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Tunable refraction in a two-dimensional quantum-state metamaterial
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In this paper we consider a two-dimensional quantum-state metamaterial comprising an array of qubits
(two-level quantum objects). Here we propose that it should be possible to manipulate the propagation of quantum
information. We show that a quantum metamaterial such as the one considered here exhibits several different
modes of operation, which we have termed Aharonov-Bohm, intermediate, and quantum-Zeno. We also see
interesting behavior which could be thought of as either quantum birefringence (where the material acts like a beam
splitter) as well as the emergence of quantum correlations in the circuit’s measurement statistics. Quantum-state
metamaterials as proposed here may be fabricated from a variety of technologies from superconducting qubits to
quantum dots and would be readily testable in existing state-of-the-art laboratories.
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I. INTRODUCTION

Quantum metamaterials, i.e., artificial quantum media,
which maintain quantum coherence over the signal traversal
time, hold promise of becoming a testing ground for the
investigation of the quantum-classical transition, interesting
new phenomena in wave propagation, and unusual tech-
nological applications [1,2]. With strong analogies existing
between atomic physics, quantum optics, and superconducting
systems it is natural to seek technologies that span these
fields [3]. Solid state quantum metamaterials are one such
class of devices where such parallels with conventional
electromagnetic metamaterials can be leveraged to great utility.
Indeed, emphasizing such a synergy, the implementation of a
quantum metamaterial in the optical range is feasible [1,4]. In
our view, the experimental realization of the concept is likely
to be achieved first in the microwave range, as was the case
with conventional metamaterials [5]. We believe that the best
candidate system system would comprise superconducting
qubits or SQUIDs [6–8] playing the role of controllable
artificial atoms. This view is supported by the ability of super-
conducting flux qubits as quantum scatterers, a phenomenon
that has been both theoretically modeled and experimentally
observed [9–11]. Here, rather than using quantum circuits to
construct a metamaterial for controlling electromagnetic fields,
we propose an analogous device for the quantum state itself.
We thus adopt the terminology quantum-state metamaterial to
make clear the difference.

One-dimensional (1D) quantum metamaterials (in the
conventional sense) can be realized readily enough. An
example of this is a chain of qubits placed in a transmission
line [6,7,9,12]. Unfortunately, 1D devices do not allow us to
realize more interesting and useful effects such as “quantum
birefringence” and other phenomena, where the change of
direction of the signal by an arbitrary angle is important
(e.g., Ref. [4]). Here one needs to go beyond 1D. As with
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any quantum circuit, we retain the essential requirement
that any “proof of principle” realization of a truly quantum
metamaterial must maintain global quantum coherence, and
it is therefore necessary for such a system to contain as few
unit elements as possible (although there may exist situations
where such a constraint might be relaxed while retaining
some useful quantum material properties). In this work we
are therefore concerned with the minimal realization of a
two-dimensional quantum-state metamaterial. The effect of
changing signal transmission amplitude through a system by
tuning of the material’s constituents, which we consider in
this paper, is related to two classes of phenomena: mesoscopic
transport in quantum interferometers (for a review see, e.g.,
Ch. 5 of Ref. [13] or Ch. 3 of Ref. [7]) and a quantum
state analogy of electromagnetically induced transparency, an
effect known in optics [14–16] and recently demonstrated in
an artificial atom (superconducting qubit) in the microwave
range [11]. The underlying physics of either of these phe-
nomena is the same: quantum state-dependent interference
between different quantum trajectories contributing to the
probability amplitude of the signal’s transmission through the
system.

In the case of mesoscopic transport through a quantum
interferometer, the transmission amplitude is determined by
the interference of electron wave components propagating
through the branches of the device. Here the interference
pattern occurs in real space, and it can be directly affected
by the electromagnetic field acting on the electrons most
spectacularly, through Aharonov-Bohm or Aharonov-Casher
mechanisms [17]. Systems of coupled spin- 1

2 particles have
been widely studied in a range of different physical contexts.
Recently there has been much interest in the potential use
of spin chains or networks as buses for quantum state transfer
within quantum information-processing devices [18,19]. It has
been shown that the phase shift caused by an applied field (the
Aharonov-Casher effect [17]) can significantly enhance the
maximum attainable degree of entanglement in a spin chain,
as well as improving the transfer of entanglement around a ring
of spins [20]. The effects of continuously monitoring the output
nodes of a spin network were investigated in Ref. [21], and it
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FIG. 1. (Color online) Set up, for (a) 2 × 2 and (b) 3 × 3 quantum
metamaterial where each node represents a qubit and each edge
the qubit-qubit coupling coupling. The directed couplings (arrowed,
blue) correspond to �ij (φ) = σ+

i σ−
j exp[iφ] + σ−

i σ+
j exp[−iφ] and

the undirected couplings to �ij (0). Node 1 is considered to be an
input node (magenta), and the output nodes are for (a) 2–4 and (b)
5–9 (green). The Lindblad operators Lj describe the interaction with
the source (L1) and detectors (L2−9).

was demonstrated that high-fidelity quantum state transfer is
possible.

II. MODEL

Our simulated quantum metamaterial1 comprises an array
of interacting qubits as depicted in Fig. 1. The Hamiltonian for
this system is then

H =
∑

i

1

2
σ z

i +
∑

(i,j )∈A

μij�ij (φij ), (1)

where σ z
i is the Pauli matrix for the z direction and we have

chosen μij = 1
2 for the connected qubits, with each bond

counted once only, as illustrated through the use of edges
in Fig. 1 and zero otherwise. The coupling operator �ij (φij )
takes the form

�ij (φij ) = σ+
i σ−

j exp[iφij ] + σ−
i σ+

j exp[−iφij ], (2)

where σ±
i = 1

2 (σx
i ± iσ

y

i ). In order to model the effect of
(for example) a magnetic field on this qubit metamaterial we
have chosen the control parameter, φij = φ, for the directed
couplings, such as (1,2), (2,3), (3,4), (4,1) of Fig. 1(b),
and zero otherwise as indicated in the schematic. Hence the
flux enclosed by this plaquette is 4φ. We note that for our
candidate realization of superconducting qubits the phase φ

may be switched at high frequencies, e.g., of the order of
a few GHz [23]. Consequently, rapid control of a quantum
metamaterial such as the one proposed here should be possible.
As it may be of utility when considering classical analogues
of this system we also note that it is possible to write the

1This idea may be connected with more conventional approaches
to metamaterials if we consider our model as a reduced one for
qubits coupled to electromagnetic modes where the field degrees of
freedom have been eliminated producing effective couplings between
the qubits similar to Ref. [22].

Hamiltonian in the following form:

H =
∑

i

σ z
i

2
+

∑
〈ij〉

μij

2

[
σx

i σ
y

i

][ cos φij sin φij

− sin φij cos φij

][
σx

j

σ
y

j

]
,

which may be considered as a twisted XY model.2

Before we present the full model system, to gain insight into
the effect of a phase and measurement on excitation dynamics
let us first consider analytics for the simplified system of
Fig. 1(a). The Hamiltonian can be easily diagonalized. In
particular, the eigenstates in the single spin-flip sector,

|n〉 = 1

2

4∑
j=1

exp[nπi(j − 1)/2]σ+
j |↓↓↓↓〉

(n = 0,1,2,3), have energy

En(φ) = −1 + 2μ cos(φ − nπ/2).

For simplicity we henceforth shift the levels by the constant
term 1. The amplitude for a spin flip created on site j at time
0 to be detected at site i at time t is

Gij (t) = G∗
ji(t) = 〈↓↓↓↓|σ−

i exp(−iH t)σ+
j |↓↓↓↓〉

=
∑

k

〈↓↓↓↓|σ−
i |k〉〈k|σ+

j |↓↓↓↓〉 exp[−iEk(φ)t],

giving

G11(t) = cos(2μt cos φ) + cos(2μt sin φ)

2
,

G12(t) = −i sin(2μt cos φ) − sin(2μt sin φ)

2
,

G13(t) = cos(2μt cos φ) − cos(2μt sin φ)

2
,

and cyclically. We see immediately from Eq. (3) that when
φ is an odd multiple of π

4 destructive interference suppresses
propagation across the diagonal of the square.

However, the metamaterial that is the subject of this paper
will require “inputs” and “outputs” and as such is an open
system: as well as coherent evolution there is a measurement
process. We can model this by a relaxation rate α and evaluate
the transmission

Pij ≡ α

∫ ∞

0
e−αt |Gij (t)|2dt. (3)

There are three cases (two limiting):

2Our motivation for this particular quantum metamaterial is a
quantum circuit realisation fabricated using an array of supercon-
ducting qubits. This justifies our chosen Hamiltonian as it is of the
same form as those currently used to model such circuits. It is,
however, interesting to note that it would be possible to construct
an equivalent system of interacting fermions (this can be achieved
via a Jordan-Wigner or similar transform [24]). The results presented
here in terms of the states of a qubit can, therefore, also be viewed in
terms of the motion of fermions. Such a process might, for example,
take the form of electrons propagating in a lattice of quantum dots
in the presence of a magnetic flux, which is precisely the case of
mesoscopic transport mentioned previously.
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(1) If α 	 μ, then this corresponds to weak measure-
ment of the metamaterial, and interference between multiple
pathways is important. It therefore seems appropriate to
term this limit the Aharonov-Bohm regime. Here we see
sharp notches in the transmission across the diagonal when
|φ − (2n + 1)π/4| � α/μ:

lim
α→0

P12 = lim
α→0

P14 =
{

1
8 , φ = nπ

2
1
4 , otherwise

,

lim
α→0

P13 =

⎧⎪⎨
⎪⎩

0, φ = (2n + 1)π
4

3
8 φ = nπ

2
1
4 , otherwise

.

Here we expect to see a uniform distribution of counts but with
enhanced transmission of along the diagonal and suppression
of counts on the two corners at φ = nπ

2 . We also expect to see
a suppression of counts on the diagonal for φ = (2n + 1)π

4 .
(2) The intermediate regime α ≈ μ. Here the transmission

has a cos 4φ component with weaker higher-order harmonics.
In this modulation the counts on the diagonal will have a
maximum at φ = nπ/2 having strong suppression of counts at
its minimum. The counts on detectors 2 and 4 are out of phase
and higher on average than those on detector 3.

(3) When α � μ we view the metamaterial as being
strongly measured, and it seems natural to refer to this limit as
the quantum-Zeno regime. Here measurements are taken much
faster than the evolution time of the system, suppressing both
hopping to second order and interference (which requires two
hops) to fourth order, leaving a weak modulation:

P12 = O(μ2/α2) + O(μ4/α4)(3 + cos 4φ),

P13 = O(μ4/α4)(1 + cos 4φ);

that is, we expect a low number of counts in this case with
the diagonal having far fewer counts than the corner detectors
(as the excitation is more likely to be measured at sites 2 or 4
before it can get to 3).

III. QUANTUM JUMPS MODEL

In order to make analytic predictions in our above discus-
sion we assumed that the outcome of measuring the outside
edge of the metamatrial could be approximated by a relaxation
rate. As the size of the material grows such an analysis
becomes impractical. Furthermore, it is desirable that we
introduce a more realistic model of a measurement process
that could be readily associated with a real-world experiment.
In order to characterize the properties of our proposed quantum
metamaterial we need to generate some kind of excitation flow
of the quantum state through the material. Hence, we will
need an input, which we arbitrarily have coupled to qubit 1.
Moreover, we also need to measure the output of this flow on
the outer edges of the material, that is, qubits 2–4 of Fig. 1(a)
and qubits 5–9 of Fig. 1(b). We have chosen to introduce both
the input and the outputs through the introduction of a quantum
jumps model of the measurement process. Here the outcome
of a measurement is clear, i.e., either a jump is measured
or it is not, providing a measurement record comprising a
time series of “clicks” which we can then analyze (see, e.g.,
Ref. [25]). In effect, we measure in and create excitations on

node 1 in Fig. 1 and measure out and destroy excitations on
the opposing edges. Between measurements the circuit evolves
unitarily, following quantum coherent Schrödinger evolution.
Quantum jumps and quantum trajectories in superconducting
qubits were successfully detected in experiments [26,27].
Specifically, the quantum jumps model is an unraveling of
the master equation corresponding to the irreversible emission
or absorption of absorbed or emitted excitations over very
short time scales. The equation for this unravelling takes the
form of stochastic Itô increment equation for the state vector
according to

|dψ〉 = − i

�
H |ψ〉dt − 1

2

∑
j∈B

[L†
jLj − 〈L†

jLj 〉]|ψ〉dt

+ 1

2

∑
j∈B

[
Lj

〈L†
jLj 〉

− 1

]
|ψ〉dNj , (4)

where B is the set of all qubits for Fig. 1(a) and {1,5,6,7,9,8}
for Fig. 1(b). Here dNj is a Poissonian noise process satisfying
dNj dNk = δjk dNj , dNj dt = 0 and dNj = 〈L†

jLj 〉 dt ; that
is, jumps (or “clicks” of the detector) occur randomly at a rate
that is determined by 〈L†

jLj 〉. Here the Lindblad associated
with the input node is L1 = γinσ

+
1 and with the output nodes is,

as depicted in Fig. 1, Li = γoutσ
−
i for i ∈ B and zero otherwise.

Here γ is related (but not necessarily numerically equal) to the
relaxation rate α introduced in Eq. (3).

In order to take account of the statistical nature of
unravelings of the master equation we have, in the results
that follow, summed the counts measured over 10 trajectories.
For each trajectory we integrated the counts measured over a
reasonable duration adjusted to allow for comparison between
results for different values of γ (specifically the integration
time was 10 000/γin). These two factors together are sufficient
to average out most of the statistical fluctuations that arise
when using quantum trajectories methods (we are confident
that the slight asymmetries that remain in our results are due
to the remaining fluctuations).

We first consider the case of the 2 × 2 metamaterial of
Fig. 1(a) where we have already identified three distinct
regimes of operation. The results of our simulations are
presented in Figs. 2(a), 2(b), and 2(c) and comprise simply the
sum total of counts registered at each detector as a function
of qubit and applied phase. In each case we have chosen
circuit parameters γin = γout = 0.1 [Fig. 2(a)], γin = γout = 1
[Fig. 2(b)], and γin = γout = 5 [Fig. 2(c)] corresponding to the
Aharonov-Bohm, intermediate, and quantum-Zeno regimes,
respectively. Here we see remarkably good agreement between
our theory and numerics with each of the three domains of
operation being clearly resolved.

In Figs. 2(d), 2(e), and 2(f) we extend our calculations,
using the same respective circuit parameters, to the 3 × 3
metamaterial of Fig. 1(b). In increasing the size of the quantum
metamaterial the number of degrees of freedom of the system
has increased substantially. Nevertheless, each set of results
is still clearly identifiable with the same regime of operation
retaining all the salient features of the previous case. This result
suggests that a tuneable quantum-state metamaterial based
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FIG. 2. (Color online) Plots of detector counts as a function of control phase φ and decay constant for the 2 × 2 array, top row (a, b, c),
and the 3 × 3 array, bottom row (d, e, f). In the left-hand panes γin = γout = 0.1 (a, d), while γin = γout = 1 in the middle panes (b, e), and then
γin = γout = 5 in the right-hand panes (c, f). In each case the time over which the statistics for each trajectory were collected was adjusted by a
factor of 1/γin to allow for comparison.

on such an architecture might form the basis of a scalable
technology.

We now describe, as an example of the possible rich
behavior that quantum-state metamaterials can exhibit, the
specific example of a 3 × 3 metamaterial in the intermediate
regime whose sum total counts are shown in Fig. 2(e). For
certain values of the controlling parameter (phase) φ we see
behavior that is consistent with that of a quantum birefringent
material acting as a beam splitter. We see this from φ = ±π

to around ± 3
4π (where the effect is strongest) where we see

that the vast majority of counts are measured on qubits 9 and
5. This pattern is again repeated around φ = ± 1

4π . Although
not conclusive, the possibility that the material is acting as
a quantum birefringent beam splitter is supported by the
calculation of the second order correlation coefficient

g(2) = 1 + 〈
N9
N5〉
〈N9〉 〈N5〉

between the qubit 9 and 5 at φ = 3π/4, which we have
determined to be approximately 0.92, which, by analogy
with Ref. [28], is indicative of nonclassical scattering by the
material (here Ni is the record, as a time series, of photons
counted at each detector). In contrast, at φ = 0 we see that
counts are measured in a bell shape centered around qubit
7. Here it could be argued that this behavior corresponds
to propagation of a signal as a beam across the diagonal of
the quantum metamaterial. Finally we note that at φ = ± 1

2π

and approximately φ = ± 1
8π the distribution of counts is

approximately flat over all the output qubits. At these points
the material is somewhat equally opaque across all the de-
tectors with a quantum analog of electromagnetically induced
transparency occurring for the other possible values of φ.

IV. CONCLUDING REMARKS

We have presented a model of a two-dimensional quantum-
state metamaterial whose behavior is tuneable. Depending
on circuit parameter the material can operate in three distinct
regimes of operation: Aharonov-Bohm, intermediate, and
quantum-Zeno. For different values of the control phase we
see behavior consistent with (i) a quantum-state birefringent
beam splitter, (ii) reduced quantum-state transmission plain
wave propagation, and (iii) a quantum-state-beam directed
along the leading diagonal. This system contains many degrees
of freedom, and the analysis we have presented here only
just begins to scratch the surface of what we believe quantum
metamaterials will be capable of. Some example applications,
that are beyond the scope of this work, might be demonstrating
possible violations of Bell’s inequalities for the material in
its “birefringent” state or further modifying the materials’
properties by applying the control flux in a manner that breaks
the symmetry we assume in this paper. Due to the fact that
there is no need to undergo a quantum state preparation or
initialization stage, it is our view that quantum-state meta-
materials will be more readily realizable than other quantum
technologies such as quantum computing. Quantum-state
metamaterials as proposed here may be fabricated in existing
state-of-the-art laboratories and look set to form the basis for a
new class of scalable quantum technologies. Given the phase
dependence of our toy-model quantum-state metamaterial,
immediate utility may be found in metrology, perhaps enabling
the realization of solid state sensors whose operation is, in
some way, analogous with quantum illumination and
interferometer protocols, which could in turn lead to the
determination of an unknown phase from an analysis of
the quantum statistics of photon counts received at each of
the sensors from a random source.
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