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Filamentation of ultrashort laser pulses in silica glass and KDP crystals: A comparative study
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Ionizing 800-nm femtosecond laser pulses propagating in silica glass and in potassium dihydrogen phosphate
(KDP) crystal are investigated by means of a unidirectional pulse propagation code. Filamentation in fused
silica is compared with the self-channeling of light in KDP accounting for the presence of defect states and
electron-hole dynamics. In KDP, laser pulses produce intense filaments with higher clamping intensities up to
200 TW/cm2 and longer plasma channels with electron densities above 1016 cm−3. Despite these differences, the
propagation dynamics in silica and KDP are almost identical at equivalent ratios of input power over the critical
power for self-focusing.
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I. INTRODUCTION

For two decades, investigations of intense laser pulses
interacting with dielectrics have revealed key features in
the nonlinear propagation of light and the relatively high
robustness of irradiated materials. An intriguing phenomenon
is the filamentation of powerful beams in transparent solids,
stemming from the interplay between diffraction, chromatic
dispersion, Kerr self-focusing, and generation of free carri-
ers [1–4]. From a theoretical point of view, an important issue is
the accurate modeling of materials such as silica glass (SiO2),
potassium dihydrogen phosphate (KH2PO4 or KDP), and its
deuterated analog (KD2PO4 or DKDP) [5]. Routinely used in
high-power laser systems devoted to, e.g., inertial confinement
fusion, these materials are exposed to intense radiation. The
precise knowledge of their inherent ionization properties and
of the nonlinear light-matter interaction is thus essential to
understand how and where laser damage initiated by plasma
generation takes place. In particular, the strong increase in
laser intensity which occurs during filamentation can be a
potential source of damage, because photoinduced ionization
produces an electron plasma in the wake of the optical
field.

While SiO2 glasses and KDP crystals are mostly exploited
in the fusion context for nanosecond-long pulses, laser-induced
damage has recently been examined for shorter femtosecond
pulses, both experimentally and theoretically. One motivation
is the understanding of the influence of precursor defects,
which may locally generate nonuniform damage zones over
nanometer sizes. In KDP, precursors are suspected to be con-
nected with the proton transport in the hydrogen bond network,
which induces defects, e.g., oxygen vacancies, leading to
hole trapping. For an accurate modeling of the interaction
it is important to incorporate the particular band structure of
KDP. For instance, it was recently shown that electronic states
located in the band gap (SLGs) can serve as intermediate
transition states to transfer carriers (electrons) from the valence
band to the conduction band, and such transitions involve
lower photon numbers than a direct multiphoton process [6–8].
Moreover, the trapping rates increase with the laser excitation
density, and hole trapping precedes electron trapping [9]. In
contrast, for silica glass, electron transitions from the valence
band to the conduction band are direct and the kinetics of

electron trapping (self-trapped excitons) does not depend on
the laser intensity.

The goal of this paper is to compare the filamentation
of 800-nm femtosecond pulses in silica and KDP. Fila-
mentation is an omnipresent phenomenon in high-intensity
pulse propagation and hence of utmost importance for the
understanding of possible laser-induced damage. In particular,
the maximum intensity occurring inside a material is given
by the so-called clamping intensity, determined by the self-
channeling dynamics. Unfortunately, the clamping intensity in
solids is not accessible by direct experimental measurements.
Therefore, estimates extracted from numerical simulations
usually provide valuable information. This clamping intensity
is an important parameter for the interaction of laser pulses
with crystal defects [10] and possible dopants [11].

The quantitative reliability of simulation results crucially
depends on the material models, in particular the accurate
description of the free carrier densities. Our selected ionization
models consider either direct transitions from the valence band
to the conduction band only (silica) or additional transitions
due to the presence of SLGs (KDP). Different photoionization
descriptions are used, from the complete Keldysh rate with
tunnel ionization [12] to purely multiphoton ionization (MPI)
rates. The growth of the electron density in the conduction
band is limited by electron relaxation, whose associated time
scale depends on the trapped-hole population and their ability
to trap free electrons.

The paper is organized as follows. Section II recalls the
propagation model and ionization schemes, with emphasis on
KDP crystals. Section III compares the filamentation dynamics
of short 50-fs pulses in silica glass and in KDP. Despite the
comparable size of band gaps in silica and KDP, we report
significant differences in the ionization rates leading to three
times higher clamping intensities in KDP and a longer plasma
channel. The former effect is caused by a weak 5-photon
ionization cross section; the latter is supported by transitions
from the SLG states. At the same time, we identify very
similar spatiotemporal filamentation dynamics in both silica
and KDP after rescaling the pulse power. Section IV examines
longer pulses, for which we expect to enhance the impact of
defect states over longer relaxation times, since the associated
electron recombination time lies in the picosecond time scale.
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TABLE I. Parameters for silica dispersion Eq. (2).

B1 0.6961663 λ1 0.0684043
B2 0.4079426 λ2 0.1162414
B3 0.8974794 λ3 9.896161

Most of the filamentation characteristics for short pulses are,
however, retrieved.

II. MODEL EQUATIONS

We integrate the following axial-symmetric pulse propaga-
tion model for filamentation [1]:

∂zE = i

2k0
T̂ −1 1

r
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2
βE,

(1)

where z is the propagation variable, t is the retarded time in a
frame moving with group velocity 1/k(1) at center frequency
ω0, k(ω) = n(ω)ω/c, n0 = n(ω0), T̂ = 1 + (i/ω0)∂t , and D̂ =∑

m�2 k(m)(i∂t )m/m! is the dispersion operator formally in-
volving the derivatives k(m) = ∂mk/∂ωm|ω0 . The electric field
envelope E is normalized such that I = |E |2 equals the laser
intensity [13]. R(t) denotes the time-response function of the
Kerr nonlinearity, ρc = 1.73 × 1021 cm−3 is the critical plasma
density at 800 nm, and ρ is the electron density produced in
the conduction band.

A. Fused silica

Our modeling of the optical properties of fused silica
follows Ref. [14]. Linear dispersion is included via the
Sellmeier formula

n2(λ[μm]) = 1 +
3∑

j=1

Bjλ
2

λ2 − λ2
j

, (2)

whose parameters are summarized in Table I. We can evaluate
the linear refraction index n0 = 1.454 and the group velocity
dispersion (GVD) coefficient k(2) � 362 fs2/cm at wavelength
λ = 800 nm. The response function

R(t) = (1 − f )δ(t) + f θ (t)
1 + ω2

Rτ 2
R

ωRτ 2
R

e
− t

τR sin(ωRt) (3)

contains a Raman-delayed contribution with ratio f = 0.18,
rotational delay time τK = 32 fs, and resonance frequency
ωR = 0.082 fs−1. The nonlinear index for glass is n2 =
3.2 × 10−16 cm2/W [14,15], so that the critical power for
self-focusing, Pcr � λ2

0/(2πn0n2), takes the value P silica
cr =

2.19 MW.
The electron density in the conduction band is governed by

∂tρ = W (I )ρnt + σρI/Ui − ρ/τrec, (4)

where the ionization rate W (I ) is the complete Keldysh
rate [12], considering the gap potential Ui = 9 eV [16,17].
The electron collision time τc = 20 fs determines the inverse

Bremsstrahlung cross section σ = 6.57 × 10−19 cm2 [3], and
the electron recombination time can be estimated as τrec =
150 fs [2,16]. As long as the density ρ remains small compared
to the neutral density ρnt = 2.1 × 1022 cm−3, the model
gives reliable results. Losses resulting from photoionization
are included in the propagation equation (1) via β(I ) =
UiW (I )ρnt/I .

B. KDP crystal

For birefringent KDP crystals, we assume the laser beam in
ordinary polarization and neglect second harmonic generation
due to the large phase mismatch. We use the linear dispersion
law given in Ref. [18],

n2(λ[μm]) = 2.259276 + 0.01008956

λ2 − 0.0129426
+ 13.00522λ2

λ2 − 400
,

(5)

yielding the linear refraction index n0 = 1.502 and GVD co-
efficient k(2) = 274 fs2/cm at λ = 800 nm. The Kerr response
contains only an instantaneous contribution, R(t) = δ(t), and
the nonlinear coefficient n2 = 1.56 × 10−16 cm2/W [8] leads
to the critical power for self-focusing P KDP

cr = 4.35 MW.
As far as the electron density in the conduction band of KDP

is concerned, we resort to a model taking into account various
defect states (SLGs) in the energy gap Ui = 7.7 eV between
valence band and conduction band. This model was recently
developed in [8] and validated against femtosecond pump
probe experiments. Here, four different ionization channels
contribute to the electron population in the conduction band,
namely, 3-photon ionization from a defect state SLG1 located
at ∼3.1 eV above the valence band, 1-photon transition from a
defect state SLG2 close to the conduction band, direct 5-photon
ionization from the valence band, and impact ionization. All
four mechanisms are illustrated schematically in Fig. 1(a).
Each ionization channel is treated independently from the
others, as well as their respective recombination mechanisms.

Assuming that defect state SLG1 is initially filled and its
small electronic density ρSLG1 � ρnt = 2.1 × 1022 cm−3 does
not change during the interaction, the equation for the 3-photon
ionization channel reads

∂tρ1 = σ3I
3ρSLG1 − ρ1/τ1, (6a)

where ρ1 is the carrier density delivered in the conduction band
and τ1 is the trapping time provided in Table II.

The system of equations describing 1-photon ionization
from defect state SLG2 is a bit more involved [8]. It takes
into account the electron-hole dynamics and the population of
SLG2 from SLG1 via a 2-photon process:

∂tρ2 = σ1IρSLG2 − σcvρ2(ρth − ρtr), (6b)

∂tρtr = σcvρ2(ρth − ρtr), (6c)

∂tρfh = σ1IρSLG2 − ρfh/τfh, (6d)

∂tρth = ρfh/τfh, (6e)

∂tρSLG2 = σ2I
2ρSLG1 − σ1IρSLG2, (6f)

where ρ2 and ρtr are the densities of free and trapped
electrons, respectively; ρfh and ρth are the densities of free and
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FIG. 1. (Color online) (a) Schematic illustration of the four ion-
ization channels Eqs. (6) considered for the KDP crystal: 3-photon
ionization from a defect state SLG1, 1-photon transition from a
defect state SLG2 close to the conduction band (CB), direct 5-photon
ionization from the valence band (VB), and avalanche ionization.
(b) Comparison of ionization rates for multiphoton transitions at 800
nm. The black curve refers to the Keldysh rate [12] for silica (dashed
curve) and for KDP (solid curve). The blue (gray) dash-dotted line
shows the rate σ5I

5 used for KDP in Eq. (6g).

trapped holes. The term σcv accounting for electron capture is
discussed hereafter.

Originally discarded in Ref. [8] for more moderate intensi-
ties, direct 5-photon ionization employs an MPI rate and the

TABLE II. Parameters for KDP Eqs. (6) at 800 nm [8].

Physical parameters KDP, Ui = 7.7 eV

τrec (fs) 9000
σ5 (s−1 cm10 W−5) 1.0 × 10−59

σ3 (s−1 cm6 W−3) 8.6 × 10−27

ρSLG1 (cm−3) 2.0 × 1017

τ1 (fs) 300
σ1 (s−1 cm2 W−1) 2.0
(σcv)ref (s−1 cm3) 4.35 × 10−7

Iref (TW cm−2) 42.32
τfh (fs) 1000

σ2 (s−1 cm4 W−2) 1.3 × 10−12

related density of free electrons is governed by

∂tρMPI = σ5I
5ρnt − ρMPI/τrec, (6g)

where σ5 is the 5-photon ionization cross section and τrec

is the characteristic recombination time associated with this
ionization path. As in the previous rate equations, both
the values of σ5 and τrec have been determined to fit the
experimental data of [8]. Based on Fig. 6 of this reference, we
improved the agreement between experimental and theoretical
results by introducing this additional ionization pathway with
the parameters specified in Table II. The comparison has been
performed up to intensities of ∼60 TW/cm2, but it is expected
to hold for higher ones. Figure 1(b) indeed compares the MPI
rate σ5I

5 with the Keldysh rate using Bloch wave functions
in crystals for which the electron/hole mass in the valence
band is ∼3me [19]. We can observe the quite good agreement
between the Keldysh and MPI rates for KDP, which confirms
the validity of Eq. (6g) at higher intensities. For comparison,
the standard Keldysh rate for silica, plotted in dashed line,
is in average about 70 times larger in the intensity range
10 � I � 200 TW/cm2.

Finally, impact ionization contributes through

∂tρav = σρI/Ui − ρav/τrec (6h)

to the total electron density in the conduction band:

ρ = ρMPI + ρ1 + ρ2 + ρav. (6i)

Ionization losses, including implicit losses through population
of SLG1, follow from adapting the Poynting theorem to these
four ionization channels:

β(I ) = 5�ω0σ5I
4ρnt + (3 + 2)�ω0σ3I

2ρSLG1

+ (2 + 2)�ω0σ2IρSLG1 + �ω0σ1ρSLG2.
(7)

Here, the sum (3 + 2) [resp. (2 + 2)] accounts for the total
number of photons consumed in re-filling SLG1 and trans-
ferring electrons from SLG1 to the conduction band (resp. to
SLG2).

In the KDP ionization scheme, SLG densities ρSLG1

and ρSLG2 are limited to the saturation density ρsat = 2 ×
1017 cm−3 due to the finite density of defects. Thus, in our
numerical implementation we impose the additional constraint
ρSLG2(t) � ρsat when solving Eqs. (6). As far as impact
ionization is concerned, we estimate the electron collision time
τc � 100 fs from the experimental data of Ref. [8]. Compared
to silica, this much larger collision time is probably caused by
the energy gap � 1.55 eV in the KDP conduction band [20],
hampering MPI (small σ5) as well as avalanche ionization.

Following [8], the product of electron capture cross section
σc and average electron velocity v in Eqs. (6b) and (6c) depends
on the local laser intensity I . Direct comparison between the
rate equations and experimental data suggest a power-law de-
pendence σcv = (σcv)ref(I/Iref)−3.3, with reference intensity
Iref = 42.32 TW/cm2 and (σcv)ref given in Table II. This
behavior can be attributed to the fact that the conduction
electrons are strongly heated when operating in the infrared
(800 nm). Indeed, the capture cross section depends on the
electron kinetic energy, which is function of the laser intensity.
Similar temperature-dependent cross sections can be found
measured in [21]. However, such a dependency on the laser
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FIG. 2. (Color online) Electron densities in the conduction band
and partial contributions from different transition channels obtained
from Eqs. (4) and (6) using Gaussian pulses I (t) = I0 exp(−2t2/t2

p)
with tp = 50 fs and (a), (b) I0 = 10 TW/cm2; (c), (d) I0 =
50 TW/cm2; and (e), (f) I0 = 100 TW/cm2.

intensity disappears at ultraviolet wavelengths [22]. Note the
recombination times as long as 9 ps used in Table II: These are
attributed to the migration of defects, such as proton migration
in the lattice.

Figure 2 illustrates the plasma response computed from
the above models for silica and KDP at intensity levels
for which ionization is capable of competing with Kerr
self-focusing. For Gaussian intensity profiles I (t) = I0e

−2t2/t2
p

with 1/e2 half-width duration tp = 50 fs, all partial electron
densities contributing to the total conduction band density
have been plotted. The choices of I0 = 50 TW/cm2 and I0 =
100 TW/cm2 are reasonable clamping intensities for silica and
KDP, respectively (see below). We can infer from Fig. 2 three
characteristic intensity regimes. At relatively low intensities up
to 10 TW/cm2 [see Figs. 2(a) and 2(b)] electron densities in the
conduction band of KDP are much higher than in silica thanks
to the contributions of the SLGs (see red [light gray] solid and
blue [dark gray] dash-dotted lines). However, such density
levels are not sufficient to stop Kerr self-focusing. At higher
intensities around I0 = 50 TW/cm2 [see Figs. 2(c) and 2(d)]
we find that direct ionization from the valence band in silica
becomes much more efficient, while contributions from the
SLGs in KDP saturate due to the limited densities of the defect
states. Electron densities in the conduction band of silica are
then about 10 times higher than in KDP for this intermediate
regime, and we will see below that they are sufficiently high to
clamp the laser intensity around 50 TW/cm2 in silica. At even
higher intensities [see Figs. 2(e) and 2(f)] direct MPI from
the valence band (black dashed curve), even though the cross
section σ5 is small, becomes the dominant transition process
in KDP and elevates the conduction band densities enough
for intensity clamping. We can notice from Fig. 2 that impact
ionization (black dotted lines) contributes always less than 1/3

of the total conduction band density, and plays only a minor
role in any of the scenarios described above.

III. FILAMENTATION OF ULTRASHORT
(FEMTOSECOND) PULSES

We consider Gaussian input pulsed beams with tp =
50 fs and w0 = 60 μm. Because the filamentation dynamic
intrinsically depends on the ratio of the input peak power
over critical, we will compare simulation results for two pulse
energy values ensuring similar power ratios. Since fused silica
has a nonlinear Kerr index n2 about twice that of KDP,
this leads us to double the pulse energy content in KDP
simulations. Figures 3(a) and 3(b) show the behavior of the
maximum intensities versus propagation distance for pulse
energies between 0.5 and 2 μJ, i.e, with powers up to seven
times the critical power. First, we clearly observe that the
maximum clamping intensity in KDP is about three times
higher than in silica. This directly follows from comparing
the ionization cross sections. Indeed, considering that above
50 TW/cm2 direct 5-photons transitions prevail in KDP, we
can make use of the following easy estimate, valid in the MPI
regime [1]:

IK−1
clamp ≈ 2n0n2ρc

�τσKρnt
, (8)

where K is the photon number, to evaluate the clamping value
IKDP

clamp ≈ 140 TW/cm2 in KDP, assuming an efficient plasma
defocusing over short times �τ ∼ 10 fs [23]. This intensity
value is higher than that reached in silica, I silica

clamp ≈ 60 TW/cm2,
computed from Eq. (8) using the formal rescaling σ silica

6 �
70σ KDP

5 /Iclamp [see Fig. 1(b) and related comments].
Figure 3 also shows that, for the same power ratio over

critical, pulses in silica and KDP develop almost identical
propagation dynamics, down to the number of intensity spikes
(i.e., focusing-defocusing cycles) and first nonlinear focii
located at zc � 0.8 cm at the lowest energy and zc � 0.44 cm
at the highest one. Even though similar propagation behaviors
can be expected, from simple power scaling arguments and
because the Rayleigh length is similar for both materials
(zR � 2.1 cm), the quality of these similarities is somewhat
surprising and manifests once more the universality and
scalability of femtosecond filaments.

The evolution of the conduction band electron density
displayed in Figs. 3(c) and 3(d) is characterized by peak
values in KDP being around twice those in silica (e.g.,
ρKDP

max = 2 × ρsilica
max = 2 × 1020 cm−3 at z � 0.44 cm for the

most energetic pulses). Also, this figure reveals the underlying
action of the SLG transition mechanisms: At low intensities
�10 TW/cm2 a post-ionization regime occurs in KDP after the
main MPI range developing at distances z � 1 cm. Beyond this
distance, a residual plasma channel of density � 1016 cm−3 is
maintained over a propagation length of 1 cm. Pulses in KDP
seem able to preserve a longer self-guided state, as is visible
from the 1/e2 pulse diameter displayed in Figs. 3(e) and 3(f).
Moreover, the temporal on-axis dynamics shown in Figs. 3(e)
and 3(f) evidence rapid dispersion of the pulse around each
nonlinear focus, which is typical for normal dispersion in
transparent solids [24]. Strong dispersion takes place over
∼0.15 cm in silica and ∼0.175 cm in KDP (k(2)

KDP < k
(2)
silica).
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FIG. 3. (Color online) Filamentation dynamics of 50-fs, 60-μm Gaussian pulses propagating in silica (left column) or KDP (right column).
Input pulse energies are 0.5 μJ (1 μJ) for silica and 1 μJ (resp. 2 μJ) for KDP. (a), (b) Maximum pulse intensity; (c), (d) peak electron density;
(e), (f) nonlinear on-axis dynamics in the (t,z) plane for the high energy pulses; (g), (h) corresponding 1/e2 filament diameters.

By using these distances as typical values for the dispersion
length of self-focused pulses, we can expect occurrence of
light structures as short as ∼ √

0.15 × k(2) ≈ 7 fs durations.
As far as dissipation is concerned, we report energy losses
in KDP higher (<30%) than in silica (<10%), which are
probably associated with higher clamping intensities and more
ionization channels involved.

Figures 4(a) and 4(b) illustrate two snapshots of on-axis
temporal profiles, detailing in particular those with maximum
compression in time, i.e., 6.4 fs at z = 5.5 mm in silica

FIG. 4. On-axis temporal profiles at two different longitudinal
distances for the 50-fs pulse propagating in (a) silica and (b) KDP.
Insets show the on-axis electric field of the most compressed pulse.

(1 μJ pulse energy) and 6.2 fs at z = 8 mm in KDP (2 μJ
pulse energy). Corresponding high-frequency electric fields
are presented as insets. We also report an already compressed
waveform down to 7.1 fs in KDP at z = 5.5 mm (not shown).
Basically, the pulse temporal profile follows the well-known
dynamic spatial replenishment scenario [25] relying on the
formation of a two-peaked profile after refocusing of the rear
pulse, once the latter has been anteriorily defocused by plasma
generation. We can notice the shock structures occurring in
the trailing edges of the pulses at the shortest distances, which
signals a significant action of self-steepening.

IV. FILAMENTATION OF LONGER
(SUBPICOSECOND) PULSES

As can be seen from Fig. 2 and Table II, ionization dynamics
in KDP crystals feature slow relaxation times; i.e., free electron
lifetimes extend over the picosecond range for the SLG2 defect
state transitions and even over almost 10 ps for direct MPI
transitions and impact ionization. It is thus instructive to repeat
the previous simulations for much longer pulses, in order to
see whether the pulse length may interact with the different
ionization channels in KDP.

Figure 5 illustrates the same pieces of information as
Fig. 3, but for a 500-fs Gaussian pulse with same initial
width and power ratios, i.e., 5 μJ energy in silica and
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FIG. 5. (Color online) Filamentation dynamics of 500-fs, 60-μm Gaussian pulses propagating in silica (left column) or KDP (right column).
Input pulse energies are 5 μJ for silica and 10 μJ for KDP. (a), (b) Maximum pulse intensity; (c), (d) peak electron density; (e), (f) nonlinear
on-axis dynamics in the (t,z) plane; (g), (h) corresponding 1/e2 filament diameters. In (b), (d), (h) the red (gray) dashed curve refers to
filamentation in KDP with the 5-photon MPI process only.

10 μJ in KDP. Comparable maximum clamping intensities,
namely ∼80 TW/cm2 in silica and ∼200 TW/cm2 in KDP,
are retrieved. This finding is not surprising because the
balance between Kerr self-focusing and plasma defocusing
is not determined by the initial pulse duration, but by the
effective pulse length undergoing ionization at nonlinear
focus. Therefore, similar peak density values emerge near
the first focus; i.e., ρKDP

max = 2 × ρsilica
max = 2.6 × 1020 cm−3 at

z � 0.7 cm. In contrast, the initial pulse duration affects the
number of focusing-defocusing events, dispersion, and the
filament length. We report up to 15% losses in silica and
∼40% in KDP over the main filament range, along which
multiphoton absorption more severely decreases the pulse
power as many time slices participate in the ionization process.
From Fig. 5(d) we again retrieve an extended plasma channel
in KDP (ρmax � 1016 cm−3) produced by low intensities
≈10 TW/cm2 [Fig. 5(b)], as for the 50-fs pulses. The red
dashed curve plots the peak intensity and electron density
obtained when only accounting for the 5-photon MPI process
in the ionization of KDP. As expected, we can see that the SLG
contributions are crucial for supporting this extended plasma
range. Figures 5(e) and 5(f) display the on-axis pulse dynamics
for the two materials. Each focusing-defocusing event spans a
dispersive sequence extending over slightly longer distances,

which does not prevent the pulse from reaching very short
durations after several splitting events. Figures 5(g) and 5(h)
show the 1/e2 filament diameter, which here remains of
comparable size for the two materials.

Figures 6(a) and 6(b) detail the temporal pulse profiles at
different propagation distances, including that of maximum
compression. Long pulses decay into multipeaked structures
along the optical path, some of which can reach FWHM
durations as short as 5.6 fs at z = 9 mm in silica and 5.3 fs at

FIG. 6. On-axis temporal profiles at two different longitudinal
distances for the 500-fs pulse propagating in (a) silica and (b) KDP.
Insets show the on-axis electric field of the most compressed pulse.
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FIG. 7. On-axis spectra of the 50-fs and 500-fs long pulses plotted
as dashed curves in Fig. 4 and as solid curves in Fig. 6. Propagation
distances are (a) z = 4.5 mm and z = 9 mm for silica, and (b) z =
4.5 mm and z = 8 mm for KDP.

z = 8 mm in KDP. Such self-compression events are expected
to produce important supercontinuum generation. Figures 7(a)
and 7(b) present maximum spectral broadenings reached by
the 50-fs and 500-fs pulses in silica and their counterparts
in KDP. Close to the peak intensities, strong plasma gener-
ation and self-steepening effects blueshift the wings of the
spectra [26,27]. Note the strong blueshifts caused by steep
trailing edges [15] and oscillations in the spectra, which
come from the development of multiple peaks in the temporal
profiles [2]. As a result, the spatiotemporal distortions under-
gone by our short pulses are mostly generic for longer ones
and so are their respective frequency variations. Furthermore,
enhancing the input pulse length does not proportionally
increase the influence of collisional ionization, as the most
intense pulse peaks are supported by very short optical struc-
tures ∼10 fs. The collisional time in KDP is 5 times greater
than that in silica, and we checked that impact ionization
does not alter the overall electron density by more than
∼8% in silica and by ∼2% in KDP near their first nonlinear
focus.

We should mention that, for our longer 500-fs pulses,
additional defect states such as self-trapped excitons may
be created during the course of interaction. Due to their
characteristic time of formation (150 fs for silica and 300 fs
for KDP [8]) no influence at all is expected for the 50-fs
pulses considered in Sec. III. A self-trapped exciton may
induce an additional state localized in the band gap which can
further modify the electron dynamics. This state can decrease
the multiphoton order needed for direct transitions, but also
contribute to the recombination of conduction electrons as
well. Since both effects act in opposite directions, only a minor
impact is expected on the density of electrons in the conduction
band, which is the key player for filamentation. Furthermore,
the formation time of such excitons has to be considered
relatively to the pulse duration. For a 500 fs pulse, these defect
states act roughly during 350 fs, which is of the order of their
own formation time. Based on the exponential decay rate that
governs the density evolution, the relative density variation
due to these states should not exceed 10% and thus preserve
the filamentation dynamics.

To end with, we also did not observe significant differences
in the fluence evolution [F(r,z) = ∫

I (r,z,t)dt] in silica or in
KDP (see Fig. 8). Typically, 50-fs pulses in KDP reach the

FIG. 8. Evolution of the on-axis fluence vs propagation distance
for the 50-fs (dashed curves) and 500-fs (solid curves) long pulses
shown in Figs. 3 and 5.

maximum fluence level of 2 J/cm2 and about half this value
in silica. Using 10 times longer pulses leads to increase the
fluence maxima by a factor ∼2.5 only. Based on Fig. 1 of
Ref. [22], we expect ablation processes to start at fluences
close to 4 J/cm2 with ∼50-fs 800-nm pulses. This damage
threshold can only be very locally attained with our long
pulses and remains unexceeded with the short ones. The same
conclusion applies to fused silica, for which, according to Fig.
9 of Ref. [28] and the related definition of damage thresholds,
the fluence threshold is ∼1.4 J/cm2 for 50-fs pulses and about
5 J/cm2 for 10 times longer pulses.

V. CONCLUSION

In conclusion, we have investigated numerically the influ-
ence of different ionization scenarios in glass (fused silica)
and in crystal (KDP) on the filamentation dynamics of
femtosecond and subpicosecond pulses. We reported fluence
levels remaining below expected damage thresholds in solids.
Inside the filaments we observe significantly higher clamping
intensities in KDP and higher peak electron densities in the
conduction band. This finding may be important with respect
to crystal defects or dopants with lower damage thresholds.
Despite the increased intensities during propagation, the
filamentation dynamics are very similar in both materials
if one takes into account the higher critical power for self-
focusing in KDP. We provided evidence of the possibility to
compress efficiently femtosecond pulses and develop wide
supercontinua in both media. Electronic states located in the
band gap of KDP increase electron densities in the conduction
band at low intensities and thus prolong the plasma channels
in a post-ionization regime. Our results underline the univer-
sality of the filamentation characteristics for wide-band-gap
materials.
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A. Couairon, and L. Bergé, Phys. Rev. Lett. 87, 213902
(2001).

[3] L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade,
S. Tzortzakis, and A. Mysyrowicz, Phys. Rev. Lett. 89, 186601
(2002).
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