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Bragg-like interference in one-dimensional double-period quasicrystals
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Three quasi-Bragg conditions (QBCs) in one-dimensional double-period quasicrystals based on high
reflectance from interference are proposed. Analytical formulas for these QBCs are derived using band-edge
equations. All of these QBCs have conditions that are different from that of the traditional Bragg condition. The
QBC at quarter-wave thickness in double-period quasicrystals is also discontinuous in different regions of the
gap map. In contrast, the traditional Bragg condition for periodic cases, which lies at quarter-wave thickness,
is continuous in different regions of the gap map. It is found that there are three thickness conditions with
the maximum reflectance occurring in the midpoints of the QBCs in double-periodic quasicrystals, which is
analogous to the quarter-wave thickness in traditional periodic crystals. These QBCs in double-period cases are
different not only from the traditional Bragg condition in periodic cases, but also from those in Fibonacci and
Thue-Morse quasicrystals.
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I. INTRODUCTION

Bragg interference is one of the most important character-
istics in traditional periodic structures [1,2]. This condition
plays a key role in many important optical devices, such as
resonators, lasers, filters, reflectors, and fiber Bragg gratings
[3–5]. The recent discovery of quasicrystals has led to an
increasing interest in their optical and electronic properties
[6–10]. The transmission properties of electromagnetic waves
in quasicrystals, such as their cycling and self-similar transmis-
sion spectra and their branching band structures, which are dif-
ferent from the periodic or aperiodic cases [11–15], are suited
to optical devices that use advanced materials. Applications of
traditional photonic crystals, such as laser action and Anderson
localization of light can also be expected in quasicrystals with
similar functionalities but significant flexibility [16]. Research
has shown that a Bragg condition exists in a traditional periodic
system, but it is absent in a disordered system. In contrast, field
localization and delocalization occur in a disordered system
and quasicrystals [17]. Whether Bragg conditions exist in
quasicrystals is an interesting topic.

Since one-dimensional structures have attracted special
attention because of their fundamental physics and their
ease of fabrication for any wavelength scale, studies of one-
dimensional traditional photonic crystals, disordered struc-
tures, and quasicrystals, such as Fibonacci, double-period,
and Thue-Morse superlattices, have been undertaken [18–22].
Recently, two quasi-Bragg conditions (QBCs) with significant
reflectances due to interference, which are analogous to one
traditional Bragg condition for periodic cases [23,24], that
occur in a Fibonacci superlattice have been proposed [19].
More recently, researchers have shown that there are three
QBCs in Thue-Morse quasicrystals [25]. The Thue-Morse
superlattice has a complete transmittance at its QBC for
quarter-wave thickness. This is different from the QBCs in a
Fibonacci superlattice and the traditional Bragg condition for
periodic cases. Moreover, both the number and the conditions
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for QBCs in Fibonacci and Thue-Morse superlattices are
different.

A double-period superlattice (DPSL) is a typical quasicrys-
tal, alongside Fibonacci and Thue-Morse superlattices, and is
of great importance [26,27]. Studies about the scaling property,
self-similarity, localized states, and oblique incidence for
a double-period superlattice have been conducted [26,28].
Moreover, the properties of this superlattice with one of
the media being a negative refractive index also have been
investigated [27,29]. However, most of the studies only
concentrate on the quarter-wave condition. To the authors’
best knowledge, there have been few studies concerning
the existence of QBCs in DPSLs with different thickness
filling factors. It remains unclear whether QBCs exist in a
double-period superlattice. Since the interference not only
depends on an iteration rule, but also on the thickness and
frequency, it cannot be simply derived from an iteration rule.
If QBCs exist in a double-period superlattice, are they similar
to Thue-Morse or Fibonacci superlattices or even to traditional
bilayer periodical superlattices (BPSLs)? If the QBC exists,
can these conditions be expressed as simple analytical forms?
These questions are important not only to the basic optical
physics in a DPSL, but also for the potential applications,
such as multichannel filters, division multiplexing systems,
photonic integrated circuits, and random lasers of the different
types of quasicrystals [30,31].

In this study, a one-dimensional double-period dielectric
superlattice is studied using the transmission spectra and a gap
map method. The band-edge equation is used to determine
the band structure in order to avoid numerical instability.
The relationship between the transmission spectra and the
generation order of the DPSLs is also determined. Using a
gap map, a comparison is made between the traditional Bragg
condition and the quasi-Bragg condition.

II. MODEL AND FORMALISM

Initially, a one-dimensional double-period dielectric su-
perlattice, which comprises layers A and B, is considered.
Both sides of the superlattice are enclosed by the same
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semi-infinite bonding materials. All of the layers are taken to
be both uniform and optically isotropic without absorption.
Therefore, electromagnetic waves in the DPSL that have
different polarizations are not coupled, so they can be analyzed
separately. Binary layers A and B constitute DPSLs that follow
the iteration rule: A → AB and B → AA [26]. According to this
iteration rule, the structure Sv of a double-period superlattice
of generation order v � 2 with S1 = A is S2 = AB, S3 =
ABAA, etc. The number of layers Nv of generation order v can
be calculated using Nv = 2Nv−1, for v = 2, where N1 = 1.
The refractive indices of the binary layers A and B are defined
as nA and nB , respectively. Herein, nA < nB . The refractive
index of the semi-infinite bonding media of the structure is
defined as nb. The thicknesses of layers A and B are defined
as dA and dB, respectively, and these are controlled using the
filling factor F of the structure as F = dA/D with D = dA
+ dB. The normalized frequency is defined as �, where � =
ωD/2πc. The incident angle of light and the period number
of the structure are denoted as θ and N , respectively.

In this study, a graph model [32] is used to calcu-
late the transmission spectra and the gap map. First, the
electric and magnetic fields in the dielectric media are
governed by Maxwell’s curl equations. For TE polariza-
tion, the electric field in layer j , which propagates in
the positive z direction, can be formulated asÊ (j,x,y,z) =
ŷEy (j,x) exp (iωt − iβz) , where Ê is the electric field,
Ey(j,x) is the tangential electric field, and β is the propagation
constant for the electric field [32]. The tangential field in layer
j , ϕj (x), which includes the electric field and the magnetic
field, is governed by

d2ϕj (x)

dx2
+ k2

j ϕj (x) = 0, (1)

where kj = ±(k2
0n

2
j − β2)1/2 and k0 is the wave vector in a

vacuum. By substituting the tangential electric field Ey(j,x)
into Eq. (1), the electric field can be expressed as the
summation of the forward and backward traveling waves as

Ey(j,x) = aj exp[−ikj (x − xj−1)] + bj exp[ikj (x − xj−1)],

(2)

where Aj and Bj are the amplitudes of the forward and
backward traveling waves for the tangential fields Ey(j,x).
According to Eq. (1), the magnetic field in layer j can be for-
mulated as Ĥ (j,x,y,z) = [ẑHz(j,x) + x̂Hx(j,x)] exp(iωt −
iβz), whereĤ is the magnetic field. From Eq. (1), the tangential
magnetic field Hz can be formulated as

Hz(j,x) = −kj

ωμ0
{−aj exp[−ikj (x − xj−1)]

+ bj exp[ikj (x − xj−1)]}, (3)

where μ0 is the permeability in a vacuum. Therefore, the
relationship between the electric and the magnetic fields at the
interfaces of layers x = xj−1 and x = xj can be expressed in
the form: Aj = sjAj−1 + wjBj and Bj−1 = ujAj−1 + sjBj ,

respectively. Here,sj = sec kjdj ,uj = kj tan kjdj ,wj =
(tan kjdj )/kj ,Aj = Ey(xj ),Bj = −iωμ0Hz(xj ), and dj is
the thickness of layer j .

For a TM-polarized wave, the magnetic field in layer j that
propagates in the positive z direction can be formulated in the

form Ĥ(j,x,y,z) = ŷHy(j,x) exp(iωt − iβz), where Hy(j,x)
is the magnetic tangential field. Using the same procedure as
that for a TE-polarized wave, the relationship between the
electric and the magnetic waves for different interfaces can
be obtained in the same form as those for a TE-polarized
wave with Aj and Bj being replaced by Bj and Aj . Here, Aj

and Bj are redefined as Aj = −iωε0Ez(xj ) and Bj = Hy(xj ),
respectively, and ε0 is the permittivity in a vacuum. sj , uj ,
and wj are redefined as sj = sec kjdj ,uj = (kj/n

2
j ) tan kjdj ,

and wj = (n2
j tan kjdj )/kj . Using the graph method, the field

between different interfaces is determined. Therefore, the
transmittance, which can be verified by experiment [33], can
be calculated.

In order to avoid numerical instability, the band struc-
ture is derived using the band-edge equation. According to
Bloch’s theorem, the electromagnetic wave in a system with
a periodic boundary has the form AN = A0 exp(iKL)and
BN = B0 exp(iKL) for an electric and a magnetic wave,
respectively. L is the width of the system, and K is the Bloch
wave number. From Bloch’s theorem, we can obtain

cos (KL) = 1 − uw + s2

2s
. (4)

When the Bloch wave number K is complex, |cos(KL)| > 1,
and light transmission is forbidden. However, when the Bloch
wave number K is real, |cos(KL)| � 1, and light transmission
is allowed.

III. QUASI-BRAGG CONDITION

Since the QBCs for different regions are different, it is
essential to determine their analytical condition. Midlines of
the major gaps that are expressed as QBCs can be expressed
using the following formulas. First, the ends of each major gap
are classified as moving ends or fixed ends. The moving end
changes, and the fixed end stays fixed if the generation order
changes. Both ends of the major gaps lie on the QBC. For a
gap map diagram, the region encircled by the half-wave lines
BA,p, BA,p+1, BB,q , and BB,q+1 is defined as region (p,q) [19].
Here, BA,p and BB,q are half-wave lines as kAdA = pπ and
kBdB = qπ , where p = 1,2, . . . and q = 1,2, . . . , respectively.
kA and kB are the wave vectors of the electromagnetic wave in
layers A and B, respectively. There are three major gaps in the
DPSLs. Depending on the frequency range, they are defined
as up, middle, and down major gaps. The QBCs of the up,
middle, and the down major gaps for DPSLs in region (p,q)
can be deduced from the ends of the major gaps.

For region (p,q), the left ends of the QBCs of
the up, middle, and down major gaps are found at
the crossing points of kBdB = (q + 1)πand kAdA = p +
[Nv

B + (−1)v−1]/Nv
Aπ, (p + βv−1,v)π , and pπ, respectively.

The right ends are found at the crossing points of kBdB =
qπ and kAdA = (p + 1)π, [p + (Nv−1)/Nv

A]π, and (p +
βv,v)π,respectively. Here, p = 1,2, . . . , q = 1,2, . . . , and
βv−1,v = Nv−1

B /Nv
A. Nv

A and Nv
B are the number of layers A and

B of DPSLs for generation order v, which are given by Nv
A =

[2v + (−1)v−1]/3 and Nv
B = [2v−1 + (−1)v]/3, respectively.

Therefore, the values of � and F for the left and right ends
of a QBC of the up major gap with generation order v are
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expressed as

(�,F ) =
({

p + [
Nv

B + (−1)v−1
]/

Nv
A

}
σ + q + 1

2nB cos θB

,

{
p + [

Nv
B + (−1)v−1

]/
Nv

A

}
σ

q + 1 + {
p + [

Nv
B + (−1)v−1

]/
Nv

A

}
σ

)
for left ends, (5a)

(�,F ) =
[

(p + 1)σ + q

2nB cos θB

,
(p + 1)σ

q + (p + 1)σ

]
for right ends. (5b)

The parameter v is not contained in Eq. (5b). Therefore, the left end of the QBC of the up major gap is a fixed end. When the
generation order v changes, both the frequency and the filling factor of that end remain fixed. In contrast, the right end of the
QBC of the up major gap is a moving end. The parameter v, which is contained in Eq. (5a), causes the right end of the QBC of
the up major gap to change its position as the generation order v changes. Although, the QBC of the up major gaps is connected
by a fixed end and a moving end, other QBCs may be different.

Using the same procedure as that for the QBC of the up major gap, both ends of the QBC of the middle major gap can be
obtained from the crossing points. The left end and the right end of the QBC of the middle major gap are expressed as

(�,F ) =
([

p + (Nv−1)
/
Nv

A

]
σ + q

2nB cos θB

,

[
p + (Nv−1)

/
Nv

A

]
σ

q + [
p + (Nv−1)

/
Nv

A

]
σ

)
for left ends, (6a)

(�,F ) =
[

(p + βv−1,v)σ + q + 1

2nB cos θB

,
(p + βv−1,v)σ

q + 1 + (p + βv−1,v)σ

]
for right ends. (6b)

From Eqs. (6a) and (6b) it is seen that both ends of the QBC
of the middle major gap are moving ends. The parameter v in
the equation implies that the frequency and the filling factor
of these ends change as the generation order v changes. From
Eq. (6) it can also be deduced that neither end of the QBC of
the middle major gap in one region connects with the other
region. The QBC in the middle major gap of the DPSLs is
discontinuous. This is different from the Bragg condition in
BPSLs [25], which is continuous in different regions. Using
the same procedure, the values of � and F for the left and right
ends of the QBC of the down major gaps can be expressed in
the following form:

(�,F ) =
(

pσ + q + 1

2nB cos θB

,
pσ

q + 1 + pσ

)
for left ends,

(7a)

(�,F ) =
[

(p + βv,v)σ + q

2nB cos θB

,
(p + βv,v)σ

q + (p + βv,v)σ

]
for right ends. (7b)

The QBC of the down major gap has one moving end and
one fixed end. This is similar to the situation for a QBC of
the up major gap. However, the moving end of the QBC of the
down major gap is the right end, and that for the QBC of the up
major gaps is the left end. From Eqs. (5b) and (7a) it can also
be deduced that the QBC of the up major gaps is connected
with a QBC of the down major gap in another region by their
fixed ends. This is different from the QBC of the middle major
gap and the traditional Bragg condition.

From the trend of the above equation it can be deduced that
when v = ∞, both ends of the up, middle, and down major
gaps become fixed. For the QBC of the up major gaps, the
values of � and F for the left and right ends of the QBCs

converge to

(�,F ) =
[

(p + 1/2)σ + q + 1

2nB cos θB

,
(p + 1/2)σ

q + 1 + (p + 1/2)σ

]
for left ends, (8a)

(�,F ) =
[

(p + 1)σ + q

2nB cos θB

,
(p + 1)σ

q + (p + 1)σ

]
for right ends.

(8b)

As shown in Eq. (8), the parameter for the generation order
v disappears from the equation. Therefore, any change in
generation order no longer has an influence on either end. Only
the incidence angle affects the frequency and filling factor of
the ends. Note that the position of the right end of the QBC
of the up major gap in Eq. (8b) is the same as that in Eq. (5b).
The fixed end always remains in the same position.

The values of � and F for the left and right ends of the
QBC of the middle major gap also converge to a certain value
when the generation order is v = ∞. The value is expressed as

(�,F ) =
[

(p + 3/4)σ + q

2nB cos θB

,
(p + 3/4)σ

q + (p + 3/4)σ

]
for left ends, (9a)

(�,F ) =
[

(p + 1/4)σ + q + 1

2nB cos θB

,
(p + 1/4)σ

q + 1 + (p + 1/4)σ

]
for right ends. (9b)

The positions of the left and right ends of the QBC of the
middle major gap become fixed. However, these are different
from the ends in BPSLs [23]. Moreover, even if the generation
order v is infinitely large and the ends of the QBC of the
middle major gap are fixed, the ends in one region never
connect with the ends in other regions. The QBC of the middle
major gap is discontinuous, regardless of the generation order.
From Eq. (7) it can be deduced that the ends of the QBC of
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the down major gap also converge to a fixed value. The value
of the frequency and the filling factor of them for generation
order v = ∞ converge to

(�,F ) =
(

pσ + q + 1

2nB cos θB

,
pσ

q + 1 + pσ

)
for left ends,

(10a)

(�,F ) =
[

(p + 1/2)σ + q

2nB cos θB

,
(p + 1/2)σ

q + (p + 1/2)σ

]
for right ends. (10b)

Again, the parameter for the generation order v vanishes from
the equation when the generation order increases to infinity.
The left end of the QBC of the down major gap in Eq. (10a)
is the same as that in Eq. (7a). Therefore, the fixed end
remains in the same position when the generation changes,
and the moving end approaches a certain fixed value when the
generation order increases.

From the equations for the left and right ends, the
curves that pass both ends of the major gaps have the
form kAdA + XkBdB = Yπ . These curves are midlines of the
major gaps, which are referred to as quasi-Bragg conditions
for the major gaps. The QBCs for the up, middle, and
down major gaps for the DPSLs in region (p,q) can be
formulated as

kAdA + αvkBdB = (p + 1 + qαv)π

for the QBC of the up major gaps,

(11a)

kAdA + βv,vkBdB = [p + βv−1,v + βv,v(q + 1)]π

for the QBC of the middle major gap,

(11b)

kAdA + βv,vkBdB = [p + βv,v(q + 1)]π

for the QBC of the down major gap,

(11c)

where αv = 1 − [Nv
B + (−1)v−1]/Nv

A. Equation (11) shows
that the QBCs in the DPSLs are all different from the traditional
Bragg condition in BPSLs [25]. They are also different from
the QBCs in Fibonacci and Thue-Morse superlattices [19,25].
When the generation order is v = 2, all of the QBCs become
the special case kAdA + kBdB = (p + q + 1)π , which is the
same as the Bragg condition in BPSLs [25]. These QBCs
also approach a certain position when the generation order
increases. From the trend of Eq. (11), the position of the QBC
of the up, middle, and down major gaps for generation order
v = ∞ can be deduced as

kAdA + 0.5kBdB = (p + 1 + 0.5q)π

for the QBC of the up major gaps,

(12a)

kAdA + 0.5kBdB = [p + 0.25 + 0.5(q + 1)]π

for the QBC of the middle major gaps,

(12b)

kAdA + 0.5kBdB = [p + 0.5(q + 1)]π

for QBC of the down major gaps.

(12c)

From Eq. (12) it is seen that when the generation order is
sufficiently large, the QBC approaches a fixed position.

From the QBC, the midgap centers are approached by the
center at the midpoints of the QBC of the up, middle, and
down major gaps, which are defined as CU, CM, and CD,
respectively. The CU is found at the crossing point of kAdA =
(p + 1 − γv/N

v
A)π and kBdB = (q + γv/N

v
B )π, whereγv =

{Nv−3
A + [1 + (−1)v−1]/4}. The CM is found at the crossing

point of kAdA = (p + 0.5)π and kBdB = (q + 0.5)π. The CD
is found at the crossing point of kAdA = (p + γv/N

v
A)π and

kBdB = (q + 1 − γv/N
v
B)π . Their values of � and F can be

predicted as

� = δ
p
v σ + (

q + γv

/
Nv

B

)
2nB cos θB

,

(13a)

F = δ
p
v σ(

q + γv

/
Nv

B

) + δ
p
v σ

for the CU,

� = (p + 0.5)σ + (q + 0.5)

2nB cos θB

,

(13b)

F = (p + 0.5)σ

(q + 0.5) + (p + 0.5)σ
for the CM,

� =
(
p + γv

/
Nv

A

)
σ + δ

q
v

2nB cos θB

,

(13c)

F =
(
p + γv

/
Nv

A

)
σ

δ
q
v + (

p + αv

/
Nv

A

)
σ

for the CD,

whereδp
v = p + 1 − αv/N

v
A and δ

q
v = q + 1 − αv/N

v
B .

σ = nBcos θB/nAcos θA and θA and θB are the incident
angles at layers A and B, respectively. From Eq. (13b) it is
seen that the CM in the DPSLs is the same as the quarter-wave
thickness for the Bragg condition for BPSLs [23]. This
implies that there may be an extreme reflectance in DPSLs,
similar to that in BPSLs.

From Eq. (13) it can be deduced that the CU, CM, and
CB converge to simple expressions when v = ∞. For this
condition, the � and F values of the CU, CM, and CB become

� = (p + 7/8)σ + q + 1/4

2nB cos θB

,

(14a)

F = (p + 7/8)σ

q + 1/4 + (p + 7/8)σ
for the CU,

� = (p + 0.5)σ + q + 1

2nB cos θB

,

(14b)

F = (p + 0.5)σ

q + 0.5 + (p + 0.5)σ
for the CM,

� = (p + 1/8)σ + q + 3/4

2nB cos θB

,

(14c)

F = (p + 1/8)σ

q + 3/4 + (p + 1/8)σ
for the CD,
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FIG. 1. (Color online) Transmission spectra for sixth-order DP-
SLs with (a) nb = n0, (b) nb = nA, (c) nb = nB at normal incidence,
and (d) their eigenfunction cos(KL). The normalized frequency � is
defined by � = ωD/2πc. The parameters of the system are nA =
1.5, nB = 2.5, N = 1, D = 1.0 μm, and F = 0.3. The gray areas in
(a)–(d) correspond to the region of the major gaps that are sufficiently
large.

respectively. The fact that the QBCs, both ends of the three
major gaps, and the midpoints of the QBC approach fixed
points implies that the major gaps become fixed when v = ∞.

IV. DISCUSSION OF RESULTS

A change in the bonding media in the DPSL changes
the transmission spectra, but it has little influence on the
relationship between the eigenfunction cos(KL) and the low
transmission region. Figure 1 shows the relationship between
the transmission spectra for different bonding media and the
cosine function. The parameters of the system are nA =
1.5, nB = 2.5, F = 0.3, and N = 1, and the generation
order is 6 at normal incidence. The gray areas in Fig. 1
denote major gaps that are sufficiently large. From Fig. 1
it is seen that the frequency range of |cos(KL)| > 1 with
major gaps being sufficiently large corresponds to the low
transmission regions. Although the transmission changes for
different bonding media, the low transmission region remains
within almost the same frequency range.

Figure 2 shows the gap map for DPSLs with v = 6. For
clarity, only the major gaps are depicted in the graph. All of
the parameters in the system are the same as those for Fig. 1.
The thick cyan and blue dotted lines, denoted as BA,p and BB,q ,
are half-wave lines. The red line in Fig. 2 shows the midlines
of the major gaps for the DPSLs, which account for significant
reflectance due to interference. This is analogous to the Bragg
condition in BPSLs. The graph shows that in each region there
are three major gaps. It is seen from Fig. 2 that the QBCs for
the middle major gaps in different regions are discontinuous.
This result is in accordance with Eq. (12b). The cross markers
are the midpoints of the QBCs. From Eq. (13b), it is seen that
the CM in the DPSLs occurs for the same condition as that for
BPSLs. Using the equation in Sec. II the QBCs in the gap map
can be found.

FIG. 2. (Color online) A gap map for DPSLs with v = 6. All of
the parameters are the same as those for Fig. 1. The thickness filling
factor F is defined by F = dA/(dA + dB). The gray areas are major
gaps. The red line marks the QBC for the major gaps. The QBCs of
the up, middle, and the down major gaps for DPSLs are denoted as
UBC, MBC, and DBC, respectively. The cyan (light gray) and blue
(dark gray) dotted lines denote the half-wave lines BA,p and BB,q ,
respectively. The character x represents the midpoint of the QBC in
region (0,0). The squares and triangular symbols are the left and right
ends in region (0,0).

When the generation order of the DPSL increases, the
number of forbidden gaps increases. However, the frequency
range and the gap width of the major gaps do not change
significantly with the order. The existence of major gaps
that are sufficiently large also has a great influence on
the transmission spectra. Figure 3 shows the transmission
spectrum and its corresponding major gaps for different
generation orders v = 4–6 for the DPSLs. All of the parameters
in the system are the same as those for Fig. 1 with nb = n0. The
gray areas in Fig. 3 denote major gaps that are sufficiently large.
The graph shows that the frequency range of the major gaps
for the lower generation orders does not change significantly
for higher generation orders. Furthermore, as the generation
order of the DPSL increases, the transmittance in the major
gaps decreases significantly. When the generation order is

FIG. 3. (Color online) Normalized frequency and transmission
spectra for DPSLs of generation orders: (a) v = 4, (b) v = 5, and (c)
v = 6, at normal incidence. The parameters of the system are nA =
1.5, nB = 2.5, nb = n0, N = 1, D = 1.0 μm, and F = 0.3. The gray
areas in (a)–(c) correspond to the region of the major gaps that are
sufficiently large.
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FIG. 4. (Color online) (a) The generation order v and the min-
imum transmittance for DPSLs at normal incidence. (b) The total
number of layers 2u and the minimum transmittance for BPSLs at
normal incidence. The parameters of the system are the same as those
for Fig. 3. The blue (solid) lines denote the frequency of the minimum
transmittance. The green (dotted) lines and the red (dashed) lines each
denote band edges and their corresponding band centers.

sufficiently large, the low transmission frequency range almost
matches the frequency range of the major gaps.

Major gaps are also correlated with minimum transmit-
tance. The minimum transmittance of the DPSLs approaches
the center of the major gaps when the generation order is
increased. This is similar to the case for BPSLs. Figure 4 shows
the relationship between the generation order and the minimum
transmittance for DPSLs and BPSLs with the same number of
layers as the DPSLs at normal incidence. All of the parameters
in Fig. 4 are the same as those in Fig. 3. From Fig. 4 it is seen
that the frequency of the minimum transmittance of the DPSLs
approaches the center of the band edges when the generation
order is increased. This phenomenon is similar to that for
traditional BPSLs. Therefore, the quasi-Bragg condition in

FIG. 5. (Color online) (a) The thickness filling factor and (b) the
frequency of the center of the major gaps in region (0,0) for DPSLs
with v = 6 and BPSLs with the same number of layers as the DPSLs.
The parameters of the system are the same as those for Fig. 2. The
dashed lines correspond to the midpoint of the QBC of the up, middle,
and down major gaps of DPSLs and the quarter-wave thickness of
BPSLs, denoted as CU, CM, CD, and QW(BPSL). The solid lines
correspond to the maximum gap centers of the up, middle, and down
major gaps of a DPSL and the major gap of a BPSL, denoted as XU,
XM, XD, and XG(BPSL).

FIG. 6. (Color online) The gap width at the center of the major
gaps in region (0,0) for structures that are the same as those in Fig. 5.
The gap width is normalized in the same way as �. The parameters
of the system are the same as those for Fig. 5. The dashed lines
correspond to the midpoint of the QBC of the up, middle, and down
major gaps of DPSLs and the quarter-wave thickness of BPSLs,
denoted as CU, CM, CD, and QW(BPSL). The solid lines correspond
to the maximum gap centers of the up, middle, and down major gaps
of a DPSL and the major gap of a BPSL, denoted as XU, XM, XD,
and XG(BPSL).

DPSLs is analogous to that for traditional BPSLs. Using the
equations in Sec. III, the QBCs can be used to determine the
frequency of the minimum transmittance in DPSLs.

Figure 5 shows a comparison between the position of the
midpoints of the QBC and the maximum gap centers for a
DPSL with v = 6 in region (0,0). A comparison between

FIG. 7. (Color online) The generation order v and the minimum
transmittance for DPSLs at (a) θ = 45° with TE polarization and
(b) θ = 45° with TM polarization. The total number of layers 2u

and the minimum transmittance for BPSLs at (c) θ = 45° with TE
polarization and (d) θ = 45° with TM polarization. The parameters
of the system are the same as those for Fig. 4. The blue (solid)
lines denote the frequency of the minimum transmittance. The green
(dotted) lines and red (dashed) lines each denote band edges and their
corresponding band centers.
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FIG. 8. (Color online) The |E|2 distribution at (a) CU and (b) CM
for the QBCs in DPSLs with v = 6. (c) The |E|2 distribution at the
quarter-wave thickness of BPSLs that have the same number of layers
as those in Fig. 8(a). Here, |E|2 is the normalized squared electric,
and x is the normalized length. The parameters of the system are the
same as those for Fig. 3. The (blue) dashed lines are the boundaries of
the different layers. The character A (in yellow areas) and the dots (in
green areas) represent materials A and B, respectively. White areas
denote the bonding media where nb = n0.

the quarter-wave thickness and the maximum gap centers for
BPSLs with the same number of layers as the DPSLs is
also illustrated. All of the parameters in the figure are the
same as those used for Fig. 2. The diagram demonstrates
that in both DPSLs and BPSLs the midpoint is close to the
center of the maximum gap. The midpoints and maximum gap
centers for three QBCs for the DPSL are also similar to the
Bragg condition for a traditional structure. Therefore, from
the midpoints, the position of the maximum gap centers can
be determined using Eq. (13). Figure 6 shows a comparison of
the gap width between the midpoints of the QBC and the
maximum gap centers for a DPSL with v = 6 in region
(0,0). All of the parameters in the figure are the same as
those used for Fig. 5. A comparison between the quarter-wave
thickness and the maximum gap centers for BPSLs with the
same number of layers as the DPSLs is also presented. It is
shown that the gap width that is determined from the midpoints
is close to the maximum gap. This result is similar to the
Bragg condition for BPSLs. These QBCs are not only used
to determine the high reflectance at normal incidence, but
also to determine the reflectance at an arbitrary polarization
angle. Figure 7 shows the relationship as those in Fig. 4 for
different polarizations at 45°. All of the parameters in Fig. 7
are the same as those in Fig. 4. It can be seen in Fig. 7
that the frequency of minimum transmittance approaches the
maximum gap center, regardless of the polarization or the
incident angle. Since the formulas for the midpoints closely

match the maximum gap center and the maximum gap closely
matches minimum transmittance, a high reflection condition
can be predicted using these formulas, regardless of the
polarization, the incident direction, or the bonding media as
shown in Fig. 1.

When traveling through the DPSLs at the QBCs, the elec-
tromagnetic wave causes significant interference and produces
great reflectance. Figure 8 shows the squared electric-field
profile at the CU, CM, and the quarter-wave thickness for
BPSLs with the same number of layers as the DPSLs. Light
propagates from the left-hand side to the right-hand side of
the structure. All of the parameters in Fig. 8 are the same as
those used for Fig. 3. The squared electric field approaches zero
because there is destructive interference when light propagates
in the structures as shown in the diagrams. From the graph it
is seen that the electric field at the midpoints of the QBC for
the DPSLs is analogous to the quarter-wave thickness for the
Bragg condition for BPSLs.

V. CONCLUSIONS

To summarize, there are three quasi-Bragg conditions
in one-dimensional double-period quasicrystals, in contrast
to the single Bragg condition in traditional periodic cases.
Three analytical formulas for these quasi-Bragg conditions
are proposed, and the results match significant reflectance.
The QBCs for DPSLs are discontinuous in each region. The
frequency and the thickness filling factor at the ends of
each QBC are derived. The results show that these QBCs
are different not only from those in Fibonacci and Thue-
Morse superlattices, but also from the Bragg condition in
a traditional periodic system. These three midpoints of the
QBCs that correspond to the maximum reflectance are found
in double-periodic systems. At the midpoint of each QBC,
the squared electric field decreases to almost zero when
light propagates in the double-periodic superlattices because
of interference. These three thickness conditions where the
maximum reflections occur at the midpoints of the QBCs
in the DPSLs are analogous to the quarter-wave condition
for a periodic system. These quasi-Bragg conditions suggest
the application of double-period superlattices on narrow-band
multiwavelength optical filters and random lasers. These
results may be extended to the study of optical, electronic,
magnetic, and other fields.
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[3] J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido,
C. Rivera, U. Jahn, and K. H. Ploog, Phys. Rev. Lett. 94, 146102
(2005).

[4] B. S. Williams, Nat. Photonics 1, 517 (2007).
[5] Y. Taniyasu, M. Kasu, and T. Makimoto, Nature (London) 441,

325 (2006).
[6] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev.

Lett. 53, 1951 (1984).
[7] E. Abe, Y. Yan, and S. J. Pennycook, Nature Mater. 3, 759

(2004).

023830-7

http://dx.doi.org/10.1038/nphys1506
http://dx.doi.org/10.1038/nphys1506
http://dx.doi.org/10.1038/nphys1506
http://dx.doi.org/10.1038/nphys1506
http://dx.doi.org/10.1103/PhysRevLett.94.146102
http://dx.doi.org/10.1103/PhysRevLett.94.146102
http://dx.doi.org/10.1103/PhysRevLett.94.146102
http://dx.doi.org/10.1103/PhysRevLett.94.146102
http://dx.doi.org/10.1038/nphoton.2007.166
http://dx.doi.org/10.1038/nphoton.2007.166
http://dx.doi.org/10.1038/nphoton.2007.166
http://dx.doi.org/10.1038/nphoton.2007.166
http://dx.doi.org/10.1038/nature04760
http://dx.doi.org/10.1038/nature04760
http://dx.doi.org/10.1038/nature04760
http://dx.doi.org/10.1038/nature04760
http://dx.doi.org/10.1103/PhysRevLett.53.1951
http://dx.doi.org/10.1103/PhysRevLett.53.1951
http://dx.doi.org/10.1103/PhysRevLett.53.1951
http://dx.doi.org/10.1103/PhysRevLett.53.1951
http://dx.doi.org/10.1038/nmat1244
http://dx.doi.org/10.1038/nmat1244
http://dx.doi.org/10.1038/nmat1244
http://dx.doi.org/10.1038/nmat1244


Y. H. CHENG, C. H. CHANG, C. H. CHEN, AND W. J. HSUEH PHYSICAL REVIEW A 90, 023830 (2014)

[8] J. Mikhael, J. Roth, L. Helden, and C. Bechinger, Nature
(London) 454, 501 (2008).

[9] W. J. Hsueh, C. T. Chen, and C. H. Chen, Phys. Rev. A 78,
013836 (2008).

[10] R. W. Peng, M. Wang, A. Hu, S. S. Jiang, G. J. Jin, and D. Feng,
Phys. Rev. B 57, 1544 (1998).

[11] M. Kohmoto, B. Sutherland, and K. Iguchi, Phys. Rev. Lett. 58,
2436 (1987).

[12] Y. H. Cheng and W. J. Hsueh, Opt. Lett. 38, 3631 (2013).
[13] S.-W. Wang, X. Chen, W. Lu, M. Li, and H. Wang, Appl. Phys.

Lett. 90, 211113 (2007).
[14] T. Y. L. Ang and M.-K. Chin, Opt. Express 17, 5176 (2009).
[15] P. A. Kalozoumis, C. Morfonios, N. Palaiodimopoulos,

F. K. Diakonos, and P. Schmelcher, Phys. Rev. A 88, 033857
(2013).

[16] Z. V. Vardeny, A. Nahata, and A. Agrawal, Nat. Photonics 7,
177 (2013).
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