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Establishment of correlated states in a quantum dot interacting with an acoustic-phonon reservoir
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We investigate the effects of a low-frequency (acoustic) phonon bath on the dynamics of a quantum dot
modeled as a cascade three-level system. We show that the phonon bath appears to the upper transition of the
cascade system as a broadband reservoir of inverted rather than conventional harmonic oscillators. The action of
the annihilation and creation operators of the inverted oscillator are interchanges relative to those of the usual
harmonic oscillator that it serves as a linear amplifier to the system, and thereby gives rise to unusual features
in the dynamics of the quantum dot. We find that the phonon bath, although being in a thermal state, affects the
quantum dot as a correlated-type reservoir which results in the decay of the system to a correlated two-photon
state with the population distribution no longer obeying a Boltzmann distribution. It is particularly interesting
that even for a zero-temperature phonon reservoir, the steady state is a correlated state which, under appropriate
conditions on the Rabi frequencies and the damping rates, can reduce to a strongly correlated pure state. It is
shown that the two-photon correlations result in a significant squeezing and strong two-photon correlations in
the radiation field emitted by the quantum dot. The presence of the correlations in the system is manifest in the
presence of quantum beats in the time evolution of the populations and the radiation intensity. The effect of the
ordinary spontaneous emission on the features induced by the phonon bath is also discussed.
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I. INTRODUCTION

The interaction of a quantum dot (QD) with a phonon
reservoir has been studied extensively and a number of
interesting effects has been predicted. Most of these studies
have considered the QD consisting of a single electron-hole
pair, a two-state system, and many features characteristic
of a two-state system, such as the Mollow triplet, the
Autler-Townes doublet, and vacuum Rabi splitting, have been
predicted and experimentally observed [1–6].

Recently, interest has arisen in the problem of sensitivity
of a QD to the nature of a phonon bath to which it is coupled.
The phonon bath serves as a low-frequency reservoir and, as
a result, the radiative properties of the QD change. Various
problems related to the temperature of the phonon bath have
been studied, including phonon-mediated excitation transfer
[7,8], damping of Rabi oscillations [9–14], modifications of
the fluorescence spectrum [15–17], and the creation of a
steady-state population inversion between the bare states of
a two-level QD system [18–20]. The population inversion
gives the possibility to achieve lasing in the two-level system
[21,22].

In the case of a QD, the most important damping
mechanism is a decay associated with the coupling of the QD
to a finite-temperature phonon bath. In general, an excited
QD is expected to decay to a mixed state characteristic of
conventional thermodynamic equilibrium with the population
distribution that obeys a Boltzmann distribution. The decay
process can be modified and the nature of the equilibrium state
could be different if the QD decays in a correlated reservoir,
such as a squeezed vacuum [23–30].

The energy structure of a QD does not have to be confined
to two levels only, that is, to a single exciton state. It can be
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extended to include a biexciton state, which could be realized
in a semiconductor QD consisting of two electron-hole pairs
driven by appropriate laser pulses with the help of phonons
[31–33]. In this paper, we examine the effect of a phonon
thermal bath on the dynamics of a single QD modeled as a
three-level system of the cascade configuration. In addition
to the phonon bath, the QD is driven by a single laser field
which couples to both transitions of the cascade system.
Using the master-equation approach, we calculate the steady-
state populations of the energy levels, transient behaviors
of the populations, and the radiation intensity, including
nonclassical features such as squeezing and antibunching. We
show that the phonon bath couples to the upper transition
of the cascade system as a broadband reservoir of inverted
harmonic oscillators, which serves as a linear amplifier to
the system [34]. This causes the phonon bath to behave
as a correlated rather than conventional thermal reservoir,
which may lead to many interesting features such as one- and
two-photon population inversions, squeezing, super-bunching,
and antibunching. Even though the interaction of the QD with
the phonon reservoir is a dissipative process, we demonstrate
that the reservoir can turn the system to decay to a strongly
correlated state. Depending on the temperature of the reservoir,
the correlated steady state of the QD can be a pure state which
reflects these correlations.

The paper is organized as follows. In Sec. II, the effective
Hamiltonian of the quantum dot interacting with a phonon
bath is derived. We then apply the Hamiltonian to derive the
master equation for the reduced density operator describing
the properties of the quantum dot interacting with the phonon
bath. We also include a possible coupling of the quantum dot to
the ordinary vacuum modes that leads to the radiative sponta-
neous emission. The steady-state population distributions are
presented in Sec. IV, along with a discussion of one- and two-
photon inversions. Squeezing and the second-order coherence
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function are calculated in Sec. V. A detailed discussion of the
transient behavior of the system is presented in Sec. VI. We
find that the temporal behavior of the population distribution
and the radiation intensity may differ dramatically for different
initial conditions. The effect of the ordinary spontaneous
emission on the features induced by the phonon bath is
discussed in Sec. VII. Finally, in Sec. VIII, we summarize
our results.

II. EFFECTIVE HAMILTONIAN OF THE SYSTEM

We consider a quantum dot modeled as a nondegenerate
three-level cascade system with the ground level |1〉, the
intermediate level |2〉, and the upper level |3〉 of energies E3 >

E2 > E1. The levels are separated by energies E2 − E1 =
�(ω2 − ω1) = �ω21 and E3 − E2 = �(ω3 − ω2) = �ω32. In
practical terms, the level |1〉 corresponds to the electronic
ground state of the QD, the level |2〉 to the single-exciton
state, and |3〉 to the biexciton state. The system is driven by a
single-mode laser field of frequency ωL, which is resonant with
a two-photon transition from |3〉 to |1〉, (E3 − E1 = 2�ωL),
as shown in Fig. 1. Because of the unequal spacing of the
energy levels, the laser is not resonant with the one-photon
transitions. In addition, the system interacts with modes of a
low-frequency (acoustic) phonon reservoir, which we assume
are in a thermal state with the average occupation phonon
number of a mode p, n̄p = [exp(�ωp/kBT ) − 1]−1, where kB

is the Boltzmann constant and T is the temperature of the
reservoir. The density of the phonon modes is considered to
be large only in the frequency range close to the detuning � =
ω21 − ωL of the laser frequency from the transition frequency
ω21.

The total Hamiltonian for this system may be written in the
form (� ≡ 1)

H = H0 + H1 + H2, (1)

where H0 is the free Hamiltonian of the QD and the phonon
reservoir,

H0 = �A22 +
∑

p

ωpb†pbp, (2)

FIG. 1. Energy-level scheme of the three-level quantum dot under
a laser excitation of frequency ωL. The laser is on two-photon
resonance with the |3〉 ↔ |1〉 transition frequency, detuned from the
transition frequency ω21 by �.

H1 is the interaction Hamiltonian between the QD and the
laser field mode,

H1 = χ1(A21 + A12) + χ3(A32 + A23), (3)

and H2 is the interaction Hamiltonian between the QD and the
phonon reservoir,

H2 =
∑

p

(g3pA33 − g1pA11)(b†p + bp). (4)

Here, Aij = |i〉〈j | are the usual atomic operators representing
populations (i = j ) of the energy levels of the QD and
coherences (i �= j ) between them, b†p and bp are, respectively,
the creation and annihilation operators of mode p of the
phonon reservoir, � = ω21 − ωL is the one-photon detuning
of the laser frequency ωL from the transition frequency ω21,
and χ1 and χ3 are the Rabi frequencies associated with the laser
field driving |1〉 ↔ |2〉 and |2〉 ↔ |3〉 transitions, respectively.
The parameters g1p and g3p are the coupling strengths of the
mode p of the phonon reservoir to the one-photon transitions
|2〉 ↔ |1〉 and |3〉 ↔ |2〉, respectively.

We make the unitary transformation of the Hamiltonian

H̃ = eiSHe−iS, (5)

with

S =
∑

p

−i

ωp

(g3pA33 − g1pA11)(b†p − bp), (6)

and find

H̃ = H̃0 + H̃F + Ṽ , (7)

in which

H̃0 = �A22 +
∑
i=1,3

�i(A2i + Ai2),

(8)
H̃F =

∑
p

ωpb†pbp,

and

Ṽ =
∑

p

g1p�1

ωp

(b†p − bp)(A21 − A12)

+
∑

p

g3p�3

ωp

(b†p − bp)(A32 − A23), (9)

where �i = 〈Bi〉χi , with

〈Bi〉 = exp

[
−1

2

∑
p

(gip/ωp)2(2n̄p + 1)

]
(10)

as an effective Rabi frequency of the laser field. In the
derivation of Eq. (9), we have performed a Born approximation
which corresponds to a first-order term in a systematic
expansion of Eq. (5) in gip, which means that we assumed
that the interaction between the QD and the phonon reser-
voir is not very strong so that the one-phonon transitions
play a dominant role as compared with the multiphonon
transitions.

The interaction Hamiltonian Ṽ contains the rotating and
counter-rotating terms. We may transform the Hamiltonian
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(7) to the interaction picture with the unitary transformation
U (t) = exp[−i(H̃0 + H̃F )t], and find

Ṽ (t) =
∑

p

{
b†pei(ωp−�)t

[
g3p�3

ωp

A32 − g1p�1

ωp

A12

]

+ b†pei(ωp+�)t

[
g1p�1

ωp

A21 − g3p�3

ωp

A23

]}
+ H.c.

(11)

In what follows, we consider the situation where ωp ≈ � and
the coupling strengths gi�i/ωp are much smaller than ωp,
(gi�i/ωp) � ωp. This prompts us to make the rotating-wave
approximation in which we ignore rapidly oscillating terms at
frequency 2ωp, and obtain

Ṽ (t) ≈
∑

p

b†pei(ωp−�)t (g̃3pA32 − g̃1pA12) + H.c., (12)

where g̃ip = gip�i/� is an effective coupling strength of the
phonon reservoir to the ith transition of the QD. Thus, we have
arrived at the effective Hamiltonian with parameters that can
be controlled through the laser frequency and amplitude and
where the characteristic frequency scales are no longer those
of optical frequencies but those associated with detunings and
Rabi frequencies.

The properties of the entire system of the QD interacting
with a phonon bath are described by the density operator
ρT . The reduced density operator ρ describing the properties
of the QD is obtained by taking the trace of ρT over the
space of the phonon modes, ρ = TrpρT . Assuming that
the phonon modes provide a broadband reservoir, we may
perform the Markov approximation, as is usually done when
dealing with spontaneous emission processes. Actually the
non-Markovian effects are likely to affect the QD dynamics
only at short times; the difference between non-Markovian
and Markovian dynamics diminishes or vanishes at longer
time scales [35]. It is reported that for a QD transition driven
by a detuned continuous-wave laser by mediation of acoustic
phonons, the Markov approximation is found to be an excellent
approximation to describe the effect of the interaction between
the QD and the phonon reservoir on the properties of the QD
[5,6,18,36]. In addition, taking into account radiation damping
through the ordinary spontaneous emission, we derive the
master equation for the reduced density operator ρ as

∂

∂t
ρ = −i[H̃0,ρ] + Lpρ + Ls2ρ + Ls3ρ, (13)

in which

Lpρ =
∑
j=1,3

(n̄ + 1)γj {[Aj2ρ,A2j ] + [Aj2,ρA2j ]}

+
∑
j=1,3

n̄γj {[A2jρ,Aj2] + [A2j ,ρAj2]}

−(n̄ + 1)γ13{[A32ρ,A21] + [A32,ρA21] + H.c.}
−n̄γ13{[A21ρ,A32] + [A21,ρA32] + H.c.} (14)

describes phonon-bath-induced decay of the QD. The coeffi-
cients γ1 and γ3 are the phonon-bath-induced damping rates
of the levels |2〉 and |3〉, respectively, and γ13 = √

γ1γ3 is the

cross-damping rate resulting from the phonon-bath-induced
dissipative coupling between the transitions.

The remaining two terms Ls2ρ and Ls3ρ are of the form

Ls2ρ = 	2{[A12ρ,A21] + [A12,ρA21]},
(15)

Ls3ρ = 	3{[A23ρ,A32] + [A23,ρA32]},
and represent deexcitation of the levels |2〉 and |3〉 by
radiative spontaneous emission with damping rates 	2 and
	3, respectively.

There are several interesting remarks that should be made
about the expression for the Liouvillean Lpρ, given by
Eq. (14). First of all, we may identify the first two terms
with incoherent damping and incoherent pumping of the two
transitions. However, a close look reveals that the phonon
reservoir couples to the |1〉 ↔ |2〉 and |2〉 ↔ |3〉 transitions in
decidedly different ways. It is easy to see that the first term
corresponds to the damping of the |1〉 ↔ |2〉 transition but it
appears as an incoherent pumping of the |3〉 ↔ |2〉 transition.
Similarly, the second term corresponds to an incoherent
pumping of the |1〉 ↔ |2〉 transition but it appears as an
incoherent damping of the |3〉 ↔ |2〉 transition. In other words,
the phonon bath couples to the lower transition |1〉 ↔ |2〉 as
an ordinary harmonic-oscillator thermal bath with damping
rate (n̄ + 1)γ1 and with incoherent pumping rate n̄γ1, whereas
it couples to the upper transition |2〉 ↔ |3〉 as an inverted
harmonic-oscillator thermal bath with damping rate n̄γ3 and
with incoherent pumping rate (n̄ + 1)γ3. Figure 2 helps to
explain the situation. It illustrates the action of the phonon bath
on the transitions between the energy levels of the system.

What is more surprising than the coupling to the upper
transition as the inverted harmonic oscillator is the presence
in Eq. (14) of two terms involving cross coupling between
the transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉. This is a form of
interference, although it involves transitions of ordinary and
inverted harmonic oscillators. In particular, the third term in
Eq. (14) reflects the fact that, as the QD decays from the
level |2〉 to the level |1〉, it drives absorption to level |3〉.
Similarly, the fourth term reflects the fact that, as the QD

FIG. 2. Three-level cascade system interacting with a phonon
bath and driven by a coherent laser field. The phonon bath couples to
the transition |1〉 ↔ |2〉 as an ordinary harmonic-oscillator thermal
bath, whereas it couples to the |2〉 ↔ |3〉 transition as an inverted
harmonic-oscillator thermal bath. In addition, levels |1〉 and |2〉 are
coupled by the driving laser field with the Rabi frequency �1 and
levels |2〉 and |3〉 with the Rabi frequency �3. Level |3〉 decays to
level |2〉 with rate 	3, and level |2〉 decays to level |1〉 with rate 	2.

023815-3



HUI HUANG, GAO-XIANG LI, WEN-JU GU, AND ZBIGNIEW FICEK PHYSICAL REVIEW A 90, 023815 (2014)

is incoherently pumped from the level |1〉 to level |2〉, it drives
emission from level |3〉 to level |2〉. In physical terms, the third
term in Eq. (14) represents the process of a deexcitation of the
level |2〉 simultaneously to the levels |1〉 and |3〉, whereas the
fourth term represents the process of an excitation of the level
|2〉 simultaneously from the levels |1〉 and |3〉. We shall see
that the effect of the simultaneous deexcitation of level |2〉 to
levels |1〉 and |3〉 may result in a strong coherence between
these levels.

Thus, we may conclude that the phonon bath, although
being in a thermal state, affects the QD as a correlated-type
reservoir. One could argue that the action of the phonon bath on
the system is similar in form to the ones of a squeezed reservoir
coupled to a cascade three-level system. However, the analogy
is not complete. For example, the cross coupling between
the transitions preserves even in the case of zero-temperature
phonon bath, where n̄ = 0. This is in striking contrast to the
squeezed reservoir that requires n̄ �= 0 for the cross coupling
to be present. Although the analogy is not complete, we shall
show that various results predicted for the cascade system
interacting with a phonon bath are analogous to that obtained
in the cascade system interacting with a squeezed reservoir
[26,27].

III. COHERENT SUPERPOSITION STATES

The presence of the cross-coupling (interference) terms
in Eq. (14) indicates that the phonon bath induces a direct
coupling between the states |1〉 and |3〉, which may result
in a coherence between these states. When the coherence is
present, the states become a linear superposition of the bare
states. Therefore, it is convenient to introduce symmetric and
antisymmetric superpositions

|u〉 = α|3〉 + β|1〉,
(16)

|w〉 = β|3〉 − α|1〉,
where

α =
√

γ1

γ1 + γ3
, β =

√
γ3

γ1 + γ3
. (17)

Physically, the states |u〉 and |w〉 are the effective states
between which the quantum dot evolves when interacting with
the phonon bath.

It is then easily verified that in terms of the superposition
states (16), the master equation (13) assumes the simplified
form with

H̃0 = �A22 + �w(A2w + Aw2) + �u(A2u + Au2), (18)

where

�w = β�3 − α�1, �u = α�3 + β�1, (19)

with the dissipative phonon-reservoir part Lpρ reduced to

Lpρ =(n̄ + 1)γ (2Aw2ρA2w − A22ρ − ρA22)

+ n̄γ (2A2wρAw2 − Awwρ − ρAww), (20)

in which γ = γ1 + γ3.
The Liouvillians Ls2ρ and Ls3ρ, representing dissipation

due to the radiative spontaneous emission, written in the basis

FIG. 3. The three-level quantum-dot system in the superposition
state basis {|2〉,|w〉,|u〉}. In the superposition state basis, the system
is equivalent to a �-type system in which the phonon bath couples
exclusively to the |2〉 ↔ |w〉 transition as an ordinary harmonic-
oscillator thermal bath. The transition |2〉 ↔ |u〉 is not affected by
the phonon bath. The transition |2〉 ↔ |u〉 is driven by the laser with
an effective Rabi frequency �u, whereas the transition |2〉 ↔ |w〉 is
driven with an effective Rabi frequency �w .

of the superposition states |w〉 and |u〉, take the form

Ls2ρ =α2	2([Aw2ρ,A2w] + [Aw2,ρA2w])

+ β2	2([Au2ρ,A2u] + [Au2,ρA2u])

− αβ	2([Aw2ρ,A2u] + [Aw2,ρA2u] + H.c.), (21)

and

Ls3ρ =β2	3([A2wρ,Aw2] + [A2w,ρAw2])

+ α2	3([A2uρ,Au2] + [A2u,ρAu2])

+ αβ	3([A2wρ,Au2] + [A2w,ρAu2] + H.c.). (22)

It is seen from Eq. (20) that the phonon reservoir couples
only to the |2〉 ↔ |w〉 transition. The superposition state |u〉
is completely decoupled from the phonon bath. There is,
however, a strong coherent coupling between |u〉 and |2〉 with
an effective Rabi frequency �u, as shown in Fig. 3. The laser
field couples the states |w〉 and |2〉 with an effective Rabi
frequency �w.

Figure 3 clearly illustrates that the three-level QD system
interacting with the phonon bath effectively behaves as a �-
type system. It is particularly well seen in the properties of the
radiative damping. The Liouvillian Ls2ρ has the same form
as the Liouvillian for a three-level � type system with cross-
coupled transitions. It is easy to see that the first term in Eq. (21)
describes spontaneous decay from the level |2〉 to level |w〉 with
the rate α2	2. The second term describes spontaneous decay
from the level |2〉 to level |u〉 with the rate β2	2. Clearly, the
Liouvillian (21) describes dissipation of the three-level �-type
system with the upper level |2〉 and two ground levels |w〉 and
|u〉. The third term in Eq. (21) describes the dissipative cross
coupling between these transitions with an amplitude αβ	2.
What is more interesting is that the spontaneous emission from
the level |3〉 has the same effect as an incoherent pumping of the
� system. It is seen from Eq. (22) that spontaneous emission
from the level |3〉 excites transitions from the ground levels
|w〉 and |u〉 to the upper level |2〉 with rates β2	3 and α2	3,
respectively. Thus, it represents a process of an incoherent
pumping of the � system. We may conclude that the role
of the radiative spontaneous emission in the ladder system
interacting with a phonon bath is analogous to that of the
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dissipation and an incoherent driving of the �-type system
with cross-coupled transitions.

There are two interesting limits for the effective Rabi
frequency �w: �w = 0 and �w = �u. The limit �w = 0
corresponds to �1/�3 = β/α, whereas the case �w = �u

corresponds to �1/�3 = (β − α)/(α + β).

A. The case �w = 0

When �1/�3 = β/α ≡ √
γ3/γ1, we see from Eq. (19) that

the effective Rabi frequency �w is equal to zero. Under such
condition, the laser field couples exclusively to the |2〉 ↔ |u〉
transition.

The absence of the driving field on the |w〉 ↔ |2〉 transition
causes the system to behave as a three-level V -type rather than
�-type system. To demonstrate this analogy, we diagonalize
the Hamiltonian H̃0 = �A22 + �u(A2u + Au2) and find that
the eigenstates of the Hamiltonian, the so-called semiclassical
dressed states, are

|m〉 = sin θ |2〉 + cos θ |u〉,
(23)

|n〉 = cos θ |2〉 − sin θ |u〉,
where

cos2 θ = 1

2
− �

2�
, (24)

and � = √
�2 + 4�2

u.
In the space spanned by the dressed states |w〉, |m〉, and |n〉,

the master equation (13) takes the form

∂

∂t
ρ = − i[H̃0,ρ] +

∑
k=m,n

γk([Awkρ,Akw] + [Awk,ρAkw])

+ n̄

n̄ + 1

∑
k=m,n

γk([Akwρ,Awk] + [Akw,ρAwk])

− √
γmγn([Awmρ,Anw] + [Awm,ρAnw] + H.c.),

(25)

where the Hamiltonian H̃0 can be written in the form

H̃0 = 1
2 (� + �)Amm + 1

2 (� − �)Ann, (26)

with

γm = 2(n̄ + 1)γ sin2 θ, γn = 2(n̄ + 1)γ cos2 θ. (27)

The second term in Eq. (25) describes decay processes from
the states |m〉 and |n〉 to the state |w〉 occurring with rates γm

and γn, respectively. The third term describes an incoherent
pumping from state |w〉 to states |m〉 and |n〉, whereas the last
term describes cross correlations between the decay processes
with rate

√
γmγn.

Figure 4 shows the energy-level structure of the QD system
interacting with the phonon bath and driven by a laser field with
the effective Rabi frequency �w = 0. Clearly, the dynamics
of the system is completely equivalent to that of an undriven
three-level V -type system with nondegenerate transitions of
the frequency difference �, the upper states decaying with
unequal rates γm and γn, and the transitions cross correlated
with the rate

√
γmγn.

FIG. 4. Energy levels of the QD system in the dressed states basis
{|w〉,|m〉,|n〉}. The system is equivalent to a nondegenerate V -type
system with the upper dressed states |m〉 and |n〉 decaying to the lower
state |w〉 with rates γm and γn, respectively.

B. The case �w = �u

When �w and �u are both different from zero, the lower
states |w〉 and |u〉 are resonantly coupled to the upper state |2〉
by the laser field with the effective Rabi frequencies �w and
�u, respectively. It is well known that in this configuration,
the system is optically pumped into coherent superpositions of
the two lower states, i.e., the so-called bright and dark states
[37–41],

|b〉 = (�w|w〉 + �u|u〉)/
√

�2
w + �2

u,

(28)

|d〉 = (�u|w〉 − �w|u〉)/
√

�2
w + �2

u.

In the case of �w = �u, the states (28) simplify to

|b〉 = 1√
2

[(α + β)|3〉 − (α − β)|1〉],
(29)

|d〉 = 1√
2

[(α − β)|3〉 + (α + β)|1〉].

Comparing Eq. (29) with Eq. (16), we see that the states |b〉,|d〉
and |u〉,|w〉 are similar coherent superpositions of the bare
states |1〉 and |3〉. However, their coherence properties are
mutually exclusive in the sense that under a condition in which
the states |u〉 and |w〉 are maximally coherent, the states |b〉
and |d〉 are reduced to bare states, and vice versa. In particular,
when α = β, the states |u〉,|w〉 reduce to superposition states
with maximal coherence between |1〉 and |3〉, whereas the
states |b〉,|d〉 reduce to bare states |3〉,|1〉 with no coherence
between them. Similarly, when α 
 β, the superposition states
|u〉 and |w〉 reduce to the bare states |3〉 and |1〉, respectively,
whereas the states |b〉 and |d〉 reduce to superposition states
with maximal coherence.

Thus, in the case of �w = �u, the effect of the driving
laser field is to destroy the coherent superpositions between
the states |1〉 and |3〉 induced by the phonon bath.

IV. POPULATION DISTRIBUTION

All of the effects of the phonon reservoir discussed in the
previous section should be reflected in the distribution of the
populations between the energy levels of the QD. The usual
way to study the population distribution is to derive equations
of motion for the density-matrix elements using the master
equation of a given system.
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Since we are interested in the population distribution and
coherences between the superposition states, we determine the
density-matrix elements in the basis {|2〉,|w〉,|u〉}. Within this
basis, the resulting density-matrix elements satisfy equations
that show considerably less coupling. Including both phonon-
bath and radiative dampings, it is straightforward to show that
the density-matrix elements obey the following set of coupled
differential equations:

ρ̇22 = −2[	2 + (n̄ + 1)γ ]ρ22 + 2
(
β2	3 + n̄γ

)
ρww

+ 2α2	3ρuu + 2αβ	3(ρwu + ρuw)

+ i�u(ρ2u − ρu2) + i�w(ρ2w − ρw2),

ρ̇ww = −2
(
β2	3 + n̄γ

)
ρww + 2

[
α2	2 + (n̄ + 1)γ

]
ρ22

−αβ	3(ρwu + ρuw) − i�w(ρ2w − ρw2),

ρ̇uu = −2α2	3ρuu + 2β2	2ρ22 − αβ	3(ρwu + ρuw)

− i�u(ρ2u − ρu2),

ρ̇2w = −[
	2 + β2	3 + (2n̄ + 1)γ + i�

]
ρ2w

−αβ	3ρ2u − i�uρuw + i�w(ρ22 − ρww),

ρ̇2u = −[
	2 + α2	3 + (n̄ + 1)γ + i�

]
ρ2u

−αβ	3ρ2w − i�wρwu + i�u(ρ22 − ρuu),

ρ̇wu = −αβ	3 − (	3 + n̄γ )ρwu − αβ(2	2 − 	3)ρ22

+ i�uρw2 − i�wρ2u. (30)

Equations (30) plus the equations for ρw2,ρu2,ρuw form a set of
nine coupled differential equations with constant coefficients.
These equations are cumbersome because of a complicated
coupling, which exists in general between all three pairs of the
states, |w〉 ↔ |2〉, |2〉 ↔ |u〉, and |u〉 ↔ |w〉. The equations
can be simplified substantially for particular choices of the
parameters, such as 	2,	3 ≈ 0. In physical terms, it would
correspond to the situation where the radiation modes occupy
only a small fraction of modes surrounding the QD.

Suppose first that 	2,	3 ≈ 0 and that the system is affected
solely by the phonon bath. It is seen from Eq. (30) that in
this case, the population ρuu does not decay. In other words,
the state |u〉 appears as a decoherence-free state. The decay
occurs only from the state |2〉 to the state |w〉. Thus, owing to
the equivalence of the system with a nondegenerate three-level
V -type system, we may conclude that in the space spanned
by the states |2〉, |w〉, and |u〉, the state |2〉 coincides with a
symmetric state which decays to the ground state |w〉, whereas
the state |u〉 coincides with a nondecaying asymmetric state
coherently coupled to the state |2〉 with the amplitude �u.

Further simplification can be made by choosing the Rabi
frequencies such as �w = 0 or �w = �u. In the first case of
�w = 0, the set of the differential equations (30) splits into
two independent sets, one involving four equations,

ρ̇22 = − 2(n̄ + 1)γρ22 + 2n̄γρww + i�u(ρ2u − ρu2),

ρ̇ww = − 2n̄γρww + 2(n̄ + 1)γρ22,
(31)

ρ̇uu = − i�u(ρ2u − ρu2),

ρ̇2u = − [(n̄ + 1)γ + i�]ρ2u + i�u(ρ22 − ρuu),

and the other involving two coupled equations,

ρ̇2w = − [(2n̄ + 1)γ + i�]ρ2w − i�uρuw,
(32)

ρ̇wu = − n̄γρwu + i�uρw2.

Equations (31) and (32) can be solved strictly. The system of
equations (31) can be transformed using the Laplace transform
method into a set of algebraic equations which can be solved,
for example, by matrix inversion. We will consider the time
evolution of the density-matrix elements in Sec. VI. Here, we
focus on the steady-state solutions. The set (31) can have a
nonzero steady-state solution, while the steady-state solution
of Eq. (32) is zero.

The steady state can be a pure state when the phonon bath
is at zero temperature (n̄ = 0) and the Rabi frequency �w is
made zero by a suitable choice of the ratio �3/�1 = γ1/γ3. In
the case when n̄ = 0 and �w = 0, we easily find that ρww = 1.
We should point out the fact that the decay of the system to
the pure state does not depend on the particular values of the
decay rates and is valid for γ1 = γ3 as well as for γ1 �= γ3.

In the case of �w = 0, the steady-state solution of Eq. (30)
is given by

ρww = n̄ + 1

3n̄ + 1
, ρuu = ρ22 = n̄

3n̄ + 1
, (33)

from which we see that the populations are independent of
γ1 and γ3. Moreover, the populations are independent of �u.
Note that there is no population inversion between |2〉 and
|w〉. Thus, there is no population inversion in the basis of the
superposition states. However, there is population inversion
between the bare states. It is straightforward to show that the
steady-state populations of the bare states are

ρ33 = n̄ + β2

3n̄ + 1
, ρ22 = n̄

3n̄ + 1
, ρ11 = n̄ + α2

3n̄ + 1
. (34)

It is apparent from Eq. (34) that ρ33 > ρ22 always. Hence there
is always a population inversion between the levels |3〉 and |2〉.
The maximum inversion is reached at n̄ = 0 and decreases
with an increasing n̄. The steady state also possesses a large
two-photon coherence,

ρ13 = − αβ

3n̄ + 1
. (35)

Thus, the system decays to a strongly correlated state in
which the population distribution no longer obeys a Boltzmann
distribution. Moreover, for n̄ = 0, the correlated state is a pure
state. It is particularly seen when one calculates the purity
factor,

Tr(ρ2) = 3n̄2 + 2n̄ + 1

(3n̄ + 1)2
, (36)

from which it is evident that Tr(ρ2) = 1 for n̄ = 0.
Furthermore, if β > α, then ρ33 > ρ11 for any n̄, corre-

sponding to a population inversion between levels |3〉 and
|1〉. Thus, in the case of γ3 > γ1, we can have not only a
one-photon inversion between levels |3〉 and |2〉 but also a
two-photon inversion between levels |3〉 and |1〉.

The above considerations are illustrated in Fig. 5, which
shows the populations of the bare states as a function of n̄
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FIG. 5. (Color online) Steady-state populations of the bare en-
ergy levels of the quantum dot: ρ22 (black solid line), ρ33 (green
dashed line), and ρ11 (blue dash-dotted line) for γ1 = γ0, γ3 = 10γ0,
�3/�1 = √

γ1/γ3, (�w = 0), and � = 5γ0, where γ0 is a mean
damping rate and we take γ0 = 1 throughout.

for the case of �w = 0. The one-photon (ρ33 > ρ22) and two-
photon (ρ33 > ρ11) inversions are clearly seen to occur for all
n̄. For n̄ = 0, the inversions are large but fall as n̄ increases.

Figure 6 show the variation of the populations with n̄ for
the situation when �w = �u. In that case, simple analytical
results for the density-matrix elements are no longer possible.
The populations are obtained by solving numerically the set
of coupled differential equations (30) in the steady-state limit
(ρ̇ij = 0). Once again, we notice that in the limit of n̄ = 0, the
system is in a pure state showing that coherences are present
when �w = �u. It is interesting that the pure state does not
coincide with the state |w〉 to which the system decays when
�w = 0.

It is straightforward to show, using Eqs. (29) and (30), that
the population of the dark state |d〉 satisfies the equation of
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FIG. 6. (Color online) Steady-state populations of the bare en-
ergy levels of the quantum dot: ρ22 (black solid line), ρ33 (green
dashed line), and ρ11 (blue dashed-dotted line) for the case of
�w = �u with γ1 = γ0, γ3 = 10γ0, �3 = 5γ0, and � = 5γ0. The
upper solid red line shows Tr(ρ2).

motion,

ρ̇dd = −n̄γρdd + (n̄ + 1)ρ22 − n̄γ (ρbd + ρdb). (37)

It is apparent that the evolution of the population ρdd is
independent of the Rabi frequency and, in the limit of n̄ = 0,
the population increases with the rate γ due to the transfer
of the population from the state |2〉. Therefore, in the steady
state, ρdd = 1, which means that the system decays to the
steady state which is the pure state |d〉.

One can notice from Fig. 6 that in contrast to the case
�w = 0, there is no two-photon population inversion at n̄ = 0,
i.e., ρ11 > ρ33. However, the populations can be inverted for
a finite n̄. It is readily understood if we refer to the state |d〉,
given by Eq. (29), from which it is clear that the amplitude
(α − β) of the state |3〉 is always smaller than the amplitude
(α + β) of the state |1〉. Evidently, ρ11 is always larger than
ρ33, independent of the ratio γ3/γ1 and the Rabi frequencies
of the driving field.

It is worth noting that the two cases of �w = 0 and �w =
�u are not directly comparable, although the respective pure
states |w〉 and |d〉 to which the system evolves at n̄ = 0 are
similar superpositions of the states |1〉 and |3〉. This conclusion
is especially evident if we examine the case of γ1 = γ3, for
which α = β = 1/

√
2. Under this condition, we find from

Eqs. (16) and (29) that the state |w〉 reduces to a superposition
state with maximal coherence (|ρ13| = 1/2), whereas the state
|d〉 reduces to the bare state |1〉.

When n̄ > 0, the populations ρ11 and ρ33 become inverted.
This shows that for n̄ > 0, the competing effects of the phonon
bath dominate over the laser field and cause a switch of the
evolution of the system from that between the states |b〉,|d〉,
and |2〉 to that occurring between the states |w〉,|u〉, and |2〉.
In other words, for n̄ > 0, the population distribution switches
to that of the states |w〉 and |u〉 mediated by the phonon bath.
It follows that there is an evident competition between the
phonon bath and the driving field. The phonon bath leads to
strong coherence between the bare states with no coherences
between the states |w〉 and |u〉. Inversely, the driving fields
lead to strong coherences between the superposition states |w〉
and |u〉, which results in a reduced coherence between the bare
state basis.

V. SQUEEZED STATES AND PHOTON CORRELATIONS

Since the steady state of the system can possess a large
coherence ρ13, the radiation field emitted by the quantum dot
may experience significant squeezing under the influence of
the phonon bath. In order to consider the ability of the system
to generate squeezed light, we calculate the quantities that
characterize the squeezing of the emitted light. Squeezed states
of light are associated with the requirement that the normally
ordered variance of the electric-field quadrature component Eφ

is negative. The normally ordered variance of the quadrature
component Eφ is defined by [42–44]

〈: (�Eφ)2 :〉 =〈(�E(+))2〉e2iφ + 〈(�E(−))2〉e−2iφ

+ 2〈�E(−)E(+)〉, (38)

where �E(±) = E(±) − 〈E(±)〉 and E(+) (E(−)) is the positive
(negative) frequency component of the electromagnetic field.
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The normally ordered variance is directly measurable in
schemes involving homodyne or heterodyne detection and
gives information about relative squeezing of the field at
particular phase φ. The phase φ is the phase difference between
the driving field, or the initial dipole moment of the system,
and the local oscillator in the detector.

The positive frequency component of the radiated field from
a three-level cascade system and detected at a point �r in the
far-field zone can be expressed in terms of the dipole operators
as

E(+)(�r,t) = ψ(�r )[A23(t) + A21(t)], (39)

where ψ(�r ) is a geometrical factor which depends on magni-
tudes of the transition dipole moments and their polarization
in respect to the direction of observation �r . Therefore, the
normally ordered variance can be expressed in terms of the
density-matrix elements as

〈: (�Eφ)2 :〉 = ψ2(�r )
{
ρ22 + ρ33 − 1

2 [(ρ32 + ρ21)eiφ + c.c.]

+ 1
2 (ρ31e

2iφ + ρ13e
−2iφ)

}
. (40)

Since in the steady state ρ32 = ρ21 = 0, the normally
ordered variance is governed by the difference between the
sum of the excited levels population and the real part of
the two-photon coherence. Therefore, ρ13 �= 0 is necessary to
produce squeezing. We note that the requirement that ρ13 �= 0
is necessary, but not sufficient, for squeezing. Using Eqs. (34)
and (35), we find that in the steady state, the normally ordered
variance takes the form

〈: (�Eφ)2 :〉 = ψ2(�r )
2n̄ + β[β − α cos(2φ)]

3n̄ + 1
. (41)

Clearly this variance is always positive if α < β. If α > β, the
variance can be negative, indicating that the system radiates
squeezed light. Hence α > β is the general condition for
squeezing in the system where squeezing is possible only if
there is no population inversion between the levels |1〉 and
|3〉. The minimum value of the variance corresponding to
maximum squeezing is reached in the quadrature component
E0 (φ = 0) when n̄ = 0, in which case the state of the system is
a pure state. However, it is interesting to note that the optimum
squeezing occurs not at the largest value of the coherence,
ρ13 = −1/2. It is easily verified from Eq. (41) that in the case
of ρ13 = −1/2, corresponding to α = β = 1/

√
2, the variance

〈: (�E0)2 :〉 = 0. Normally, we would expect squeezing to
attain its maximum value when the coherence is maximal. The
reason is that the population ρ33 also depends on α and attains
a minimum value not for α = 1/

√
2 but for α = 1.

A careful examination of Eq. (41) reveals that the optimum
squeezing occurs for n̄ = 0 and β/α = √

2 − 1, when it
reaches the value

〈: (�E0)2 :〉/ψ2(�r ) = − 1
2 (

√
2 − 1). (42)

This is the maximum amount of squeezing possible in a three-
level system in the cascade configuration [45]. For n̄ �= 0,
corresponding to a mixed state, the amount of squeezing is
necessarily smaller. It follows from Eq. (16) that the state
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FIG. 7. Variation of the steady-state variance 〈: (�E0)2 :〉/ψ2(�r )
with n̄ and α2 for �w = 0.

corresponding to the optimum squeezing is of the form [45]

|w〉 =
√

1

2

(
1 − 1√

2

)
|3〉 −

√
1

2

(
1 + 1√

2

)
|1〉. (43)

The state (43) corresponds to the two-photon coherence that
is

√
2 smaller than its maximal value, ρ13 = −1/(2

√
2).

The above considerations are illustrated in Fig. 7, which
shows the variation of 〈: (�E0)2 :〉 with n̄ and α2. Squeezing
is seen to occur in a restricted range of the parameters; it is
confined to small n̄ and α2 > 1/2.

Figure 8 shows the variation of the steady-state variance
〈: (�E0)2 :〉/ψ2(�r ) with n̄ for the case of the symmetric
driving with �w = �u. It is seen that the variance is positive
at n̄ = 0 so there is no squeezing. The reason for this is that
the driving field coupled to both |w〉 → |2〉 and |u〉 → |2〉
transitions creates a coherence between the states |w〉 and |u〉,
which diminishes or even can completely destroy the two-
photon coherence ρ13 responsible for squeezing. However, as
we have discussed in Sec. IV, a finite-temperature phonon
bath (n̄ �= 0) can enhance the two-photon coherence and
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FIG. 8. (Color online) The variance 〈: (�E0)2 :〉/ψ2(�r ) as a
function of n̄ for the case �w = �u with γ1 = 5γ0,γ3 = γ0 (α =
0.9129) and different Rabi frequencies �3: �3 = 0.1γ0 (solid black
line), �3 = 0.2γ0 (dashed blue line), and �3 = 0.5γ0 (dash-dotted
red line).
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squeezing is recovered with the variance negative for small
Rabi frequencies. It is as if when the driving field is weak,
the coherence is forced to return to that between the states |1〉
and |3〉 extremely rapidly. The effect of increasing the Rabi
frequency is clearly a decrease in the amount of squeezing and
also a further restriction of the range of n̄ where it occurs.

In closing this section, we would like to point out that
the decay of the system to the two-photon correlated state
results in a strong second-order coherence [46]. The coherence
is determined by the normalized second-order correlation
function g(2), which for a three-level system in a ladder
configuration is given by

g(2) = ρ33

(ρ33 + ρ22)2
. (44)

For the case of �w = 0, in which the system may decay to the
pure two-photon state |w〉, we find, using Eq. (34), that

g(2) = (3n̄ + 1)(n̄ + β2)

(2n̄ + β2)2
. (45)

Certain interesting features of the second-order coherence
function follow from this expression. First, we note that in
the limit of n̄ = 0, in which the system decays to the pure
state |w〉, the second-order correlation function reduces to
g(2) = 1/β2. Since β � 1, the stationary state always exhibits a
bunching effect, g(2) > 1. Moreover, for β � 1, the correlation
function can reach very large values, clearly demonstrating
the possibility of superbunching [47]. Second, we note that
g(2) decreases with increasing n̄, which indicates that the
stationary state with a large n̄ is more “coherent” than that with
a small n̄. Moreover, for n̄ �= 0, a state of the system, which
is a mixed state, may exhibit the nonclassical phenomenon of
antibunching (g(2) < 1) which can persist even in the limit of
n̄ → ∞, where g(2) = 3/4. Finally, we note the connection
of squeezing with the phenomenon of bunching rather than
with antibunching. From the general condition for squeezing,
α2 > β2, or, equivalently, β2 < 1/2, we find that squeezing
corresponds to g(2) > 2. It follows that squeezing is connected
to correlations stronger than that for a thermal state, g(2) = 2.
The optimum squeezing for the pure state |w〉 was shown
earlier to occur for β2 = (

√
2 − 1)/(2

√
2), in which case

g(2) ≈ 7. It is interesting and perhaps surprising that the
stationary state with maximal coherence ρ13 = −1/2 is a
thermal state. It occurs for α = β = 1/

√
2, for which g(2) = 2.

VI. QUANTUM BEATS AND POPULATION TRAPPING

A useful way to illustrate the presence of coherence induced
by the phonon bath is to consider the transient properties of
the system. To do that, we calculate the time evolution of
the total intensity of the radiation field spontaneously emitted
by the system. For a multilevel system, the intensity is sensitive
to correlations between different transitions of the system
and therefore it may be employed to manifest the existence
of the correlations induced by the phonon bath between the
two transitions of the ladder system. The time evolution of the
radiation intensity, in particular, its oscillatory behavior, is a
sensitive function of the initial conditions. In order to study
this dependence, we first consider the temporal behavior of the
populations of the energy states of the system. We then extend

the discussion to the total radiation intensity of the emitted
field. In the calculation of the radiation intensity, we assume
that the dynamics of the QD are affected solely by the phonon
bath, but the coupling between the QD and the electromagnetic
vacuum is very weak as compared with the coupling between
the QD and the phonon bath.

The total radiation intensity is proportional to the total rate
of energy loss from the excited states of the system, which in
the case of a ladder three-level system, with ω32,ω21 
 �, can
be written as

I (t) = 〈E(−)(t)E(+)(t)〉
∝ 〈[

√
	3A32(t) +

√
	2A21(t)][

√
	3A23(t) +

√
	2A12(t)]〉

= 	3ρ33(t) + 	2ρ22(t), (46)

where 	2 and 	3 are the damping rates at which the radiation
is emitted from the states |3〉 and |2〉 to modes different than
the phonon modes. We assume that 	2 = 	3 ≡ 	 and 	 is
much smaller than the phonon damping rate γ , (	 � γ ). It
is seen that the intensity is proportional to the populations of
the excited levels of the system. There is no contribution of
the cross (interference) terms to the intensity. This property
corresponds to properties of two transitions contributing
independently to the intensity. Thus, in the case of the pure
radiative damping of the ladder system, the intensity of the
radiated field tells us nothing about the correlations between
the transitions.

However, the situation differs when, in addition to the
electromagnetic field, the system is coupled to a dissipative
phonon bath. In this case, quantum interference may occur
due to the cross coupling between the two transitions created
by the phonon bath. The correlations between the transitions
are displayed in the transient properties of the populations.

In order to show this, we consider the time evolution of the
populations for the case �w = 0. With the further assumption
of a strong driving field, that is, with �u 
 �,n̄γ , we find
that to the first order in γ /�u, the temporal behavior of the
populations is

ρww(t) = n̄ + 1

3n̄ + 1
−

[
n̄ + 1

3n̄ + 1
− ρww(0)

]
e−(3n̄+1)γ t

+ (n̄ + 1)γ

2�u

[ρ22(0) − ρuu(0)]e−(n̄+1)γ t sin(2�ut),

(47)

ρuu(t) = n̄

3n̄ + 1
+ 1

2

[
n̄ + 1

3n̄ + 1
− ρww(0)

]
e−(3n̄+1)γ t

− 1

2
[ρ22(0) − ρuu(0)]e−(n̄+1)γ t cos(2�ut)

− n̄γ

2�u

[ρww(0) − 2ρuu(0)]e−(n̄+1)γ t sin(2�ut),

and the temporal behavior of the coherence ρ2u(t) is given by

ρ2u(t) = i[ρ22(0) − ρuu(0)]e−(n̄+1)γ t sin(2�ut)

− i
γ

�u

[(n̄ + 1) − (3n̄ + 1)ρww(0)]

× [e−(3n̄+1)γ t − e−(n̄+1)γ t cos(2�ut)]. (48)
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We see that the time evolution of the populations and the
coherence generally involve oscillatory and nonoscillatory
terms. Depending on the choice of the initial state, quantum
beats can be seen in the evolution of the populations. These
quantum beats then can be seen in the radiation intensity, which
in terms of ρww(t) and ρuu(t) can be written as

I (t) = 	[ρ22(t) + α2ρuu(t) + β2ρww(t) + 2αβReρuw(t)].

We now examine the temporal behavior of the populations
for different initial conditions. First, we note that a nonzero
coherence ρ2u can create quantum beats in the time evolution of
the population of the state |w〉, even though the state is coupled
to the state |2〉 by the incoherent process. If ρww(0) = 1,
the evolution of the populations is either exponential or
oscillating, depending upon whether n̄ = 0 or n̄ �= 0. For
n̄ = 0, the temporal behavior of the populations contains no
oscillations. Only a nonzero number of phonons (n̄ �= 0) can
lead to oscillations, i.e., quantum beats in the evolution of the
populations. If n̄ �= 0, the coherence ρ2u(t) is different from
zero for any initial conditions. Thus, we expect the presence
of quantum beats in the radiation intensity for any initial
conditions if n̄ �= 0. It is easily verified from Eqs. (47) and
(48) that for the initial condition ρww(0) = 1 and n̄ = 0, the
coherence ρ2u(t) = 0 for all times and the populations decay
exponentially in time without any oscillations. Next, we note
that the population ρuu(t), but not ρww(t), contains an oscilla-
tory term whose amplitude can be especially pronounced when
ρ22(0) �= ρuu(0). Otherwise, it shows oscillatory behavior only
when n̄ �= 0 and is of a relatively small amplitude.

We now give illustrative examples of temporal behaviors
of the populations and the radiation intensity for a number of
initial conditions.

Figure 9 shows the time evolution of the populations for
two different initial conditions and different n̄. For the initial
condition ρ22(0) = 1, illustrated in Fig. 9(a), all of the popula-
tions evolve in an oscillatory way. The pronounced sinusoidal
oscillations (quantum beats) are clearly visible in the time
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FIG. 9. (Color online) The transient behavior of the populations
ρ22(t) (black solid line), ρuu(t) (blue dashed line), and ρww(t) (red
dash-dotted line) for �w = 0, �u = 5γ0 and two sets of initial
conditions: (a) ρ22(0) = 1, n̄ = 0, (b) ρww(0) = 1,n̄ = 0.5.

evolution of the populations ρ22(t) and ρuu(t), while the
population ρww(t) increases almost steadily with oscillations
at a relatively small amplitude. This oscillatory feature is
associated with the fact that for the initial condition ρ22(0) = 1,
the coherence ρ2u(t) is different from zero and oscillates at a
large amplitude. A complete periodic depopulation of the states
|2〉 and |u〉 occurs, respectively, at times t2 = (n + 1)π/(2�u)
and tu = nπ/(2�u), n = 0,2,4, . . . . The periodic exchange
of the population between the states |2〉 and |u〉 is due to
the coherent coupling attributable to the driving laser field,
whereas the steady increase in the population ρww(t) is due
to the decay process attributable to the interaction of the QD
with the phonon bath. This periodic exchange of the population
between the states |2〉 and |u〉 continues until the QD decays
to the superposition state |w〉. Note an interesting feature that
the maxima and minima of the population ρww(t) occur at
times when the curves for the populations ρ22(t) and ρuu(t)
intersect, i.e., when ρ22(t) = ρuu(t). This clearly shows that the
oscillations in ρww(t) are due to the coherence brought about
by spontaneous (incoherent) transitions between the states |w〉
and |2〉 induced by the phonon bath.

The situation differs when the system is initially at t = 0
prepared in the state |w〉. This is illustrated in Fig. 9(b). The
most obvious difference is that now oscillations are seen in
the time evolution of only the populations ρ22(t) and ρuu(t)
and when n̄ �= 0. The oscillations of the populations are not
as pronounced as in the case of ρ22(0) = 1. The population
ρww(t) decays without oscillation. A physical understanding
of this behavior is again provided by the temporal behavior of
the coherence ρ2u(t). From the expression (48), one can see
that in the case of ρww(0) = 1, the coherence is different from
zero only if n̄ �= 0 and it oscillates with a small amplitude
γ /�u. Although the amplitude of the oscillation is small, it is,
nevertheless, the case where the coherence is produced by the
incoherent pumping induced by the phonon bath.

Figure 10 shows the radiation intensity I (t), calculated from
Eq. (49), as a function of time for different initial conditions.
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FIG. 10. (Color online) Time evolution of the radiation intensity
for �w = 0, �u = 5γ0, γ3 = γ1, n̄ = 0 and different initial condi-
tions: ρ22(0) = 1 (blue dashed line), ρuu(0) = 1 (red dash-dotted line),
and ρww(0) = 1 (green dotted line). The solid black line shows the
intensity for the initial state ρww(0) = 1 and n̄ = 0.5.
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The coherent exchange of the population between the states
|2〉 and |u〉 shows up clearly as oscillations in I (t). We see
that even when the evolution starts from the state |w〉, the
intensity has oscillatory features, but only if n̄ �= 0. The lack
of the oscillations when n̄ = 0 is linked to the fact that in
this case, the initial population remains in the state |w〉 for all
times.

VII. EFFECT OF SPONTANEOUS EMISSION

In the preceding sections, we have assumed that the QD is
exclusively coupled to a phonon bath. This assumption is, of
course, an idealization since in reality the phonon modes may
not occupy all the modes to which the QD is coupled. In this
case, the ordinary spontaneous emission due to the coupling
of the QD to vacuum modes can be significant. Therefore,
we now include the spontaneous emission, i.e., the decay to
modes different than that occupied by the phonon modes. The
spontaneous emission occurs with rates 	2 and 	3, which are
the damping rates of the levels |2〉 and |3〉, respectively. In what
follows, we illustrate the effect of the spontaneous emission
on population inversions between the bare states of the QD
and squeezing.

To describe the effect of spontaneous emission on the
behavior of the QD, we solve numerically the set of coupled
equations of motion (30) with 	2 and 	3 included. Here
we choose 	2 = 	3 = 	. Figure 11 shows the influence
of the spontaneous emission on the steady-state population
inversions between the bare energy states of the QD. Figure
11(a) shows the one-photon population inversion between the
states |3〉 and |2〉, while Fig. 11(b) shows the two-photon
population inversion between the states |3〉 and |1〉. We observe
that the effect of the spontaneous emission on the one-photon
inversion is not dramatic; it decreases with increasing 	, but
the inversion can still be present even for relatively large
spontaneous emission rates. On the other hand, the two-photon
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FIG. 11. (Color online) Variation of (a) one-photon [ρ33(t) −
ρ22(t)] and (b) two-photon [ρ33(t) − ρ11(t)] population inversions
with the average number of phonons n̄ for the case �w = 0 with
�3 = 5γ0, γ1 = γ0, γ3 = 10γ0 and different spontaneous emission
rates 	2 = 	3 ≡ 	: 	 = 0 (solid black line), 	 = γ0 (dashed
blue line), 	 = 2γ0 (dash-dotted green line), 	 = 5γ0 (dotted red
line).
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FIG. 12. (Color online) The variance 〈: (�E0)2 :〉/ψ2(�r ) as a
function of n̄ for �w = �u (�3 = 0.1γ0), γ1 = 5γ0,γ3 = γ0 and
different spontaneous emission rates 	2 = 	3 ≡ 	: 	 = 0 (solid
black line), 	 = 0.1γ0 (dashed blue line), 	 = 0.2γ0 (dash-dotted
green line), 	 = 0.5γ0 (dotted red line).

inversion decreases rapidly with 	 and survives, only at
small n̄, for large spontaneous emission rates. The effect of
increasing 	 is clearly to decrease the inversion and also to
further restrict the range of n̄ at which it occurs.

Figure 12 shows the effect of the spontaneous emission on
the steady-state variance 〈: (�E0)2 :〉/ψ2(�r ) for the case of the
symmetric driving with �w = �u. For 	 = 0, the magnitude
of squeezing is large but it occurs in a restricted range of n̄. The
effect of increasing the spontaneous damping is to decrease the
amount of squeezing, but it is interesting that squeezing occurs
in a less restricted range of n̄.

We are, therefore, led to the conclusion that the effect of
the spontaneous emission on the population inversions and
squeezing is not dramatic and that these features should be ob-
served as long as 	2,	3 < γ1,γ3, that is, when the spontaneous
emission rates are smaller than the rates associated with the
coupling of the quantum dot to the phonon bath. In practical
terms, it would correspond to the situation where the majority
of the modes with which the quantum dot interacts is occupied
by the phonon modes.

VIII. SUMMARY

We have studied the effect of a low-frequency (acoustic)
phonon bath on the dynamics of a quantum dot modeled as
a three-level system in a cascade configuration. The phonon
bath forms a broadband multimode thermal reservoir to the
quantum dot. We have found that the phonon bath couples
to the upper transition of the three-level system as an inverted
harmonic oscillator and that it serves as a linear amplifier to the
system, thereby giving rise to unusual features in the dynamics
of the quantum dot. One of these features is the decay of the
system to a correlated two-photon state with the population
distribution no longer obeying a Boltzmann distribution. We
have also found that the radiation field emitted by the quantum
dot may exhibit significant squeezing and strong two-photon
correlations. These effects are intrinsically connected to a
pure two-photon state to which the system decays under the
influence of the phonon bath. We have calculated the radiation
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intensity and have shown that the correlations induced by the
phonon bath are manifested in the presence of quantum beats
in the time evolution of the radiation intensity. Finally, we
have included the ordinary spontaneous emission due to the
coupling of the quantum dot to vacuum modes different than
that occupied by the phonon modes, and have found that the
effect of the spontaneous emission on the unusual features is
not dramatic. The population inversions and squeezing should
be observed as long as the spontaneous emission damping rates

are smaller than the rates associated with the interaction of the
quantum dot with the phonon bath.
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