and at a period close to twice the delay
imposed by cross-polarization reinjection τr . Such dynamics
at twice the delay is depicted in Fig. 5.
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FIG. 5. (Color online) Square-wave switching as phase kinks.
(a1) and (a2) The intensity of the X and Y polarization over different
time scales reconstructed from the polarization orientation 
. The
traces are shifted for clarity and are actually in perfect antiphase.
(b1) and (b2) The polarization orientation 
 and (c1) and (c2) the
optical phase � from which we subtracted a drift ωyt . The parameters
are η = 0, β = β� + 4 × 10−3, and τr = 1000.
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Here, we reconstruct the intensity of the X and Y com-
ponents via the formulas Ix ∼ |1 + ei
|2 and Iy ∼ |1 − ei
|2.
By construction, the antiphase relationship between the two
polarizations evolutions is perfect, as one can see in Fig. 5(a1).
For β > β� we found in Figs. 5(a1) and 5(a2) a strongly
nonlinear limit cycle composed of two plateaus whose period
is close to twice the reinjection delay τr , in agreement with
the results reported in Refs. [17,18,21]. Our analysis in
terms of a phase-reduced model shows that it is possible

to reinterpret such polarization intensity dynamics as pure
phase dynamics. This is shown in Figs. 5(b1) and 5(b2),
where we plot the corresponding temporal evolution of the
phase 
, which consists of kinks between π and zero and π

again and can also be understood as polarization domain walls
[37,38]. The evolution of the global phase � consists, instead,
mainly of a drift at a frequency ωy , i.e., at the frequency
of the solitary VCSEL on the LP-y polarization mode. This
is consistent with the fact that the first plateau corresponds
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FIG. 6. (Color online) Monochromatic solutions of Eqs. (35) and (36) for η = 0.025, β = 0.05, and τr = 1000. (a) �τ = τf − τr = 0,
(b) �τ = 20, (c) �τ = 40, and (d) �τ = 100; the numbers of stable and unstable solutions (S,U ) are (24,31), (14,55), (21,36), and (15,36),
respectively.
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to pure Y emission, while the second one consists of the Y

mode performing injection locking into the X polarization.
In both cases the frequency of emission remains locked to
the frequency ωy . Interestingly, once this drift is removed, a
residual phase kink can be observed in �, meaning that the
phase acquires a π shift at every cycle on the Poincaré sphere.
However, after a rotation along the equator the polarization
is actually reversed (i.e., Y → −Y ), and this additional phase
shift of π in � corresponds to finding physically the exact
same polarization. Such residual kinks in � are slaved to the

square-wave switching and actually can be decoupled from the
dynamics. For β � β� there is excellent agreement between
the full solution of Eqs. (35) and (36) and that of Eq. (36) in
which we performed the substitution � − �τr → ωyτr , thus
demonstrating that the square-wave regime can be reduced to
a single equation with a delay of the type

d


dt ′
= sin




2

(
cos




2
− A sin


τ ′
r

2

)
, (44)
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FIG. 7. (Color online) Monochromatic solutions of Eqs. (35) and (36) for η = 0.025, β = 0.05, and τr = 1000. (a) τf = 2τr , (b) τf = 3τ r ,
(c) τf = 4τr , and (d) τf = τr/2; the numbers of stable and unstable solutions (S,U ) are (17,52), (55,36), (82,47), and (15,30), respectively.

023838-9



J. JAVALOYES, M. MARCONI, AND M. GIUDICI PHYSICAL REVIEW A 90, 023838 (2014)

where we have time rescaled the equation for clarity and
defined an effective parameter,

A = β

2

√
1 + α2

γa + αγp

cos[u + a + (γp − αγa)τr ]. (45)

Inspection of Eq. (44) reveals that solutions composed of
plateaus of duration τr for which either 
 = 0 or 
 = π are
indeed possible.

C. Cross polarization and feedback

In the general case where both η and β are nonzero, the
modal structure depends critically on the ratio between the
two delays. For small deviations from the situation τf = τr ,
the figure-eight-shaped modal ellipse distorts and breaks into
several parts, as depicted in Fig. 6. Here, one notices that the
tubular structure that supports the mode acquires a “vertical”
modulation that is proportional to the ratio between the two
delays. For a small mismatch between the two delays like in
Figs. 6(a) and 6(b) the modal ellipse is deformed. For larger
mismatches like in Fig. 5(c), the mode positions break into
several subfamilies. Increasing the difference between the two
delays beyond Fig. 6(d) results in a fragmented modal structure
composed of quasirandomly distributed points (not shown) if
observed only through a projection in the (ω,
) plane. We
depict in Fig. 6 a bifurcation sequence for τf increased above
τr , yet a similar scenario is found for τf < τr .

Once it is understood that the tubular structure oscillates at
a frequency given by the ratio between the two delays, one may
foresee the existence of “revivals” of relatively simple modal
structures for specific ratios between the two delays. Indeed,
we show in Fig. 7 that a regular structure exists whenever the
feedback delay is an integer of the cross-polarization delay.
Similarly, some simple structures have also been found when
τf = τr/n, and we depict in Fig. 7(d) the case τf = τr/2.

D. Influence of optical feedback on the square-wave switching

As explained in Fig. 5, the second plateau of the square-
wave dynamics (also described in Refs. [17,21]) results from
the optical injection locking of the strong mode (say LP-y)
onto the weak mode (say LP-x). At the end of the second
plateau, the transitory dynamics can be understood as an escape
from the vicinity of a weakly repulsive saddle where the system
tries to recover the emission along the strong mode. During
such an escape the system is very sensitive to noise, which
induces strong period jitter in the square-wave signal. The
finite time needed to perform such an escape explains why the
period of the square oscillation is always slightly greater than
twice the XPR delay τr .

The proximity of the bistable emission in parameter space
as well as the existence of subtle “dynamical traps” via the
folding of some unstable limit cycles induced by XPR was
already described in Ref. [17] as a possible mechanism for the
degradation of the square-wave signal; see Fig. 9 in Ref. [17]
for more details. In the parameter region explored here (i.e.,
bias currents far from the threshold value) the system does not
exhibit such bistability. Yet the proximity in parameter space
to the region defined by γa + αγp = 0 (see Fig. 2), where
the X and Y solutions interchange their stability, can play a
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FIG. 8. (Color online) Square-wave switching dynamics in the
presence of XPR. Time series (inset) and power spectrum for η = 0,
γa = −0.09, β = 0.25, and τr = 500. The signal is very irregular,
and the period is noticeably slower than 2τr . The power spectrum
does not show the signature of a square-wave signal with only odd
harmonics.

key role in the degradation of the square-wave switching. We
describe in Fig. 8 such degraded square-wave dynamics in the
proximity of the parameter value γa = −αγp. In this case,
we also integrated the phase model as given by Eqs. (35) and
(36) and reconstructed the intensity of the Y component as
Iy ∼ |1 − ei
|2. In Fig. 8, the dynamics experiences a critical
slowing down at the end of the second plateau where the LP-y
component is off, and the escape from the weak saddle can
be visualized as a noise-induced wandering in an almost flat
landscape.

However, a small amount of optical feedback has the effect
of restabilizing the Y polarization and, incidentally, accelerat-
ing the escape from the saddle represented by emission into
the LP-x mode. We describe in Fig. 9 such a regime and show
that, even in the proximity of polarization switching, robust
square-wave switching can be obtained for the proper choice
of the feedback delay, i.e., τf ∼ 2τr .
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FIG. 9. (Color online) Square-wave switching dynamics in the
presence of both XPR and PSF. Time series (inset) and power
spectrum for η = 0.05, γa = −0.09, β = 0.25, τr = 500, and τf =
1020. The signal is much more regular, and the period is much closer
than 2τr . The power spectrum shows the signature of a square-wave
signal with only odd harmonics.
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V. CONCLUSIONS

In this paper we have reduced the model describing the dy-
namics of the VCSEL with cross-polarized reinjection and/or
with polarization-selective feedback to a model that consists
of two phases: the orientation phase of the quasilinear polar-
ization and the optical phase of the field. We have shown that
the dynamics remains confined close to the equatorial plane
of a Poincaré sphere with a given radius, which allowed us to
decouple the relaxation oscillation for the total emitted power
as well as the fluctuations in the ellipticity of the emitted light.

Such simplification, which is valid for bias currents far
from the onset of laser emission, has allowed us to express
analytically the modes in the presence of XPR and PSF
and to shed some light on the complex modal structure
given by this double-feedback configuration. We have also
reinterpreted the square-wave switching dynamics reported in
Refs. [19–21,31] as polarization orientation kinks. Close to
the polarization switching the stability of both the LP-y and
LP-x modes becomes marginal, which was shown to have a
profound impact on the regularity of the antiphase square-wave
switching induced by XPR. We have shown that, in the reduced
phase model, the inclusion of optical feedback with a proper
delay can also have the effect of regularizing the dynamics and
that it can be used to mitigate the polarization degeneracy.

For future study we believe that a similar approach can be
applied to the case of isotropic rotated feedback. Such an effect
was shown to give antiphase polarization oscillations [16] up
to frequencies of ∼10 GHz. Our method would yield a similar
phase model, which would possibly allow us to study such
polarization dynamics as a single dynamical equation. Also of
great interest, our method can be extended readily to the case
of polarized, and possibly detuned, optical injection.
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APPENDIX

The expression of M± and F± as used in Eqs. (5)–(10) reads

M+ = β

2
R

τr+ sin(ψτr+ − ψ+ − a)−β

2
R

τr− sin(ψτr− − ψ+ − a)

+ η

2
R

τf

+ cos(ψ
τf

+ − ψ+ − �)

− η

2
R

τf

− cos(ψ
τf

− − ψ+ − �),

M− = β

2
R

τr+ sin(ψτr+ − ψ− − a)−β

2
R

τr− sin(ψτr− − ψ− − a)

− η

2
R

τf

+ cos(ψ
τf

+ − ψ− − �)

+ η

2
R

τf

− cos(ψ
τf

− − ψ− − �), (A1)

F+ = −β

2
R

τr+ cos(ψτr+ −ψ+−a) + β

2
R

τr− cos(ψτr− −ψ+−a)

+ η

2
R

τf

+ sin(ψ
τf

+ − ψ+ − �)

− η

2
R

τf

− sin(ψ
τf

− − ψ+ − �),

F− = −β

2
R

τr+ cos(ψτr+ −ψ−−a) + β

2
R

τr− cos(ψτr− −ψ−−a)

− η

2
R

τf

+ sin(ψ
τf

+ − ψ− − �)

+ η

2
R

τf

− sin(ψ
τf

− − ψ− − �).

The definitions of A,B,H±,F , and G used in Eqs. (16)–(19)
is

A =
[

1 + ωr

2
(D + d)

]
cos4 θ +

[
1 + ωr

2
(D − d)

]
sin4 θ,

(A2)

B =
(

1 + ωr

2
D

)
sin (4θ ) + ωrd sin(2θ ), (A3)

H+ =
[

1 + ωr

2
(D + d)

]
I cos2 θ, (A4)

H− =
[

1 + ωr

2
(D − d)

]
I sin2 θ, (A5)

F = 2
R+M+ + R−M−

P
, (A6)

G = M−R+ − M+R−
IP

. (A7)
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