
PHYSICAL REVIEW A 90, 023813 (2014)

Linear and nonlinear traveling edge waves in optical honeycomb lattices
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Traveling unidirectional localized edge states in optical honeycomb lattices are analytically constructed.
They are found in honeycomb arrays of helical waveguides designed to induce a periodic pseudomagnetic
field varying in the direction of propagation. Conditions on whether a given pseudofield supports a traveling
edge mode are discussed; a special case of the pseudofields studied agrees with recent experiments. Interesting
classes of dispersion relations are obtained. Envelopes of nonlinear edge modes are described by the classical
one-dimensional nonlinear Schrödinger equation along the edge. Nonlinear states termed edge solitons are
predicted analytically and are found numerically.
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I. INTRODUCTION

Substantial attention has been paid to the understanding
of edge modes in both condensed-matter physics and optics.
Interest in such modes goes back to the first studies of the
quantum Hall effect where it was found that the edge current
was quantized [1–3]. There has also been interesting research
on the connection of the existence of edge states to the geom-
etry of eigenspaces of Schrödinger operators [4–9]. Recently,
theoretical results gave support to the possible existence of uni-
directional modes in optical honeycomb (HC) lattices [10,11].
Due to the extra symmetry of the honeycomb lattice, Dirac
points, or conical intersections between dispersion bands,
exist. The unidirectional modes in Refs. [10,11] emerged due
to symmetry-breaking perturbations which separated the Dirac
points and induced a nontrivial integer “topological” charge
on the separated bands.

The first experimental realization of unidirectional electro-
magnetic edge modes was in Ref. [12]. These results relied on
magnetic-field effects and were carried out in the microwave
regime. Furthermore, the modes were found on a square
lattice which have no associated Dirac points. However, in
recent work, it was experimentally shown in Ref. [13] that by
introducing a symmetry-breaking pseudomagnetic field into
a honeycomb optical lattice, the Dirac points separate, and
unidirectional edge wave propagation at optical frequencies
occurs. These edge waves are shown to be effectively immune
to backscattering from obstacles and so represent a new degree
of control of light.

Such pseudomagnetic fields are generated by a periodic
change in the index of refraction of the waveguides in the
direction of propagation. Considering the direction of the wave
propagation as “time,” the variation in the index of refraction
has a well-defined helicity and thus breaks time-reversal
symmetry [13]. To model this effect in a honeycomb optical
lattice, we begin with the lattice nonlinear Schrödinger (NLS)
equation [13] with cubic Kerr contribution,

i ∂zψ = − 1

2k0
∇2ψ + k0 �n

n0
ψ − γ |ψ |2ψ. (1)

Here k0 is the input wave number, n0 is the ambient refractive
index, �n/n0 is the linear index change relative to n0, also
referred to as the potential, and γ represents the nonlinear

index contribution. The complex scalar field ψ is the envelope
of the electric field, z is the direction of propagation and takes
on the role of time, (x,y) is the transverse plane, and ∇ ≡
(∂x,∂y). In Ref. [13], the potential �n is taken to be a two-
dimensional (2D) lattice potential defined on the (x,y) plane
moving along a prescribed path in the z direction. This motion
is characterized by a path function a(z) = (a1(z),a2(z)) such
that after the coordinate transformation,

x ′ = x − a1(z), y ′ = y − a2(z), z′ = z,

the transformed potential �n = �n(x ′,y ′) is independent of
z′.

Experimentally, the path represented by a(z) can be written
into the optical material (e.g., fused silica) via the femtosecond
laser-writing technique [14], which was the method used in
Ref. [13]. Since this technique enables waveguides to be
written along general paths, we only require a(z) to be a smooth
function. Introducing a transformed field,

ψ = ψ̃ exp

[
i

2k0

∫ z

0
|A(ξ )|2dξ

]
,

where A is induced by the path function a via the formula,

A(z) = −k0a′(z), (2)

we transform Eq. (1) to

i ∂z′ψ̃ = − 1

2k0
(∇′ + iA(z′))2ψ̃ + k0 �n

n0
ψ̃ − γ |ψ̃ |2ψ̃. (3)

In these coordinates, A appears in the same way as if we
had added a magnetic field to Eq. (1), and so we call A a
pseudomagnetic field. Taking l to be the lattice scale size, we
employ the dimensionless coordinates x ′ = lx, y ′ = ly, and
z′ = 2k0l

2z. We introduce the scaled field ψ̃ = √
P∗ψ , where

P∗ is the input peak power, and by rescaling A accordingly
and defining V (r) = 2k2

0 l
2�n/n0 where r ≡ (x,y), we get the

normalized lattice NLS equation,

i ∂zψ = −(∇ + iA(z))2ψ + V (r)ψ − σ0|ψ |2ψ. (4)

The dimensionless coefficient σ0 = 2γ k0l
2P∗ is the strength

of the nonlinear change in the index of refraction. We also
note that for convenience, the dimensionless variables x, y, z,
and ψ are used; these dimensionless variables should not be
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confused with the dimensional variables in Eq. (1). In this
paper we take the potential V (r) to be of HC type.

It is interesting to note that in condensed-matter physics
Eq. (4) with σ0 = 0 describes Bloch electrons in a homoge-
neous electric field [15] where the electric field is proportional
to the time derivative of the vector potential A. Thus, although
the parameter regime addressed in this paper is chosen to be
consistent with experiments performed on optical graphene in
Ref. [13], the basic asymptotic theory described in this paper
applies to different and important physical phenomena.

In Ref. [13], in terms of normalized coordinates, the
particular helical pseudomagnetic field,

A(z) = (A1(z),A2(z)) = κ(sin 	z, − cos 	z), (5)

where κ and 	 are constant, was studied numerically and
experimentally. Numerically calculated dispersion relations of
the associated discrete wave problem, obtained after employ-
ing the tight-binding approximation, are given which indicate
the existence of unidirectional edge modes. Motivated by the
work in Refs. [13,16], we analytically investigate the existence
of unidirectional traveling edge modes. This is performed for
general periodic pseudofields A(z) which includes Eq. (5) as
a subcase. By allowing the pseudofield to evolve relatively
rapidly, which is consistent with the experiments in Ref. [13]
and by using Floquet theory (cf. Refs. [17,18]), an asymptotic
theory is developed which leads to explicit formulas describing
how the dispersion relation depends on a given pseudofield
A(z). Therefore, we can theoretically predict for general
pseudofields when unidirectional modes exist.

To exemplify the different dispersion relations allowed by
our analysis, we generalize the helical motion in Eq. (5) to
include one additional trigonometric term,

A1(z) = κ sin 	z + λ sin (D	z + φ),

A2(z) = −κ cos 	z + λ cos (D	z + φ),

where D is taken to be 1 or 2, λ is constant, and we take
φ = π/4. The values of κ, λ, and φ are related to the amplitude
of the first harmonic, additional harmonic, and phase offset,
respectively, of the additional harmonic. Since A(z) is given
by Eq. (2), in principle, for every a(z) written into the the
optical lattice, each of the terms κ, λ, and φ can be controlled
via the laser-writing procedure. Within this extended family
of pseudofields, we analytically find dispersion relations of
the same form that were found in Ref. [13] as well as
additional classes of dispersion relations. In terms of wave
propagation, we find that in addition to nearly unidirectional
wave propagation, there are cases with significant dispersion.
Thus, not every symmetry-breaking pseudofield generates
coherent unidirectional modes.

We are also able to analyze the effect of nonlinearity on
these traveling edge modes. The classical one-dimensional
(1D) nonlinear Schrödinger equation governing the envelope
of the edge modes is derived below and is found to be an
effective description of nonlinear traveling edge modes. Using
this equation, we find analytically and confirm numerically
that the unidirectionality of waves is maintained in the case
of soliton propagation. In the focusing NLS evolution, the
nonlinearity balances dispersion to produce nonlinear edge
solitons.

Depending on the choice of parameters, some of the
nonlinear modes appear to be immune to backscattering, and
they are in the topologically protected regime predicted by
linear theory, cf. Ref. [13]. This indicates that unidirectional
nonlinear edge modes should be observable. These results hint
at a new means for the control of light conferred by merging
nonlinear and symmetry-breaking effects. See also Ref. [19]
where bulk nonlinear modes have been found. Furthermore,
such “topologically protected nonlinear states” can apply
to other systems, e.g., recently introduced one-dimensional
domain walls [20].

II. PRELIMINARIES

To begin the analysis, the substitution ψ = e−ir·A(z)φ in
Eq. (4) gives

i ∂zφ = −�φ − r · Azφ + V (r)φ − σ0|φ2|φ. (6)

The tight-binding approximation for large V assumes a Bloch
wave envelope of the form [21]

φ ∼
∑

v

(av(z)φ1,v + bv(z)φ2,v)eik·v, (7)

where φ1,v = φ1(r − v), φ2,v = φ2(r − v) are the linearly in-
dependent orbitals associated with the two sites A and B

where the honeycomb potential V (r) has minima in each
fundamental cell and k is a vector in the Brillouin zone. Each
v = mv1 + nv2 where the period vectors v1 and v2 are given
by

v1 = (
√

3/2,1/2), v2 = (
√

3/2,−1/2).

Figure 1 shows the semi-infinite honeycomb lattice with
zigzag boundary conditions studied in this paper. The indexing
scheme for the A and B sites follows [22]. For each site
{A,B}m,n, the subscripts m and n denote the infinite and
semi-infinite directions, respectively. The zigzag boundary
conditions require n � 0 for Bm,n and n � 1 for Am,n, whereas
m ∈ Z for both. The honeycomb lattice is formed by those
sites with m + n even, but to facilitate the computation we
carry out the analysis for the entire semi-infinite lattice in the
(m,n) plane. In addition to the primitive lattice vectors v1 and
v2, Fig. 1 also shows the vectorial distance d between two
adjacent sites Am,n and Bm,n. It can be seen that d = (1/

√
3,0)

for a perfect honeycomb lattice. Substituting the tight-binding

A−1,1

A1,1

A−2,2

A0,2

A2,2

A−1,3

A1,3

B−2,0

B0,0

B2,0

B−1,1

B1,1

B−2,2

B0,2

B2,2

v1

v2

d

FIG. 1. The semi-infinite honeycomb lattice with zigzag bound-
ary conditions. The A and B sites are indexed following Ref. [22].
The primitive lattice vectors v1 and v2 and the intersite distance d are
also labeled.
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approximation (7) into Eq. (6), carrying out the requisite
calculations (see Ref. [21] for more details) and after dropping
small terms and renormalizing, we arrive at the following 2D
discrete system,

i ∂zamn + eid·A(L−(z)b)mn + σ |amn|2amn = 0, (8)

i ∂zbmn + e−id·A(L+(z)a)mn + σ |bmn|2bmn = 0, (9)

where

(L−b)mn = bmn + ρ(bm−1,n−1e
−iθ1 + bm+1,n−1e

−iθ2 ),

(L+a)mn = amn + ρ(am+1,n+1e
iθ1 + am−1,n+1e

iθ2 ),

ρ is a lattice deformation parameter, θ1(z) = v1 · (k +
A(z)), θ2(z) = v2 · (k + A(z)), and σ is a constant which
depends on σ0 and the underlying orbitals. Taking a discrete
Fourier transform in m, i.e., letting amn = ane

imω and bmn =
bne

imω, yields the simplified system,

i ∂zan + eid·A(bn + ργ ∗(z; ω)bn−1) + σ |an|2an = 0, (10)

i ∂zbn + e−id·A(an + ργ (z; ω)an+1) + σ |bn|2bn = 0, (11)

where γ (z; ω) = 2eiϕ+(z) cos (ϕ−(z) − ω) with

ϕ+(z) = (θ2(z) + θ1(z))/2, ϕ−(z) = (θ2(z) − θ1(z))/2.

III. LINEAR THEORY

In this section we omit the nonlinear terms by setting
σ = 0; the nonlinear case is discussed in Sec. V. The theory
we develop is based upon the normalized frequency of
the pseudofield being large, which is consistent with the
experimental parameters used in Ref. [13]. This leads to an
analytical formulation in which we can express the linear-
dispersion relation explicitly in terms of integrals which are
readily computed. The details of the asymptotic method are
reserved for Appendix A; here we only give the main formulas.

Since we assume that the pseudomagnetic field varies
rapidly, we express it as A = A(ζ ) where ζ = ε−1z, |ε| 	 1.
Employing the method of multiple scales [23], we write the
vectors a and b as functions of the fast and slow scales ζ,z and
expand so that the nth components of each vector are given by

an = an(z,ζ ) = a(0)
n + O(ε), bn = bn(z,ζ ) = b(0)

n + O(ε).

We apply zigzag boundary conditions, which implies an =
0, n � 0. The asymptotic method in Appendix A shows that
at leading order we have a mode which is nearly stationary; it
is given by

a(0)
n = 0, b(0)

n = C(Z)bS
n, bS

n = (−ϑ̄/�̄)n,

where

�(ζ ) = eid·A, ϑ(ζ ; ω) = ϑc(ζ ) cos ω + ϑs(ζ ) sin ω,

ϑc(ζ ) = �(ζ )2ρe−iϕ+ cos ϕ−,

ϑs(ζ ) = �(ζ )2ρe−iϕ+ sin ϕ−,

and the average f̄ means

f̄ ≡ T −1
∫ T

0
f (ζ )dζ,

where T is the period of A.

The asymptotic method further yields

C(Z) = C(0) exp ( − iα̃(ω)Z), (12)

where the dispersion relation α̃ is real and is given explicitly
as a function of the pseudomagnetic field A(ζ ) by

α̃(ω) = − i

T

∫ T

0

∫ ζ

0
Q(ζ ′; ω)Q∗(ζ ; ω)dζ ′dζ, (13)

with

Q(ζ ; ω) = −�(ζ )
ϑ̄

�̄
+ ϑ(ζ ; ω). (14)

To have localized modes, we need |ϑ̄/�̄| < 1, namely,

P (ω) ≡ |ϑ̄/�̄|2 = P0 + Pc cos 2ω + Ps sin 2ω < 1, (15)

where

P0 = 1

2

|ϑ̄c|2 + |ϑ̄s |2
|�̄|2 ,

Pc = 1

2

|ϑ̄c|2 − |ϑ̄s |2
|�̄|2 ,

Ps = 1

2

ϑ̄cϑ̄
∗
s + ϑ̄∗

c ϑ̄s

|�̄|2 .

The interval of localization I, a subset of the circle S1 =
R/(πZ), can be determined from Eq. (15). There are three
qualitatively different scenarios,

(I):
√

P 2
c + P 2

s < 1 − P0, P0 < 1,

(II):
√

P 2
c + P 2

s > |P0 − 1|,

(III):
√

P 2
c + P 2

s < P0 − 1, P0 > 1.

In case (II), there are two values of ω determined by |ϑ̄/�̄| = 1,
say ω±, at which localized modes delocalize. Thus at ω±, the
edge band is emitted from the bulk spectrum, and so I =
(ω−,ω+). In case (I), ω±’s drift apart so that I = S1, whereas
in case (III) they come together so that I = ∅.

Letting Q(ζ ; ω) = Qc(ζ ) cos ω + Qs(ζ ) sin ω, Eq. (13)
becomes

α̃(ω) = α̃0 + α̃c cos 2ω + α̃s sin 2ω, (16)

where one finds directly that α̃0, α̃c, and α̃s can be written in
terms of double integrals. It follows from Eq. (16) that the
number of times N that α̃(ω) crosses α̃ = 0 on I can only be
N = 0, 1, or 2. For N = 0 or N = 2, it is possible for edge
states to exist in pairs which allow propagation in different
directions. In this case, the edge modes are susceptible to
dispersion. When N = 1, though, because of the unique root
of α̃, we expect to find unidirectional edge modes that exhibit
essentially no dispersion.

We note that the expressions for the localization interval
I and the dispersion relation α̃(ω) are invariant under the
constant translations,

(ω,A(ζ )) → (ω + (v1 − v2) · Ā/2,A(ζ ) − Ā),

(k,A(ζ )) → (0,A(ζ ) + k),
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where Ā is an arbitrary constant 2D vector. Hence without loss
of generality we will consider A(ζ ) with zero mean and set
k = 0 in the following.

In this paper the lattice deformation parameter ρ is taken to
be positive. As shown in Appendix B, in the tight-binding limit
ρ can be tuned to any positive value by slightly deforming a
perfect honeycomb potential. Since both P (ω) and α̃(ω) are
proportional to ρ2 as ρ is decreased with the other parameters
fixed, the localization interval I is broadened, and the group
velocity α̃′(ω) is decreased.

Now let us assume that A possesses the threefold symmetry
[see Figs. 4(a)–4(c) for examples], i.e.,

A(ζ + 2π/3) = R2π/3A(ζ ), (17)

where R2π/3 denotes rotation by 2π/3. As shown in Ap-
pendix B, in the tight-binding limit we have the approximation
d = (1/

√
3,0) independent of ρ. Using the identities d − v1 =

R−1
2π/3d and d − v2 = R2π/3d, we can simplify the off-diagonal

element ϑ of the matrix L− as

ϑ(ζ ; ω) = ρ(e−iω�(ζ+) + eiω�(ζ−)), (18)

where ζ± = ζ ± 2π/3. It then follows that

ϑ̄/�̄ = ρ(e−iω + eiω), (19)

so the localization interval I depends only on ρ as

I =
{

[cos−1 (1/(2ρ)),π − cos−1 (1/(2ρ))], ρ � 1/2,

S1, ρ < 1/2.

This expression for I is identical to the one derived in Ref. [22]
in the absence of the pseudofield A.

IV. CLASSIFICATION OF THE DISPERSION RELATION

To make this analysis more concrete, we take the periodic
pseudofield to be

A(ζ ) = κ(s(ζ ), − c(ζ )) + λ(s(Dζ + φ),c(Dζ + φ)).

Here, s(ζ ) = sin ζ, c(ζ ) = cos ζ , and ζ = z/ε. Unless oth-
erwise stated, we set ε = 1.5/(2π ), which is motivated by
experiments [13]. This pseudofield is characterized by three
continuous parameters κ, λ, and φ, and a discrete parameter
D ∈ Z. It can be seen that A(ζ ) has a (D + 1)-fold symmetry;
in particular, A(ζ ) has the threefold symmetry given by
Eq. (17) when D = 3n − 1, n ∈ Z. In the following we fix
φ = π/4 and explore D = 2 and D = 1.

Figure 2 shows the (κ,λ) plane, hereafter referred to as the
phase diagram, partitioned based on our asymptotic theory
according to all possible combinations of cases (I)–(III) and
N = 0–2, hereafter denoted by (case,N ). All six combinations
have been found. Figure 3 shows the full dispersion relations,
or Floquet parameters, α(ω) = εα̃(ω) at representative points
(a)–(f) on the (κ,λ) plane in Fig. 2 computed directly using
Eqs. (10) and (11). The numerical computations are performed
using a finite number of lattice sites with zigzag boundary
conditions on both ends. Unless otherwise stated, each vector
a and b is defined over 20 lattice sites to allow for sufficient
decay. The dark black curves in Fig. 3 show Eq. (16). It can
be seen that the asymptotic theory describes the dispersion
relation of edge modes almost exactly in all cases studied.

κ

λ
(I,0)

(I,2)

(II,1)

(II,0)

(II,2)

(III,0)

−10 0 10
−10

0

10

(a)

(b)
κ

λ
(I,0)

(I,2)

(II,1)

(II,0)

(II,2)

(III,0)

−10 0 10
−10

0

10

(c)

(d)

(i) (ii)

κ

λ
(I,0)

(I,2)

(II,1)

(II,0)

(II,2)

(III,0)

−10 0 10
−10

0

10

(e)(e) κ

λ
(I,0)

(I,2)

(II,1)

(II,0)

(II,2)

(III,0)

−10 0 10
−10

0

10

(iii) (iv)

κ

λ
(I,0)

(I,2)

(II,1)

(II,0)

(II,2)

(III,0)

−10 0 10
−10

0

10

(f)(f)

(v)

FIG. 2. (Color online) The (κ,λ) plane partitioned according
to the combinations of cases (I)–(III) and N = 0–2, represented
as (case,N ) pairs with parameters (ρ,D): (i) (1,2), (ii) (0.4,2),
(iii) (0.6,2), (iv) (2,2), and (v) (1,1). The full dispersion relations
at the labeled points (a)–(f) are shown in Fig. 3.

Figure 4 shows the pseudofield A with the parameters used in
Fig. 3.

The phase diagrams in Figs. 2(i)–2(iv) are computed using
a threefold symmetric pseudofield (D = 2). Thus at ρ = 1
[Fig. 2(i)], we have case (II) with the localization interval
I = (π/3,2π/3). In this case the phase diagram is partitioned
into N = 1 and N = 0 regions. In Fig. 3(a), using a pseudofield
with a single harmonic [Fig. 4(a)] as in Ref. [13], we obtain an
N = 1 dispersion curve with a nonzero slope. This indicates
that the linear edge mode propagates as in Ref. [13]. In
Fig. 3(b), using a pseudofield with a nonzero second harmonic
[Fig. 4(b)], we obtain an N = 0 dispersion curve that does
not connect between the upper and the lower bulk dispersion
branches.

At ρ = 0.4 < 1/2 [Fig. 2(ii)], we have case (I) withI = S1.
In this case the phase diagram is partitioned into N = 2 and
N = 0 regions. Interestingly, these regions appear to coincide
with the N = 1 and N = 0 regions, respectively, in the ρ = 1
case. In Figs. 3(c) and 3(d) using the same pseudofields as in
Figs. 3(a) and 3(b), respectively, we observe that a pseudofield
with a single harmonic gives N = 2, but a nonzero second
harmonic results in N = 0.
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α

ω π0
−2.5

0

2.5

α

ω π0
−1.5

0

1.5

(a) (b)

α

ω π0
−1.5

0

1.5

α

ω π0
−0.8

0

0.8

(c) (d)

α

ω π0
−0.8

0

0.8

α

ω π0
−1.2

0

1.2

(e) (f)

FIG. 3. (Color online) Dispersion relations for points in Fig. 2
with parameters (ρ,D,κ,λ): (a) (1,2,1.4,0), (b) (1,2,6,2.4),
(c) (0.4,2,1.4,0), (d) (0.4,2,6,2.4). (e) (0.6,2,3.6,2) using 80 lattice
sites and ε = 0.3/(2π ), and (f) (1,1,2,3). The black curve shows
Eq. (16).

At 1/2 < ρ = 0.6 < 1 [Fig. 2(iii)], we have case (II) with a
broader I than ρ = 1. Compared to ρ = 1, the N = 0 region
remains the same, but a neighborhood of the boundary of
the N = 1 region has turned into an N = 2 region. A typical
N = 2 dispersion relation computed using the pseudofield in
Fig. 4(c) is shown in Fig. 3(e). Note that in this case, the
predicted zero crossing on the right, say ωr (shown in the
inset), is quite close to the predicted value of ω+. This implies
that P (ωr ) is close to 1 and α̃(ω+) is close to 0. This is a
sensitive case, so the number of lattice sites is increased to 80,
and ε is decreased to 0.3/(2π ). The numerical result is then in
good agreement with the asymptotic prediction.

2

A1−2 2
−2

2

A2

A1−9 9
−9

9

A2

A1−6 6
−6

6

A2

A1−5 5
−5

5

(a) (b) (c) (d)

A

FIG. 4. Plots of the pseudofield A(ζ ) = (A1(ζ ),A2(ζ )) corre-
sponding to the parameters used in (a) Figs. 3(a) and 3(c),
(b) Figs. 3(b) and 3(d), (c) Fig. 3(e), and (d) Fig. 3(f).

At ρ = 2 > 1 [Fig. 2(iv)], we have case (II) with a narrower
I than ρ = 1. Compared to ρ = 1, the N = 0 region has
expanded, and correspondingly the N = 1 region has shrunk.

In the absence of the threefold symmetry, I should depend
not only on ρ, but also on the pseudofield itself. Figure 2(v)
shows a phase diagram computed using a twofold symmetric
(or elliptic) pseudofield (D = 1). Indeed at ρ = 1, we have
coexistence among cases (I)–(III). Interestingly, we find only
N = 2 in the case (I) region and N = 1 in the case (II) region.
A typical case (III) dispersion relation computed using the
pseudofield in Fig. 4(d) is shown in Fig. 3(f).

We note that the difference between the N = 1 and the
N = 0,2 cases is distinguished by introducing aZ2 topological
index, see Ref. [24], I ≡ N (mod 2) such that the former (latter)
situation corresponds to I = 1 (I = 0), namely, nontrivial
(trivial) topology. We will explore this connection further in
the future.

V. NONLINEAR TWO-DIMENSIONAL
LOCALIZED EDGE MODES

Following the approach in Ref. [22] and comparing with
experiments in Ref. [13], we construct 2D localized solutions
by introducing an envelope in ω and taking the inverse Fourier
transform in m. First we focus on fixed ω and modify our
preceding analysis in Sec. III to account for weak nonlinearity
where σ = εσ̃ . The analysis proceeds as before, except that
r+ is replaced by r+ − σ̃ |b(0)|2b(0) in Eq. (A1). In this case we
arrive at the following equation:

i ∂ZC = α̃(ω)C − σ̃ αnl(ω)|C|2C, (20)

where αnl(ω) = ‖bS‖4
4/‖bS‖2

2 with

‖bS‖2
2 =

∞∑
n=0

|bS
n |2, ‖bS‖4

4 =
∞∑

n=0

∣∣bS
n

∣∣4
.

We can reconstruct the approximation to bmn via

bmn = C(Z,ω)eiωmbS
n . (21)

In the narrow-band approximation with ω near any given
ω0 ∈ I, the solution C represents an envelope function with
carrier wave number ω0. To describe its dynamics, we first
expand α̃(ω) and αnl(ω) around ω0. We then replace ω − ω0

by −iν∂y , where ν is the width around ω0 or the inverse width
of the envelope in physical space. Finally, we rewrite Eq. (20)
as the following equation for the envelope C:

i ∂ZC =
⎡
⎣ 3∑

j=0

α̃(j )(ω0)

j !
(−iν∂y)j + O(ν4)

⎤
⎦C

− σ̃ [αnl(ω0) + O(ν)]|C|2C, (22)

where α̃(j )(ω0) denotes the j th derivative of α̃(ω) at ω = ω0.
Equation (22) is a higher-order NLS equation.

There are interesting subcases. If α̃′′(ω0) = 0, then the
equation is reduced at leading order to the well-known NLS
equation given below,

i ∂Z̃C̃ + α̃′′(ω0)

2
C̃YY + σeff|C̃|2C̃ = 0, (23)
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where C = C̃(Y,Z̃)e−iα̃(ω0)Z, Y = y − να̃′(ω0)Z, Z̃ = ν2Z,
and σeff = σ̃ αnl(ω0)/ν2. On the other hand if α̃′′(ω0) = 0, then
the following “zero-dispersion” NLS equation is obtained

i ∂Z3C̃ − i
α̃′′′(ω0)

6
C̃YYY + σzeff|C̃|2C̃ = 0, (24)

where now C = C̃(Y,Z3)e−iα̃(ω0)Z, Y = y − να̃′(ω0)Z, Z3 =
ν3Z, and σzeff = σ̃ αnl(ω0)/ν3.

As indicated above, Eq. (23) is the classical 1D NLS
equation. The equation is maximally balanced when σeff =
O(1). In the focusing case α̃′′(ω0)σeff > 0, the NLS equation
is known to contain solitons. Thus in this case the semi-infinite
HC lattice truly contains edge solitons. In the defocusing
case α̃′′(ω0)σeff < 0, the nonlinearity enhances dispersion,
and so no soliton is expected. For the zero-dispersion NLS
equation (24), which applies when α̃′′(ω0) = 0 and σzeff =
O(1), the nonlinearity also enhances dispersion somewhat.

To test these predictions, we solve the 2D discrete system
Eqs. (8) and (9) numerically using the initial condition,

amn = 0, bmn =
∫
I
b̂(ω)

bS
n (ω)√

〈bS(ω),bS(ω)〉
eimωdω, (25)

where

b̂(ω) = e−(ω−ω0)2/ν2

∫
I e−(ω−ω0)2/ν2

dω
,

and compare the results with bmn reconstructed from numerical
solutions of the 1D NLS equation (22) with the initial
condition,

C(Z = 0,y) =
∫
I
b̂(ω)

1√
〈bS(ω),bS(ω)〉

eiy(ω−ω0)/νdω. (26)

In Fig. 5, we compare linear (σ = 0) edge modes found from
the full 2D discrete system to those found from the 1D linear
Schrödinger (LS) equation, i.e., Eq. (22) with σ̃ = 0. The
comparison of results is shown in terms of |bm0(z)|. The left
panels (a), (c), and (e) show the solutions of the 2D discrete
system, and the right panels (b), (d), and (f) show the solutions
of the 1D LS equation where we use the following modification
of Eq. (21):

bmn = C(Z,y)eiω0y/νbS
n (27)

to reconstruct bmn with C satisfying the LS equation.
In Fig. 6, we compare nonlinear (σ = 0) edge modes found

from the full 2D discrete system to those found from the full
1D NLS equation (22). As before, the comparison of results is
shown in terms of |bm0(z)|, the left panels (a), (c), and (e) show
the solutions of the 2D discrete system, and the right panels
(b), (d), and (f) show the solutions of the 1D NLS equation
with Eq. (27) used to reconstruct |bm0(z)|.

In the absence of nonlinearity (σ = 0), the fastest and most
robust unidirectional traveling mode is seen in Fig. 5(a), which
corresponds to the N = 1 dispersion curve in Fig. 3(a) with
α̃′(ω0) = 0 [13]. In this case, relatively weak dispersion results
from α̃′′(ω0) = 0, and the term α̃′′′(ω0) = 0 is a small higher-
order contribution. Figures 5(c) and 5(e) both correspond to
the N = 2 dispersion curve in Fig. 3(c) with α̃′(ω0) = 0. In
both cases, the linear dispersion resulting from α̃′′(ω0) = 0
essentially eliminates the mode after sufficient evolution.
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FIG. 5. (Color online) Plot of |bm0(z)| (at the edge) for parame-
ters (ρ,ν,ω0): (a) and (b) (1,0.2,π/2), (c) and (d) (0.4,0.2,π/4), and
(e) and (f) (0.4,0.2,3π/4). The pseudofield parameters are fixed at
(D,κ,λ) = (2,1.4,0), and the edge modes are linear (σ = 0). Periodic
boundary conditions in m are used. The left panels are calculated from
the 2D discrete system Eqs. (8) and (9); the right panels are found
from the 1D LS equation (22).

Figure 6(a) shows the nonlinear evolution using the same
parameters as Fig. 5(a) but with σ = 0.005 ∼ εν3. Comparing
these two panels, we see that the unidirectional traveling mode
is largely maintained in the presence of weak nonlinearity,
although dispersion is somewhat enhanced in the nonlinear
case. Figures 6(c) and 6(e) show the nonlinear evolutions using
the same parameters as in Figs. 5(c) and 5(e) but with σ =
0.02 ∼ εν2. For Fig. 6(c), which is described by the defocusing
NLS equation, which has no solitons due to α̃′′(ω0) < 0, we
see that weak nonlinearity enhances dispersion. On the other
hand, for Fig. 6(e), which is described by the focusing NLS
equation, which has solitons due to α̃′′(ω0) > 0, we see that
weak nonlinearity enhances localization.

Comparing panels (b), (d), and (f) with panels (a), (c), and
(e) in Figs. 5 and 6, we see that the 1D LS/NLS equation (22)
reproduces the time evolution of the 2D discrete system (8)
and (9) well up to z ∼ 1/(εν3) for panel (a) and z ∼ 1/(εν2) for
panels (c) and (e). Beyond these time scales, higher-order terms
must be added to Eq. (22) in order to explain, for example, the
slow rightward drift of the wave envelope in Fig. 6(e).

Since solitons in the 1D focusing NLS equation are known
to be stable, it is interesting to see how the edge solitons found
above in the 2D discrete system propagate over long distances.
Figure 7 shows two time evolutions computed using the same
parameters as in Fig. 6(e), except that ω0 = 5π/8 and ρ = 0.6
for panel (a) and ρ = 0.4 for panel (b). Since α̃(ω) ∝ ρ2, it can
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FIG. 6. (Color online) Plot of |bm0(z)| (at the edge) for the same
parameters as in Fig. 5, except that (a) and (b) σ = 0.005; (c)–(f)
σ = 0.02. The left panels are calculated from the 2D discrete system
Eqs. (8) and (9); the right panels are found from the full 1D NLS
equation (22) with σ̃ = 0.

be seen from Fig. 3(c) that locally α̃′(ω0) = 0 and α̃′′(ω0) > 0
in both cases and so the governing 1D NLS equation is
focusing. The difference between these two choices of ρ

is that globally the dispersion relation α̃(ω) is topologically
nontrivial [case (II), N = 1] for ρ > 1/2 and topologically
trivial [case (I), N = 2] for ρ < 1/2. Over the distance
z ∼ 1/(εν2), the localized wave envelope indeed evolves into
a traveling edge soliton in both cases as predicted by the NLS
equation. However, for larger z, the edge soliton travels at a
uniform velocity in Fig. 7(a) but gradually slows down due
to backscattering in Fig. 7(b). This dramatic difference may
be attributed to the fact that the linear topologically protected
traveling edge waves, which are immune to backscattering,
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FIG. 7. (Color online) Plot of |bm0(z)| (at the edge) for the same
parameters as in Fig. 6(e), except that ω0 = 5π/8 and (a) ρ = 0.6;
(b) ρ = 0.4.

confer this immunity to nonlinear modes, such as the one in
Fig. 7(a).

This immunity of traveling edge waves to backscattering
in the topologically protected regime is usually explained in
terms of the absence of counterpropagating edge modes. For
this reason, these edge waves are also expected to be immune to
backscattering and so maintain their topological protection in
the presence of various types of disorder, at least for a degree of
disorder below a certain threshold [7]. A detailed investigation
of the dynamical behavior of traveling edge waves, using
various types of disordered honeycomb lattices cf. Ref. [25], is
a topic of interest but is outside the scope of the present study.

VI. CONCLUSION

In this paper, a method is developed which describes the
propagation of edge modes in a semi-infinite honeycomb lat-
tice in the presence of a periodically and relatively fast varying
pseudofield and weak nonlinearity. In the linear case, various
pseudofields are explored, and different dispersion relations
are found to occur, some of which exhibit unidirectional
wave propagation. A special case agrees with the results and
experiments of Ref. [13]. With weak nonlinearity included, it is
shown that in the narrow-band approximation, a higher-order
NLS equation is obtained. Special cases include the classical
NLS and zero-dispersion NLS equations. The classical NLS
equation admits solitons, and they are found to be part of the
long-time nonlinear evolution under suitable circumstances.
This shows the existence of true edge solitons. Finally, over
very long distances, with certain choices of parameters, con-
sistent with the notion of topological protection as indicated by
the linear-dispersion relation, localized nonlinear edge modes
are found to be immune from backscattering, whereas with
other choices of parameters, backscattering is observed.
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APPENDIX A: ASYMPTOTIC ANALYSIS

With the method of multiple scales, we write the nth
components of vectors a and b as

an = an(z,ζ ), bn = bn(z,ζ ).

The coupled system given by Eqs. (10) and (11) then becomes

iε−1∂ζ a + i ∂za + L−(ζ ; ω)b = 0,

iε−1∂ζ b + i ∂zb + L+(ζ ; ω)a = 0,

where the nth component of L−(ζ ; ω)b is

(L−(ζ ; ω)b)n = �(ζ )bn + ϑ(ζ ; ω)bn−1,

the operator L+ is the Hermitian conjugate of L−, and

�(ζ ) = eid·A, ϑ(ζ ; ω) = ϑc(ζ ) cos ω + ϑs(ζ ) sin ω,

ϑc(ζ ) = �(ζ )2ρe−iϕ+ cos ϕ−,

ϑs(ζ ) = �(ζ )2ρe−iϕ+ sin ϕ−.
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Then we expand an,bn in powers of ε,

an = a(0)
n + εa(1)

n + · · · , bn = b(0)
n + εb(1)

n + · · · .

At O(ε−1), ∂ζ a
(0)
n = 0 and ∂ζ b

(0)
n = 0, which leads to a(0)

n =
a(0)

n (z) and b(0)
n = b(0)

n (z).
At O(1), to remove secularities using the average f̄ ≡

T −1
∫ T

0 f (ζ )dζ , where T is the period of A, we get

i ∂za
(0) + L̄−(ω)b(0) = εr−, i ∂zb

(0) + L̄+(ω)a(0) = εr+,

(A1)

where

r− = −i ∂za(1) − L−(ζ ; ω)b(1),

r+ = −i ∂zb(1) − L+(ζ ; ω)a(1), (A2)

and where a(1) and b(1) are found from

i ∂ζ a
(1) + (L−(ζ ; ω) − L̄−(ω))b(0) = 0, (A3)

i ∂ζ b
(1) + (L+(ζ ; ω) − L̄+(ω))a(0) = 0. (A4)

The zigzag boundary conditions imply an(z,ζ ) = 0, n � 0. As
ε → 0, we have a stationary mode on the z scale so that a(0)

n =
0 and L−(ω)b(0) = 0. Thus to maintain asymptotic balance,
for ε = 0, this mode evolves on the Z scale where Z = εz,
namely,

b(0) = C(Z)bS, bS
n = (−ϑ̄/�̄)n.

To eliminate secularities at the next order, we must have

iC−1∂ZC = 〈r+,bS〉/〈bS,bS〉 ≡ α̃, (A5)

where 〈·,·〉 is the inner product between two vectors and r+ is
evaluated using Eqs. (A2)–(A4) with a(0) = 0 and b(0) = bS .
After introducing

Q(ζ ; ω) ≡ (L−(ζ ; ω)bS)n
bS

n−1

= −�(ζ )
ϑ̄

�̄
+ ϑ(ζ ; ω), (A6)

we see that α̃(ω) becomes

α̃(ω) = − i

T

∫ T

0

∫ ζ

0
Q(ζ ′; ω)Q∗(ζ ; ω)dζ ′dζ. (A7)

From Eq. (A6) we see that Q̄ = 0; using this fact it is shown
in Appendix C that α̃ is strictly real. Therefore the solution to
Eq. (A5),

C(Z) = C(0) exp (−iα̃(ω)Z) (A8)

shows that the influence of the nontrivial pseudomagnetic
field A(ζ ) on the stationary edge modes is the intro-
duction of a nontrivial phase; as mentioned in Sec. III
the function α̃(ω) is identified as the dispersion relation.

APPENDIX B: RELATION BETWEEN THE
DEFORMATION PARAMETER AND

THE HONEYCOMB POTENTIAL

In this section, we study the dependence of the deformation
parameter ρ on the honeycomb potential. The prototypical
honeycomb potential used in this paper is (cf. Eq. (2) in
Ref. [21])

V (r) = V0

[ |eik0b1·r + ηeik0b2·r + ηeik0b3·r|2
(1 + 2η)2

− 1

]
, (B1)

where, b1 = (0,1), b2 = (−
√

3
2 , − 1

2 ), b3 = (
√

3
2 , − 1

2 ), V0 >

0 is the potential strength, and η measures the relative strength
of the second and third plane waves. To form a honeycomb
lattice, η > 1

2 must be satisfied; η = 1 corresponds to a perfect
honeycomb.

In the Appendix to Ref. [21], the deformation parameter ρ

is expressed in terms of the shift vectors ds , s = 0–2, from its
three nearest B sites to an A site. The vectors ds are functions
of η; the vector −d0 is denoted by d in this paper. Near η = 1,
the expression for ρ is at leading order,

ρ = e[(9+√
3π)/18]

√
V0(η−1), (B2)

which can be solved as

η − 1 = 18

9 + √
3π

V
−1/2

0 ln ρ. (B3)

Near η = 1, the vector d becomes at leading order,

d =
(

1√
3

+ 1

π
(η − 1),0

)
. (B4)

Therefore, when V0 is large, as long as ρ is positive and not
small, d changes little as a function of ρ.

APPENDIX C: THE REALITY OF
THE DISPERSION RELATION

To show that Q̄ = 0 implies that α̃(ω) given in Eq. (13) is
real, we note that (parametric dependence of Q on ω is omitted
for notational convenience),

T [iα̃(ω) + (iα̃(ω))∗]

=
∫ T

0

∫ ζ

0
Q(ζ ′)Q∗(ζ )dζ ′dζ +

∫ T

0

∫ ζ

0
Q∗(ζ ′)Q(ζ )dζ ′dζ

=
∫ T

0

∫ ζ

0
Q(ζ ′)Q∗(ζ )dζ ′dζ +

∫ T

0

∫ T

ζ

Q∗(ζ )Q(ζ ′)dζ ′dζ

=
∫ T

0

∫ T

0
Q(ζ ′)Q∗(ζ )dζ ′dζ =

∣∣∣∣
∫ T

0
Q(ζ )dζ

∣∣∣∣
2

= 0.
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