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Theory of optomechanical interactions in superfluid He
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A general theory is presented to describe optomechanical interactions of acoustic phonons, having extremely
long lifetimes in superfluid 4He, with optical photons in the medium placed in a suitable electromagnetic cavity.
The acoustic nonlinearity in the fluid motion is included to consider processes beyond the usual linear process
involving the absorption or emission of one phonon at a time. We first apply our formulation to the simplest
one-phonon process involving the usual resonant anti-Stokes upconversion of an incident optical mode. However,
when the allowed optical cavity modes are such that there is no single-phonon mode in the superfluid, which can
give rise to a resonant allowed anti-Stokes mode, we must consider the possibility of two-phonon upconversion.
For such a case, we show that the two-step two-phonon process could be dominant. We present arguments for
a large two-step process and negligible single-step two-phonon contribution. The two-step process also shows
interesting quantum interference among different transition pathways.
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I. INTRODUCTION

In the field of optomechanics, one is always designing
mechanical systems with the lowest possible friction [1,2] and
highest possible optomechanical coupling constant [3–5]. This
is because one would like to produce and use coherent phonons
with a long coherence time. One prominent application of
coherent phonons is in the storage and retrieval of light using
optomechanical systems [6,7]. An attractive system which has
received considerable attention is the levitated microsphere
trapped in an optical cavity. Both trapping and levitation can
be produced by optical fields [1,2]. Another very attractive
system is superfluid He, which has zero viscosity. It is known
to have acoustic phonons with almost zero friction at low
temperatures, a finite value arising only from thermal three-
phonon scattering processes [8]. De Lorenzo and Schwab
[8] have performed initial optomechanical experiments on
superfluid He by coupling it to a superconducting resonator.
Flowers-Jacobs et al. [9] have reported progress in doing
optomechanics with superfluid He using optical cavities.

In view of the current interest [8,9] in the optomechanics
with superfluid He, we present in this paper theoretical foun-
dations of optomechanics in such systems. The organization
of this paper is as follows. In Sec. II, we derive the basic
semiclassical equations for the optomechanical interactions
in superfluid He. In Sec. III, we present a Hamiltonian
formulation of the problem in terms of the canonical variables,
so that this can be adopted for quantized phonon and photon
fields. The theory is formulated in terms of the fields, both
electromagnetic and fluid density, so that situations involving
many phonons and photons of different frequencies can be
handled. In Sec. IV, we present a quantized description of
the optomechanical interactions. We present estimates for
the strength of the optomechanical interactions. The linear
optomechanical interaction (shift of the cavity resonance per
photon) is quite significant in cavities like a fiber cavity [10].
We derive the canonical form [11–14] of the Hamiltonian for
linear optomechanical interactions in superfluid He. Having

obtained the canonical form, we can study all the physical
processes that have been studied with other optomechanical
systems. An estimate of the single-step two-phonon anti-
Stokes process due to acoustic nonlinearity is also given
in this section. In Sec. V, we discuss two-step two-phonon
processes, which are shown to be significant in superfluid He.
It may be noted that the knowledge of the linear interaction
Hamiltonian (51) with the strength of g estimated after Eq. (47)
is sufficient to understand the processes in Sec. V. When the
electromagnetic cavity is designed in such a way that allowed
optical modes are such that no anti-Stokes upconversion is
possible via the absorption of any single phonon in the
medium, one must consider the absorption of two phonons
for possible upconversion. Such a process can be controlled
well when these phonons are external phonons injected in the
medium. Because of the intrinsic nonlinearity of the superfluid
He, we have new possibilities arising from the combina-
tion of the superfluid nonlinearity and the optomechanical
interactions.

II. CLASSICAL NONLINEAR EQUATIONS FOR
SUPERFLUID HELIUM OPTOMECHANICS

In this section, we start with the fundamental equations
[15] for the superfluid density ρ and the velocity �v and
we obtain modifications of these due to interaction with the
electromagnetic fields. The basic equations for ρ and �v in the
absence of the electromagnetic fields are given by

∂ρ

∂t
+ �∇ · (ρ�v) = 0, (1)

∂

∂t
(ρ�v) + �∇ · ←→

T = 0, (2)

where the stress tensor
←→
T is given by

Tij = pδij + ρvivj . (3)
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Here p is the pressure in the superfluid. We have set
the viscosity term zero. We note that we have a set of
nonlinear equations as pressure is generally expanded [16,17]
in terms of the normalized deviation ρ̃ = (ρ − ρ0)/ρ0 from
the equilibrium value ρ0:

p − p0 ≈
(

ρ
∂p

∂ρ

)
0

ρ̃ + 1

2

(
ρ2 ∂2p

∂ρ2

)
0

ρ̃2 + · · · . (4)

We now discuss the modification of Eqs. (1) and (2) due to
the interaction with the electromagnetic fields. Clearly Eq. (1)
remains unchanged. We need to modify Eq. (2) by the addition
of the Maxwell stress contribution

←→
T (em) to (2), i.e.,

∂

∂t
(ρ�v) + �∇ · ←→

T − �∇ · ←→
T (em) = 0. (5)

The form of the Maxwell stress tensor depends on the
nature of the medium. It is derived from the considerations
of the electromagnetic force on the medium. On dropping
the magnetic polarization contribution, the force on a linear
medium can be written as

F
(em)
j =

∫
d3r

∑
i

∂

∂ri

T
(em)
ij ,

T
(em)
ij = −1

2
δij ε(�r) �E · �E + ε(�r)EiEj . (6)

Here �E is the electromagnetic field and ε(�r) is the optical
dielectric function of the isotropic superfluid. The electromag-
netic force can also be written in an alternate form [18]

�F (em) = −1

2

∫
d3rE2(�r) �∇ε(�r). (7)

The dielectric function of the medium depends on �r through
the density, i.e., ε(�r) = ε[ρ(�r)] and hence

�∇ε(�r) = ∂ε[ρ(�r)]

∂ρ
�∇ρ, (8)

and hence Eq. (7) reduces to

�F (em) = −1

2

∫
d3rE2(�r)

∂ε

∂ρ
�∇ρ

= 1

2

∫
d3rρ(�r) �∇

[
∂ε

∂ρ
E2(�r)

]
. (9)

Using Eq. (9), Eq. (5) becomes

∂

∂t
(ρ�v) + �∇ · ←→

T + 1

2
ρ �∇

[
∂ε

∂ρ
E2(�r)

]
= 0. (10)

Equations (1) and (10) are the basic equations for the optome-
chanical interactions in superfluid He. The only assumption
that we made in deriving Eq. (10) is the linear electromagnetic
response ε[ρ(�r)] of superfluid He. Equations (1) and (10) are
to be supplemented by the expansion (4). The electric field
obeys the equation

�∇×�∇× �E + 1

ε0c2

∂2

∂t2
(ε[ρ(�r)] �E) = 0, (11)

which is obtained from the Maxwell equations.

III. HAMILTONIAN DESCRIPTION OF THE BASIC
EQS. (10) AND (11)

In the Hamiltonian description, one introduces the conju-
gate variables ρ(�r) and �(�r) and the classical velocity is related
to � via

�v = −�∇�. (12)

The Hamiltonian description of the superfluid equations (1)
and (2) is well known and for completeness we recall the main
aspects. The unperturbed Hamiltonian density is

H0 = 1
2ρ(∇�)2 (13)

and the interaction term is

H1 = ρW (ρ). (14)

The function W is related to the pressure via the thermody-
namic relation [17]

W (ρ) =
∫ ρ

ρ0

p(ρ ′)
ρ ′2 dρ ′. (15)

Using the total Hamiltonian H = ∫
d3r(H0 + H1), we can see

how Eqs. (13) to (15) lead to Eqs. (1) and (2). For this purpose,
we use the Hamiltonian formulation for fields [19]

ρ̇ = −δH

δ�
=

∑
j

∂

∂rj

(
∂H

∂(∂�/∂rj )

)
− ∂H

∂�

=
∑

j

∂

∂rj

[
ρ

∂�

∂rj

]
= −

∑
j

∂

∂rj

[ρvj ]

= −�∇ · (ρ�v), (16)

�̇ = δH

δρ
= 1

2
(∇�)2 + ∂

∂ρ
[ρW (ρ)]

= 1

2
v2 +

(
W + p(ρ)

ρ

)
. (17)

We can convert Eq. (17) into an equation for (ρ�v) as follows

∂

∂t
(ρ�v) = ∂ρ

∂t
�v − ρ

∂

∂t
�∇�

= −[ �∇ · (ρ�v)]�v − ρ �∇
[

1

2
v2 + W + p(ρ)

ρ

]

= −ρ( �∇ρ)
∂

∂ρ

[
W + p(ρ)

ρ

]
− �∇ · [ρ�v�v]

= −�∇ · [ρ�v�v] − �∇ · (p
←→
I ), (18)

where
←→
I is the unit tensor. Equations (16) and (18) are

identical to Eqs. (1) and (2), respectively.
The Hamiltonian for optomechanical interactions in super-

fluid He will then be

H =
∫

d3r(H0 + H1) +
∫

H(em)d3r, (19)

H(em) = H(em)
0 + H(em)

1 , (20)

H(em)
0 = 1

2

(
ε0E

2 + 1

μ0
B2

)
, (21)
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H(em)
1 = −1

2
�P · �E = −

(
ε[ρ] − ε0

2

)
E2, (22)

where �P is the polarization in a superfluid medium. Using
Eq. (19), the equations for the canonical conjugate variables ρ

and � are

ρ̇ − �∇ · (ρ �∇�) = 0, (23)

�̇ = 1

2
( �∇�)2 + ∂

∂ρ
(ρW ) − 1

2

(
∂ε

∂ρ

)
E2. (24)

A simple exercise shows that Eq. (24) is equivalent to Eq. (10)
for ρ�v.

The Hamiltonian (19) depends on the density ρ to all orders.
To bring out some of the important physical processes, we
consider an expansion of H in powers of the deviation ρ̃,
(ρ − ρ0)/ρ0 from the equilibrium value ρ0. We will examine
terms up to second order in ρ̃. The expansion of the
optomechanical interaction term is straightforward

ε[ρ] = ε[ρ0] + ρ0

(
∂ε

∂ρ

)
0

ρ̃ + 1

2
ρ2

0

(
∂2ε

∂ρ2

)
0

ρ̃2 + · · · ,

(25)

H(em)
1 = −ε[ρ0] − ε0

2
E2 − 1

2
g1ε0ρ̃E2 − 1

2
g2ε0ρ̃

2E2 + · · · ,

g1 = ρ0

ε0

(
∂ε

∂ρ

)
0

, g2 = ρ2
0

2ε0

(
∂2ε

∂ρ2

)
0

. (26)

Here g1 and g2 are the coupling constants for the linear and
quadratic optomechanical interactions. A rough estimate of g1

and g2 can be obtained from the experimental data [20] on
liquid He

ε(ρ)

ε0
= 1 + 8π

3
αm

m
ρ

1 − 4π
3

αm

m
ρ

, (27)

where the molecular polarizability αm is
1.23296×10−7m3/mole, m = 4.0026×10−3 kg/mole,
equilibrium density ρ0 = 145.1397 kg/m3, and hence

g1
∼= 0.05826, g2

∼= 0.00111. (28)

Further, ε(ρ0)/ε0 = 1.057 and therefore the term − ε(ρ0)−ε0

2 E2

contributes to small frequency shifts of the electromagnetic
fields. We will ignore such frequency shifts. The term H1

gives the nonlinearities of the superfluid in the absence of any
applied electromagnetic fields. We write p(ρ) as

p(ρ) − p0 = ρ0
∂p

∂ρ0
ρ̃ + 1

2
ρ2

0
∂2p

∂ρ2
0

ρ̃2 + · · ·

= (
ρ0v

2
s

)
ρ̃ + 1

2
A2ρ̃

2 + · · · , (29)

and use W (ρ0) = 0, to obtain

H1 = 1
2

(
ρ0v

2
s

)
ρ̃2 + 1

6

(
A2 − ρ0v

2
s

)
ρ̃3 + · · · . (30)

The parameter A2/(2ρ0v
2
s ) is called the Gruneisen constant

[17] and has the value 2.84. In Eq. (29), vs(=238 m/s) is the
velocity of sound. The nonlinear conversion of phonons, as
determined by the ρ̃3 term in Eq. (30), has been discussed

by Wright et al. [16]. To simplify H0 in powers of ρ̃, we
need to find the expansion of �∇�, which can be obtained from
Eq. (23), which to lowest order in density yields

∇2� = ˙̃ρ. (31)

IV. QUANTIZATION OF THE HAMILTONIAN
FOR OPTOMECHANICAL INTERACTIONS

To do the quantization, we invoke the space-time structure
of the electromagnetic and density (acoustic) fields. We
would be studying optomechanical interactions in a cavity
which could be an optical one like a fiber cavity [10] or a
superconducting one [8]. The electromagnetic field can be
written as a superposition of orthogonal and orthonormal
transverse modes �u(i), i.e.,

�E(�r,t) =
∑

i

�u(i)(�r)E (i)e−iωi t + c.c., (32)

where the mode function �u(i) has frequency 
i and is a solution
of ∇2 �u(i) + (
2

i /c
2)�u(i) = 0. The Hamiltonian (21) for the

electromagnetic field leads to

H(em)
0 = 2ε0

∑
i

|E (i)|2, (33)

where we used the orthogonality of the mode functions∫
[u(i)(�r) · u(j )∗(�r)]d3r = δij . To do the quantization, we iden-

tify 2ε0|E |2 with �ωa†a. Thus the amplitude E is to be replaced
by the annihilation operator a via

E →
√

�ω

2ε0
a. (34)

Therefore, the quantized form of the electric field is

�E =
∑ √

�ωi

2ε0
�u(i)(�r)aie

−iωi t + c.c., (35)

and the unperturbed Hamiltonian is

H
(em)
0 =

∑
i

�ωia
†
i ai . (36)

We expand the phonon field in terms of the normalized mode
functions ψi with frequency fi ,

ρ̃ =
∑

ψi(�r)e−ifi t σi + c.c., (37)

∇2ψi + (
f 2

i

/
v2

s

)
ψi = 0. (38)

Note that ψi has the dimension 1/
√

Volume and hence σ has
the dimension

√
Volume. The quantization of the free phonon

field is more complicated due to the nonlinear nature of the
interaction term (14). To do the quantization, we look at the
harmonic version of (14), i.e., we use Eq. (30) up to order ρ̃2.

We next find H0 [Eq. (13)] to lowest order, i.e., up to second
order in density. From Eqs. (31), (37), and (38), we can easily
obtain

� =
∑

i
v2

s

fi

ψi(�r)e−ifi t σi + c.c., (39)
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and hence for a given mode∫
H0d

3r = −1

2
ρ0

∫
�∇2�d3r

= f 2
i

2v2
s

ρ0

∫
�2d3r = ρ0v

2
s |σ |2. (40)

We thus quantize the phonon field via

σi →
√

�fi

2ρ0v2
s

bi, (41)

where bi is the Bosonic annihilation operator for the phonon
with frequency fi . The unperturbed Hamiltonian for the
phonon field

ρ̃ =
∑

ψi(�r)

√
�fi

2ρ0v2
s

bie
−ifi t + c.c., (42)

is

H0 =
∑

i

�fib
†
i bi + O(ρ̃3). (43)

The terms of the order ρ̃3 can be obtained by using the
expansion (30). These correspond to three-phonon scattering
processes. The quantized form of the interaction Hamiltonian
(26) can now be obtained by using Eqs. (35) and (42). The
final result is dependent on the different modes involved in the
optomechanical interactions and their overlap integrals. We
write

H
(em)
1 = vL + vNL, (44)

where vL and vNL are the linear and nonlinear optomechanical
interactions, respectively. In what follows, we drop all rapidly
oscillating terms at two times the cavity frequencies.

The linear part then can be written as

vL = −�

∑
ij l

{
g′

ij le
i(ωi−ωj −fl )t a

†
i aj bl

+ g′′
ij le

i(ωi−ωj +fl )t a
†
i aj b

†
l

}
, (45)

g′
ij l =

√
�flωiωj

8ρ0v2
s

g1

∫
ψl(�r)[�u(i)∗(�r) · �u(j )(�r)]d3r, (46)

and g′′ is obtained from g′ by replacing ψ(�r) by ψ∗(�r). For
simplicity, we choose ψ to be real and then we can drop
the distinction between g′ and g′′. The quantity g′

iil is the
frequency shift of the cavity mode for one photon. We can get
an approximate estimate of g′

ij l by using ψ(�r) = 1/
√

V ,

g′
ij l ≈

√
�fl

8ρ0v2
s

ωg1√
V

. (47)

For the fiber cavity [10] taking the mode volume about
V ∼ 10−14 m3, ω corresponding to 1 μm, f1 ∼ 2π×10 MHz,
ρ0v

2
s ≈ 8213380 J/m3, we find g′

iil/g1 ≈ 2π×30 kHz and
hence g′

iil ≈ 2π×1.8 kHz. Thus, linear optomechanical inter-
action is quite significant and is comparable to that obtained
with mechanical elements [3,4].

The nonlinear part vNL has several contributions. We do not
write all the terms but make an estimate. A term corresponding
to two-phonon absorption has the form

−�

∑
ij l1l2

pijl1l2e
i(ωi−ωj −fl1 −fl2 )t a

†
i aj bl1bl2 ,

where pijl1l2 has the form

pijl1l2 =
√

�fl1ωiωj

8ρ0v2
s

g2

√
�fl2

2ρ0v2
s

×
∫

d3rψl1 (�r)ψl2 (�r)�u(i)∗ · �u(j ). (48)

Let us take �u(i) and �u(j ) to be the same mode, then

pijl1l2 ≈
√

�fl1

8ρ0v2
s V

√
�fl2

2ρ0v2
s V

ωg2. (49)

Thus compared to the first-order optomechanical coupling, the
second order is smaller by a factor√

�fl

2ρ0v2
s V

(
g2

g1

)
≈ 1×10−10

(
g2

g1

)
∼ 5×10−12,

for parameters that were used in the estimation of linear
optomechanical coupling. The second-order contribution has
been generally found to be unimportant in most mechanical
systems. However, considerable progress has been reported
in achieving higher second-order coupling by placing the
mechanical element at the crossing of two modes [4,5]. One
possibility to enhance p would be to use the nanometric
volume for He. In view of the smallness of pijl1l2 compared to
gijl , we drop the contribution vNL and work with

vL = −�

∑
ij l

{
gijla

†
i aj e

i(ωi−ωj )t (ble
−ifl t + b

†
l e

ifl t ) + H.c.
}
.

(50)
For two field modes and one acoustic mode and assuming

that �u(1) = �u(2), we can simplify Eq. (50) to

vL = −�g(a†
1a1 + a

†
2a2 + a

†
1a2e

i(ω1−ω2)t

+ a1a
†
2e

−i(ω1−ω2)t )(ble
−ifl t + b

†
l e

ifl t ). (51)

This is the standard form of the optomechanical interac-
tion. The terms like (a†

1a2bei(ω1−ω2−f1)t + H.c.) describe the
upconversion process where a phonon and a photon ω2

combine to produce a photon ω1 if ω1 > ω2. The terms
like (a1a

†
2b

†e−i(ω1−ω2−f1)t + H.c.) describe a downconversion
process where a photon ω2 and a phonon f1 are produced
form a photon of frequency ω1. The Hamiltonian (51) also
consists of nonresonant terms like a

†
1a1b. These terms play a

significant role in two-step two-phonon processes as discussed
in the next section. Clearly, the previously discussed processes
[11–14] in other optomechanical systems would also apply
to optomechanics in superfluid He since the linear coupling
constant g in Eq. (51) is quite significant. The advantage of
superfluid He is its very large coherence time of the phonon,
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2ω'ω1ω

1f 2f
FIG. 1. The two-step two-phonon anti-Stokes process.

which is especially useful in quantum processing applications
like state transfer [21] and quantum memories [6,7,22].

V. OPTOMECHANICAL INTERACTIONS IN SUPERFLUID
He INVOLVING TWO-STEP TWO-PHONON PROCESSES

We next consider the very interesting possibility of two-
phonon absorption [23] in optomechanical interactions in
superfluid He. This, in a sense, is the analog of two-photon
absorption in atomic systems. Let us consider the following
two steps:

phonon(f1) + photon(ω1) → intermediate photon(ω′),

intermediate photon(ω′) + phonon(f2) → photon(ω2).

This two-step process shown in Fig. 1 is resonant if

ω1 + f1 + f2 = ω2, (52)

and is a combination of two upconversion processes. The
two-step process is mediated by an intermediate photon of
frequency ω′. Such a two-step process can be significant as
the intermediate photon can have the same frequency as the
strong input photon ω1. Such a contribution comes form the
term a

†
1a1b1 in the interaction (50). For the present problem,

the interaction vL can be written as

vL = −�g(a1 + a2e
−i(ω2−ω1)t )†(a1 + a2e

−i(ω2−ω1)t )

(b1e
−if1t + b2e

−if2t + H.c.). (53)

Let the initial state be |n1,n2,μ1,μ2〉 which has n1(n2)
photons of frequency ω1(ω2) and μ1(μ2) phonons of frequency
f1(f2). The final state is |n1 − 1,n2 + 1,μ1 − 1,μ2 − 1〉. The
transition probability for this process can be obtained by using
second-order Fermi golden rule

R[2] = 2π

�
δ(Ef − Ei)

∣∣∣∣∣∣
∑

j

〈f |vL|j 〉〈j |vL|i〉
Ej − Ei

∣∣∣∣∣∣
2

, (54)

where |j 〉 is the allowed intermediate state. The four important
intermediate states with the corresponding energies are

|n1 − 1,n2 + 1,μ1 − 1,μ2〉, Ej − Ei = �(ω2 − ω1 − f1);

|n1,n2,μ1 − 1,μ2〉, Ej − Ei = −�f1;

|n1,n2,μ1,μ2 − 1〉, Ej − Ei = −�f2;

|n1 − 1,n2 + 1,μ1,μ2 − 1〉, Ej − Ei = �(ω2 − ω1 − f2).

Using these intermediate states and Eq. (53), the two-phonon
absorption rate is calculated to be

R[2] = 2πg4(2γ /π )

[(2γ )2+(ω1 − ω2+f1+f2)2]
μ1μ2n1(n2+1)(n1+n2)2

×
∣∣∣∣ 1

(−ω1+ω2−f1)
− 1

f1
− 1

f2
+ 1

(−ω1 + ω2 − f2)

∣∣∣∣
2

,

(55)

where we introduced the width γ for the phonon distribution.
Note that the sum over the intermediate states vanishes. Thus
there is interference between different quantum pathways.
Such interference effects are well known in atomic physics in
the context of two-photon processes (see Sec.7.5 in Ref. [11]).
It is also known that relaxation effects generally make
perfect interference imperfect leading to nonzero transition
amplitudes. For our system in a cavity, the cavity line width
κ is an important factor and it makes R[2] nonzero. The
denominators like 1/f need to be modified by inclusion of
the phonon line width γ , which is much smaller than κ . The
denominators depending on ω1 and ω2 get modified by the
inclusion of κ . A simple argument then modifies (55) to

R[2] = 2πg4(2γ /π )

(2γ )2 + (ω1 − ω2 + f1 + f2)2

×
(

κ

f

)2 1

f
μ1μ2n1(n2 + 1)(n1 + n2)2. (56)

This should be compared to the corresponding result R[1] for
one-phonon absorption

R[1] = 2πg2(γ /π )

γ 2 + (ω1 − ω2 + f1)2
μ1n1(n2 + 1), (57)

which is easily obtained from Eq. (50). Let us compare the
strength of R[2] with R[1] at resonance

R[2]

R[1]
≈ g2

2

(
κ2

f 4

)
· (n1 + n2)2μ2

∼ g2κ2

2f 4
n2

1μ2 as n1  n2. (58)

For g ∼ 2π × 20 Hz, f ∼ 2π × 10 MHz, κ/f ∼ 1/10,

R[2]

R[1]
≈ 2×10−16n2

1μ2

= 2×10−4μ2 for n1 ∼ 106. (59)

For temperatures of the order of 10 mK, μ2 ≈ 10 and hence
R[2]/R[1] ∼ 10−3, leading to a substantial probability for
two-step two-phonon absorption. Note that, instead of using
thermal phonons, we can inject phonons from an external
source [16].

VI. CONCLUSION

In conclusion, we have developed a first-principles theory
of the optomechanical interactions in superfluid He. The theory
is formulated in terms of the superfluid density field, so
that multimode phonon optomechanics can be studied. The
intrinsic nonlinearities of the superfluid are included. We
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presented estimates of the strength of the optomechanical
interactions and derived the canonical form of the Hamiltonian
for linear optomechanical interactions. Using such canonical
Hamiltonian standard effects like normal mode splitting, elec-
tromagnetically induced transparency in superfluid optome-
chanics can be studied. We also showed the importance of the
two-step two-phonon process in superfluid He. The superfluid
also has the possibility of nonlinear phonon processes, which
one can integrate with the optomechanical processes. For
example, two phonons f1 and f2 can combine via the cubic

nonlinearity in Eq. (30) and the generated phonon can be used
for optomechanical interactions.
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