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Sideband generation of transient lasing without population inversion
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We suggest a method to generate coherent short pulses by generating a frequency comb using lasing without
inversion in the transient regime. We use a universal method to study the propagation of a pulse in various spectral
regions through an active medium that is strongly driven on a low-frequency transition on a time scale shorter
than the decoherence time. The results show gain on the sidebands at different modes can be produced even if
there is no initial population inversion prepared. Besides the production of ultrashort pulses this frequency comb
may have applications towards making short-wavelength or terahertz lasers.
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I. INTRODUCTION

As a fundamental aspect of nonlinear optics, optical side-
bands generated via frequency modulation attract widespread
interest and have versatile applications in atomic systems
[1–3], terahertz quantum cascade lasers [4], ultrafast driven
optomechanical systems [5], polymer waveguides on a printed
circuit [6], and so on [7,8]. In these cases, a probe laser source
is needed and optical sidebands are produced by the interaction
between the probe laser and the modulated medium. However,
the addition of this extra probe laser not only increases the
complexity of the experiment but also introduces a limit to
this technology because it is difficult to prepare a tabletop
laser pulse in some specific frequency regimes, i.e., in the
extreme ultraviolet (xuv) or x-ray regime and the THz regime.

Lasing without inversion (LWI) [9–12] has been studied in
various media, such as in gas [13], circuit quantum electro-
dynamics [14], and terahertz intersubband-based devices [15].
By preparing an atomic system in a coherent superposition
of states it is possible to create atomic coherence to suppress
absorption resulting in LWI [16]. Steady-state LWI requires
that the spontaneous decay rate of the pumping transition is
larger than the decay rate of the lasing transition [17], which is
difficult to achieve when the frequency of the lasing transition
is higher than the drive field frequency. Thanks to a recent
experiment showing that a large collective atomic coherence
can be built up during a superradiant time scale much shorter
than the collisional decoherence time [18], these obstacles can
be overcome in LWI in the transient regime [12], where the
lasing happens at a time much shorter than the decoherence
time and therefore all the decay rates can be neglected. This
paves the way for more complicated manipulation of the
quantum coherence to achieve sideband lasing at multiple
frequencies without initial population inversion.

In this article, we combine the concepts of transient LWI and
of sideband generation to realize frequency comb generation
at high frequencies. The transient LWI is explored in a more
complete picture than in any previous works by considering all
the frequency mode components. Through making a single-
pass superradiant gain [19,20], our results provide a route
toward generating multiple-frequency coherent light and have
implications for the ultrashort pulse creation, short-wavelength

coherent light sources in the xuv and x-ray regimes, and
tunable THz laser generation.

II. MODEL

The mechanism of our proposal is shown in Fig. 1 (left)
based on a three-level V-type system. The system is initially
prepared such that most of the population remains in the
ground state but a little population is in the excited state |a〉. A
strong driving field �drive propagates into the pencil-like active
medium and couples the transition c ↔ b. A Floquet ladder
[21] is generated [see Fig. 1 (right)]. The transitions from a to
the Floquet ladder produce various lasing fields with frequency
νl ∼ ωab + 2jνd (j = 0,±1,±2, . . . ) in a time scale much
shorter than any decay time. Here νl is the lasing frequency,
ωab is the atomic transition, νd is the driving field frequency.
These fields are coupled by �drive via the atomic coherence.
The frequency difference between sidebands is always an even
multiple of νd since an atom in state |i〉 needs an even number
of photons to return to its original state |i〉, through successive
real and virtual processes (where the counter-rotating terms
play a role) [22,23].

The simple but important physics behind the frequency
comb gain profile can be understood by considering the
dressed-state picture. By driving the c → b transition, the
excited state a is coupled with two dressed states (j+, j−)
at each order in the Floquet ladder (see Fig. 1). Both of the
allowed transition frequencies are on the order of ωab + 2jνd .
The energy difference between two dressed states depends
on the drive field Rabi frequency �d and the drive field
detuning �. The initial population in the ground state b is
redistributed to the two split dressed states at each order.
While there is no population inversion in the bare-state system,
it is still possible to achieve transient lasing because of the
population inversion in the dressed-state picture. Through
the coupled atomic coherence, different sideband modes
are consequently amplified. The lasing threshold can be
reached by tuning the driving field intensity and the medium
length.

To start our analysis, we assume that ρbb, ρcc, and ρcb evolve
only under the influence of the driving field for the moment
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FIG. 1. (Color online) Left: Energy diagram for the V scheme.
Right: Floquet ladder of states produced by the c → b transition
driven by a laser field with frequency νd . Possible lasing transitions
are of the 0th-order transition (∼ωab), and at the even sidebands
of the ±2nd-order transition (∼ωab ± 2νd ), etc. Each order is split
into two dressed states (j+, j−) by the rotating-wave terms of the
electric-dipole interaction. The side-band signals are generated due
to the state mixing by the counter-rotating terms.

(see the corresponding equations in Appendix A) because
the laser field coupled with the a ↔ b transition is relatively
weak. The drive field �drive = �d cos[νd (t − z/c)] is turned on
adiabatically. We look for the solutions in the forms ρbc(t,z) =∑

m ρm
bce

−imνd (t−z/c) and ρbb(t,z) = ∑
m ρm

bbe
−imνd (t−z/c). A set

of infinite coupled algebraic equations can be derived and the
solutions for ρm

bc and ρm
bb are found numerically. The detail is

in Appendix B.
The propagation of the laser pulse is described by

Maxwell’s equation [16](
c2 ∂2

∂z2
− ∂2

∂t2

)
�laser = 2�2

a

ωab

∂2

∂t2
(ρab + c.c.), (1)

where �a ≡
√

3Nλ2
abγ c

8π
, where N is the density, λab is the

a → b transition wavelength, γ is the a → b radiative decay
rate, and c is the speed of light. The atomic coherences ρab

and ρac evolve with Eqs. (A1) and (A2) in Appendix A. We
are looking for a solution in the form of a superposition of
spectral components without the rotating-wave approximation
(RWA) [1]:

�laser(t,z) =
∑
m

�m
l (z)e−i(ωab+mνd+�ν)(t−z/c) + c.c., (2)

ρab(t,z) =
∑
m

ρm
ab(z)e−i(ωab+mνd+�ν)(t−z/c), (3)

ρac(t,z) =
∑
m

ρm
ac(z)e−i(ωab+mνd+�ν)(t−z/c), (4)

where m = 0, ±1, ±2, . . ., and �ν is the small detuning
of the lasing frequency from the frequency ωab + mνd .
By using the expressions in Eqs. (2)–(4) and taking the
components for the same frequency mode m with the slowly-
varying-envelope approximation (SVEA), the equation of the

evolution of the laser field becomes

∂

∂z
�m

l = i
ωm

ωab

�2
a

c
ρm

ab, (5)

where ωm ≡ ωab + mνd + �ν. Here introduce next the set of
coupled algebraic equations which combine the equations that
describe the evolution of the coherence ρab and ρac:

�−
mρm−2

ab + �0
mρm

ab + �+
mρm+2

ab = −
∑

q

�2q
m �

m−2q

l , (6)

where we define η±
m ≡ 1/(ωcb ± νd + mνd + �ν +

iγt ),�±
m ≡ −�2

dη
±
m/4,�0

m ≡ (mνd + �ν + iγt ) − �2
d (η−

m +
η+

m)/4, and �
2q
m ≡ ρ

2q

bb − ρaa(0)δq0 + �d (η−
mρ

2q−1
bc +

η+
mρ

2q+1
bc )/2, where γt is the total decoherence rate,

which is negligible in the transient regime. Equation (6)
indicates that the component of the field at the mode m is
coupled with those at modes m + 2j , where j is the integer.

We search for a solution of Eq. (6) with the form

�m
l (z) =

∑
n

unε
m
n eiknz. (7)

Using this form in Eq. (5), we obtain ρm
ab(z) =

ωab

ωab+mνd+�ν
c

�2
a

∑
n unε

m
n kne

iknz. With the trial solutions of �m
l

and ρm
ab, Eq. (6) results in an infinite set of linear equations

with eigenvalues kn and their corresponding eigenvectors ε̂n =
(. . . ,εm−2

n ,εm
n ,εm+2

n , . . . )T . The coefficient un is determined
by the boundary conditions for �m

l (z = 0) and it reads un =∑
m εm

n �m
l (z = 0). There are an infinite coupled number of

frequency modes. However, the spectra must have a central
spectral region where all the frequency modes have relatively
strong intensities while the other frequencies far away from
this region fade out gradually. Therefore, we can solve Eq. (6)
numerically in a central spectral region where it has the central
mode m = 0 and boundary modes m = m0. The set of infinite
equations is truncated to dimension (m0 + 1) × (m0 + 1) [22].

III. RESULTS AND DISCUSSIONS

We first show the basic result in Fig. 2. The gain is
characterized by the imaginary parts of the eigenvalues kn

(n = 1,2, . . . with descending magnitudes of their imaginary
parts) of Eq. (6), since the fields generally follow ∼e−Imk1z.
Especially, we focus on the leading eigenvalue k1 whose
imaginary part has a magnitude several orders larger than the
rest. A peak of −Im(k1) appears at �ν ∼ 1.05� with a width
of ∼0.01�, where � ≡ νd − ωcb. We therefore can observe
sideband LWI in this region.

The amplitude of the output field at frequency mode m

(�m
l ) is determined by Eq. (7). The gain of each frequency

component is dependent not only on the imaginary part of
the eigenvalues but also on the coefficients such as εm

n , the
elements in the eigenstates, and un due to the boundary
condition. This results in different lasing amplifications for
different frequency modes. If the field component has smaller
coefficients, it requires a longer propagation length to be
amplified. The result is plotted in Fig. 3. We find that we
generate a frequency comb at a long propagation distance [z =
15 (c/�a)]. With longer propagation length, sideband lasing
at the higher-order modes gets amplified. For the field at mode
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FIG. 2. (Color online) The imaginary part of k1 as a function of
the lasing frequency detuning �ν. The populations are ρaa(0) = 0.1,
ρbb(0) = 0.9, and ρcc(0) = 0, i.e., without inversion. ωab = 5.0ωcb,
�a = 0.05ωcb, and γt = 10−4ωcb. We drive the c → b transition with
a weak detuned field with νd = 1.1ωcb and �d = 0.05ωcb. We cut off
our calculation at m = ±10.

m �= 0 [�m
l (z)] with frequency ∼ωab + mνd , the component

of k1 in Eq. (7) does not dominate over the components of the
other eigenvalues for small z, so the field component �m

l (z) is
not amplified compared to its initial value [�m

l (0)]. This means
that the laser field has threshold behavior and the one at a larger
frequency mode has a higher threshold value (see Fig. 3).
The amplification quantity log10[�m

l (L)/�m
l (0)] is linearly

dependent on the propagation length L only if the propagation
length L exceeds the threshold value. In this regime, the linear
coefficients for each curve at different frequency modes are
the same because the leading terms in Eq. (7) for all modes m

FIG. 3. (Color online) The amplification of the output field in
the whole spectral region with different propagation distance z. The
creation of a frequency comb is shown. The plot is made with the
same parameters as in Fig. 2.

FIG. 4. (Color online) The maximum value of the negative imag-
inary part of the eigenvalue k1, −Im(k1)max (left blue), with its
corresponding lasing frequency detuning �ν (right purple) for various
drive field Rabi frequency �d . The corresponding �ν is plotted only
for positive −Im(k1). This plot determines the Rabi frequency �d

that should be chosen for peak gain.

are the components of k1 for large z and all those terms grow
according to exp(−Imk1z).

The amplification of the laser pulse in the whole spectral
region has a common source, −Im(k1). We study the relation
between k1 and the drive field Rabi frequency �d with all
the other parameters fixed. We solve Eq. (6) numerically for
various �d and search the maximum value of −Im(k1)max by
scanning the lasing frequency detuning �ν for each set of
parameters. The dependence of the quantity −Im(k1)max with
its corresponding lasing frequency detuning �ν on different
�d is plotted in Fig. 4. All of the other parameters are the
same as those in Fig. 2. We find that the quantity −Im(k1)max

is increasing with the drive field Rabi frequency �d when �d

is small. Nevertheless −Im(k1)max has a maximum after which
it drops counterintuitively with increasing �d .

This behavior can be explained in the dressed-state picture.
Each order of the Floquet ladder of states is split in two dressed
states (as shown in Fig. 1). If �d → 0, one of the two dressed
states (level 2j− in the current case) has ∼0 population, but
the corresponding coupling strength between this dressed state
and the excited state also goes to zero. The increase of �d leads
to the enhancement of this coupling strength and results in the
increase of the gain. However, larger �d also leads to more
population in this dressed state, resulting in less population
inversion. The competition between these two mechanisms
is the reason that the quantity −Im(k1)max has the maximum
positive value when �d is near the resonance, ∼0.1ωcb (see
Fig. 4). Only one of the two split dressed states (2j−) can
have less population than the excited state, so there is only
one peak of the imaginary part of the eigenvalue k1 as shown
in Fig. 2. (This is summarized in the detailed derivation in
Appendix C.) On the other hand, changing the drive field Rabi
frequency modifies the energies of the two dressed states, so
the corresponding lasing frequency detuning �ν is increasing
versus �d (right purple curve in Fig. 4).
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FIG. 5. (Color online) Ultrashort pulse intensity in the case of a
hydrogen molecule. A 5-fs pulse is created with parameters given in
the text.

The generated frequency comb has many applications.
Ultrashort pulse generation. Ultrashort pulse production

can be achieved by modifying an input single-frequency field
to create an output field with multifrequencies at the same
phase [1,24,25]. In contrast our method is valid for generating
the ultrashort pulse without the requirement of an input field
at the same centered frequency as the desired output pulse.
A low-frequency drive is used to modulate the system. We
choose a hydrogen molecule as an example, which has its
first vibrational transition frequency at the ground electronic
state λcb = 2.28 μm and a high-frequency electronic transition
(B 1�+

u ↔ X 1�+
g ) at the frequency λab = 109 nm. A few-

cycle pulse with a 5-fs linewidth and a 22-fs repetition period
is produced by converting the central five sideband LWIs
at different spectral components attenuated to equal values
with frequency-resolved filters (see Fig. 5). The physical
mechanism is similar to that in Ref. [1]. By changing to a
different active medium, it is possible to further shorten the
pulse width.

Short-wavelength laser. The conversion from the long-
wavelength drive pulse to the short-wavelength emission
pulse, in particular, the pulses at the blue-shifted sidebands
(m > 0), provides a promising choice for generating a
high-frequency laser. Consider as a proof-of-principle the
realistic experimental choice of a helium plasma gas which
is partially excited to the metastable triplet state, 2 3S1, as
realized in one recent experiment [18]. Where the density
is ∼1016 cm−3 and we can drive the infrared transition
2 3P1 → 2 3S1 (1083 nm) with a drive field wavelength of
λd = 1022 nm and a Rabi frequency of �d ∼ 1014 rad/s.
The dispersion of the drive field is negligible if it is detuned
significantly from the resonance. A little population is left
in the excited state 3 3P1 by nonradiative three-body recom-
bination following an optical field ionization. This allows
transient LWI to occur at the ultraviolet transition 3 3P1 →
2 3S1 (388.9 nm). The higher-order sideband lasing would
have wavelengths of λ

(2)
l ∼ 220.8 nm and λ

(4)
l ∼ 154.2 nm,

etc. In a 1-cm-long medium, we find a single-pass nanojoule
level coherent emission at the wavelength ∼220.8 nm with
the parameters listed above. In principle, this method can
make tabletop laser pulses in xuv and x-ray regime with a
visible driving field.

Tunable THz laser. Graphene has a suitable energy level
structure with strong dipole moments to study the physics in
the THz regime in a magnetic field [26,27]. The V scheme
model is composed of the Landau levels (LLs) near the Dirac
point with energy quantum numbers −2, −1, and 3. B ∼
1.4 mT gives the transition frequency ωcb/2π ∼ 140 GHz
between LLs with energy quantum numbers −2 and −1, which
can be driven by commercially available facilities for coherent
millimeter wave sources. Propagation effects are complicated
by the large number of graphene layers [28]; our model
shows sideband LWI at frequencies of 1.06 ± 0.28n THz
(n = 0,1,2, . . .). The transition frequencies in the V scheme
can be further changed by modifying the magnetic field. The
emission at different frequencies in the THz regime can be
used to build a tunable THz laser.

IV. CONCLUSION

In conclusion, we study frequency comb generation via
sideband transient LWI. We use the Floquet method to solve
the system in the weak lasing field limit (the population is
unchanged due to the lasing field) and find amplified emission
at different frequency modes. Threshold behavior is seen
for high-order sidebands. This universal model has many
possible applications including ultrashort pulse generation,
short-wavelength laser in the xuv and x-ray regimes, and
tunable THz laser sources. We gave an example scheme for
the generation of 5-fs pulses in molecular hydrogen.
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APPENDIX A: DENSITY MATRIX EQUATIONS FOR A
V-SCHEME MODEL

Here we list the full set of the density matrix equations for
the V-scheme model shown in Fig. 1:

ρ̇ab = −(iωab + γt )ρab + i�laser(ρbb − ρaa) − i�driveρac,

(A1)

ρ̇ac = −(iωac + γt )ρac + i�laserρbc − i�drive∗ρab, (A2)

ρ̇cb = −(iωcb + γt )ρcb + i�drive(ρbb − ρcc) − i�laserρca,

(A3)
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ρ̇bb = −i�driveρbc + i�drive∗ρcb − i�laserρba + i�laser∗ρab,

(A4)

ρ̇cc = i�driveρbc − i�drive∗ρcb, (A5)

ρaa + ρbb + ρcc = 1, (A6)

where γt is the total decoherence rate. These equations are
supplemented by Maxwell’s equation(

∂2

∂z2
− 1

c2

∂2

∂t2

)
Elaser = μ0

∂2P laser

∂t2
, (A7)

where P laser = N (℘baρab + c.c.).

APPENDIX B: FLOQUET EQUATIONS
FOR THE TWO-LEVEL SYSTEM WITH

A DETUNED DRIVE FIELD

Here we consider a two-level system (c → b) with a
detuned drive field �drive = �d cos[νd (t − z/c)] as shown in
Fig. 1. We look for the solutions in the forms ρbc(t,z) =∑

m ρm
bce

−imνd (t−z/c) and ρbb(t,z) = ∑
m ρm

bbe
−imνd (t−z/c) for

the following equations,

ρ̇bc = (iωcb − γ /2)ρbc − i�drive(ρbb − ρcc), (B1)

ρ̇bb = γρcc − i�driveρbc + i�drive∗ρcb, (B2)

ρbb + ρcc = ρbb(0) + ρcc(0), (B3)

where the depopulation decay rate γ is very small compared
with all other parameters. Therefore, the set of coupled
algebraic equations are found to be

(mνd + ωcb + iγ /2)ρm
bc − �d

(
ρm−1

bb + ρm+1
bb

)
= −�d

2
(δm,1 + δm,−1)[ρbb(0) + ρcc(0)], (B4)

(mνd + iγ )ρm
bb − �d

2

(
ρm+1

bc + ρm−1
bc − ρ−m+1∗

bc − ρ−m−1∗
bc

)
= iγ [ρbb(0) + ρcc(0)]δm0. (B5)

General results for ρm
bc and ρm

bb can be found by solving the
infinite coupled Eqs. (B4) and (B5) numerically. Note from
Eq. (B5) that ρm

bb = ρ−m∗
bb , which leads to the real solution for

ρbb.

APPENDIX C: LWI IN THE DRESSED-STATE PICTURE

Here we consider only the 0th-order lasing transition in
the dressed-state picture. The drive field couples the c → b

transition and has the form �drive = �d cos(νdτ ), where τ =
t − z/c. With the RWA, the interaction Hamiltonian is

V = −��|c〉〈c| − ��d

2
|c〉〈b| − ��d

2
|b〉〈c|, (C1)

where � = νd − ωcb. It has two eigenstates:

|+〉 =
√

�eff − �

�eff
|c〉 −

√
�2

d

2�eff(�eff − �)
|b〉, (C2)

|−〉 =
√

�eff + �

�eff
|c〉 +

√
�2

d

2�eff(�eff + �)
|b〉, (C3)

where �eff ≡
√

�2
d + �2 , and their corresponding eigenval-

ues are

ω± = 1
2 (−� ± �eff). (C4)

For a system which is initially at state |b〉 at τ = 0, the system
evolves as

|ψ(τ )〉 = −
√

�eff + �

2�eff

√
ρbb(0)e−iω+τ |+〉

+
√

�eff − �

2�eff

√
ρbb(0)e−iω−τ |−〉 (C5)

at τ = t − z/c � 0. Therefore, the density matrix elements are

ρ++(t,z) = �eff + �

2�eff
ρbb(0), (C6)

ρ−−(t,z) = �eff − �

2�eff
ρbb(0), (C7)

ρ+−(t,z) = −
√

�2
eff − �2

2�eff
ρbb(0)e−i(ω+−ω−)(t−z/c), (C8)

ρ−+(t,z) = −
√

�2
eff − �2

2�eff
ρbb(0)ei(ω+−ω−)(t−z/c). (C9)

Now, we introduce the weak lasing field El with frequency
νl ∼ ωab coupling the a → b transition. The Hamiltonian
reads

H = ωa|a〉〈a| + ω+|+〉〈+| + ω−|−〉〈−|
−℘abEle

−iνl t |a〉〈b| − ℘baE
∗
l e

iνl t |b〉〈a|
= ωa|a〉〈a| + ω+|+〉〈+| + ω−|−〉〈−|

+ (−℘a+Ele
−iνl t |a〉〈+| − ℘a−Ele

−iνl t |b〉〈−| + H.c.),

(C10)

where

℘a+ ≡ −
√

�eff + �

2�eff
℘ab, (C11)

℘a− ≡
√

�eff − �

2�eff
℘ab. (C12)

We assume that El is so weak that it doesn’t change the
populations and the coherence between states |+〉 and |−〉.
Therefore we find

d

dt
ρ̃a+ = −i(ωa+ − νl)ρ̃a+

− i℘a+El[ρaa(0) − ρ++] + i℘a−Elρ−+, (C13)
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d

dt
ρ̃a− = −i(ωa− − νl)ρ̃a−

− i℘a−El[ρaa(0) − ρ−−] + i℘a+Elρ+−, (C14)

where ωa± ≡ ωa − ω±, and ρ̃a± ≡ ρa±eiνl t . The Maxwell’s
equation has the expression(

∂

∂t
+ c

∂

∂z

)
El = iνl

2ε0
℘abρ̃ab = iνl

2ε0
(℘a+ρ̃a+ + ℘a−ρ̃a−).

(C15)

If we take the RWA and neglect all the fast-oscillating
terms, then El is only possible to get amplified at
the resonant frequency ν±

l = ωa± with the corresponding
coherence as

d

dt
ρ̃a± = −i℘a±El

[
ρaa(0) − �eff ± �

2�eff
ρbb(0)

]
. (C16)

Hence the electrical field El evolves as(
∂

∂t
+ c

∂

∂z

)
Ėl = νl℘

2
ab

2ε0

{
�eff ± �

2�eff

×
[
ρaa(0) − �eff ± �

2�eff
ρbb(0)

]}
El. (C17)

From this result, we find that the electrical field El can
get amplified if there is population inversion between state |a〉
and state |±〉 in the dressed-state picture. We consider the case
that ρaa(0) � ρbb(0) and assume � > 0. Lasing happens at
the transition between the state |a〉 and the state |−〉 and gain
is dependent on the quantity �eff−�

2�eff
[ρaa(0) − �eff−�

2�eff
ρbb(0)].

When �d → 0, gain → 0 since �eff−�

2�eff
→ 0, though there is

population inversion ρaa(0) > �eff−�

2�eff
ρbb(0). Gain is increasing

with the increase of �d initially. After it reaches the maximum
value, it will decrease until it becomes zero when there is no
population inversion ρaa(0) � �eff−�

2�eff
ρbb(0) for a very large

�d . The corresponding lasing frequency is νl = ωa− = ωab +
1
2 (� + �eff), which increases with �d . It has the similar result
for the case � < 0 and the lasing happens at the transition
between the state |a〉 and the state |+〉.

FIG. 6. (Color online) Detailed numerical experiments with
the following parameters: νd = 1.06ωcb, �d = 0.18ωcb, �a =
0.0754ωcb, L = 7.54c/�a , ρaa(0) = 0.15, ρbb(0) = 0.85, ρcc(0) =
0, and γt = 10−4ωcb.

APPENDIX D: NUMERICAL SIMULATION WITH THE
FULL SET OF MAXWELL AND SCHRÖDINGER

EQUATIONS

Finally, we show the detailed numerical simulation with the
full set of Maxwell and Schrödinger equations including pop-
ulation evolutions without any approximation except SVEA in
Fig. 6. We use the polarization source term in the equations to
describe production rate of the dipole due to the spontaneous
emission [29]. We see multiple single-pass gain peaks above
the noise level and they are located at the lasing frequencies
ν±2n

l ∼ ωab ± 2nνd . There is no population inversion in the
system. Coherent emission is generated directly from vacuum
fluctuations without an initial seed pulse. The results of the
amplification are generally linearly dependent on �aL. This
feature gives us flexibility for choosing parameters in future
experiments. For example, if the system has a smaller �a than
what we propose, it can still produce the same amount of gain
as what we expect by increasing L.
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