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Resonant light scattering of a laser frequency comb by a quantum dot
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We investigate the spectral and temporal properties of light scattered near resonantly by a single quantum
dot when the incident laser field is a frequency comb consisting of a superposition of monochromatic waves
equidistant in frequency. Such fields encompass those generated by, e.g., a periodically pulsed laser. A general
theoretical treatment for the calculation of first- and second-order correlation functions is given which takes
account of spectral diffusion through a slowly varying detuning from resonance, permitting accurate comparison
with experiments. We explore the two distinct regimes in which the frequency-comb separation is either larger or
smaller than the radiative decay rate. We verify the validity of our calculations by a comparison with experimental
data for the case of a bichromatic field and discuss the manifestation of phase coherence between the incoming
field and the scattered single-photon wave packet.
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I. INTRODUCTION

The near-resonant optical response of a two-level quantum
system to an incident laser field, in particular the first- and
second-order correlations of the scattered photons, remains an
intriguing physical problem, despite its apparent simplicity,
from both an experimental and theoretical point of view.
Since the seminal work of Mollow describing the spectrum
of the light scattered by an atom under strong monochromatic
excitation [1], much research has followed, and the topic
is now treated in most quantum-optics textbooks. Recently,
renewed interest has emerged due to potential applications in
quantum-information science [2], in particular using systems
other than trapped atoms or ions, such as semiconductor
quantum dots (QDs). Of specific relevance is the possibility to
interface a large number of quantum systems using resonant
light-matter interactions [3–8].

Following the first resonance fluorescence experiments
with epitaxial InAs QDs [9–12], significant experimental
advances have been reported, most notably the measurement of
two-photon indistinguishability [13], correlations in Mollow
triplet sidebands [14], coherent light scattering [15–17], light
scattering under modulation [18,19], interactions with the
semiconductor environment [20], and two-QD light scattering
[21]. There has also been significant progress in the theoretical
description of resonant light scattering from QDs in the
presence of phonons [22,23]. However, the spectral properties
of the scattered light have so far primarily been investigated for
the case of monochromatic excitation. Although bichromatic
resonant light scattering has been studied in atomic beams
[24–28] and recently in single QDs [29], to the best of our
knowledge, the measurement of the spectrum of the light
scattered by a two-state quantum system under strong pulsed
excitation has, surprisingly, not been reported before. This is
despite theoretical predictions of distinctive features in the
resonance fluorescence spectrum, differing from the ordinary
Mollow triplet [30–35]. Earlier theoretical work has also
focused more specifically on interactions involving a pulse
train [36,37].
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We investigate here the correlations of the light scattered
by a single QD under excitation by a multichromatic field,
i.e., a frequency comb, consisting of monochromatic fields
evenly spaced in frequency. Although we describe a general
formalism, we are interested specifically in the case wherein
the multichromatic field corresponds to that of a periodically
pulsed laser. We account for slow random spectral fluctuations
of the two-level system resonance frequencies, present to some
extent in any real system, by a randomly varying detuning. We
find a rich structure in the calculated spectra of coherently
and incoherently scattered light. Surprisingly, a substantial
fraction of the light is scattered coherently, even at large Rabi
frequencies. We also calculate the second-order correlation
functions in the presence of spectral diffusion and present
the results for pulsed excitation under typical experimental
conditions. Significantly, the degree of (pulse-integrated)
photon antibunching is only high if the temporal width of the
pulse is small compared to the radiative lifetime. We verify
the validity of our model by a comparison with experimental
measurements for the case of bichromatic excitation.

II. THEORETICAL BACKGROUND

We consider a single QD with ground state |0〉 and excited
state |1〉 (transition frequency ω0), for which the relevant
atomic operators are S+ = |1〉〈0|, S− = |0〉〈1|, and 2Sz =
|1〉〈1| − |0〉〈0|. Under pulsed laser excitation, the dynamics of
the expectation values of these operators are usually obtained
by numerically integrating the optical Bloch equations in
which the Rabi frequency is taken to be proportional to the
temporal envelope of the (single) pulse’s electric field. Here
we are concerned specifically with a rigorous description
of the experimental measurement which results from the
time-averaged acquisition of the scattered-light correlations
under excitation by millions of single pulses. To capture
such time-averaged effects, including coherent light scattering,
we describe the incoming pulse train by its constituent
monochromatic waves, so that the applied electric field is
written as

E(t) = 1

2
e−iωs t

p∑
n=−p

Ene
−i(nδt+φn) + c.c., (1)
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FIG. 1. (Color online) (a) Diagram of a radiatively decaying
two-level system driven by a frequency comb. (b) Spectrum of the
frequency comb represented by Eq. (1). (c) Temporal profile of a
frequency comb with phases φn and amplitudes En such that short
pulses of FWHM tp are obtained.

with time-independent coefficients En. The central frequency
is ωs (n = 0), and the frequency difference δ (in rad/s) between
adjacent waves coincides with 2π times the pulse repetition

rate (in Hz). φn denotes the phase associated with the nth mode
of the frequency comb.

Ficek et al. have analyzed the fluorescence spectrum of
a two-level atom driven by a modulated field in which the
central component’s frequency coincides with the atom’s
natural transition frequency, and broadening is determined
by spontaneous emission [38]. We extend their treatment
to the calculation of the power spectrum and second-order
correlation functions with detuning and spectral diffusion, and
investigate the scattered-light correlations for the case when
the multichromatic field is that of a short pulsed laser excitation
(Fig. 1). The optical Bloch equations then read

dX(t)

dt
= A(t)X(t) + v, (2)

where X(t) = (X1(t),X2(t),X3(t)) with X1(t) = 〈S̃−(t)〉 =
〈S−(t)〉ei(ωs t+�), X2(t)=〈S̃+(t)〉=〈S+(t)〉e−i(ωs t+�), X3(t) =
〈S̃z(t)〉 = 〈Sz(t)〉,

A(t) =

⎛
⎜⎜⎜⎜⎝

− 1
2� − i� 0

∑p
n=−p 	ne

−inδt

0 − 1
2� + i�

∑p
n=−p 	∗

ne
inδt

− 1
2

∑p
n=−p 	∗

ne
inδt − 1

2

∑p
n=−p 	ne

−inδt −�

⎞
⎟⎟⎟⎟⎠ , (3)

and v = (0,0,−�/2). Here the rotating-wave approximation
was made and

	n = μ

�
Ene

−iφn . (4)

The radiative decay rate is denoted by �, and � = ω0 − ωs

is the detuning from exact resonance. The magnitude of the
transition dipole moment, μ, is known to be on the order of
10−29 C m for typical InAs QDs [39]. � is an arbitrary phase,
chosen here to be π/2.

In what follows we begin by describing the method
for calculating scattered-light spectra under multichromatic
excitation (Sec. III), with separate evaluation of coherent
(Sec. IV) and incoherent (Sec. V) contributions with and
without the effect of spectral diffusion. We proceed with
the calculation of second-order correlations in the absence
(Sec. VI) and presence (Sec. VII) of spectral diffusion. In
Sec. VIII results are then presented for the specific case in
which the multichromatic field is produced by a periodically
pulsed laser oscillator. Finally, in Sec. IX a side-by-side
comparison of our theoretical calculations with experimental
data is given for the case of bichromatic excitation.

III. CALCULATION OF THE SCATTERED-LIGHT
SPECTRUM

The power spectrum S(t,ν) of the light scattered by a two-
level quantum system is given by the Fourier transform of the
two-time correlation function of the dipole operators [1] as

S(t,ν) = �

∫ ∞

−∞
eiντ 〈S+(t)S−(t + τ )〉dτ. (5)

Spectral measurements are typically performed on a time scale
much longer than the radiative decay, but also much longer than
the phase coherence time (the reciprocal of the linewidth) of
the constituent waves of a real frequency comb that Eq. (1)
is idealizing. Therefore, the experimental spectrum must be
obtained as

S(ν) = lim
T →∞

δ

2π

∫ T +2π/δ

T

S(t,ν)dt, (6)

i.e., steady state is assumed and an average over a period 2π/δ

is performed. With the help of the quantum regression theorem,
it can be seen that the two-time correlation functions,

Y1(t,τ ) = 〈S̃+(t)S̃−(t + τ )〉 − 〈S̃+(t)〉〈S̃−(t + τ )〉,
Y2(t,τ ) = 〈S̃+(t)S̃+(t + τ )〉 − 〈S̃+(t)〉〈S̃+(t + τ )〉, (7)

Y3(t,τ ) = 〈S̃+(t)S̃z(t + τ )〉 − 〈S̃+(t)〉〈S̃z(t + τ )〉,
satisfy the same equations of motion as 〈S̃−(t + τ )〉, 〈S̃+(t +
τ )〉, and 〈S̃z(t + τ )〉, respectively, namely, Eq. (2), with v = 0,
d/dt → d/dτ , and t → t + τ [26], i.e.,

dY(t,τ )

dτ
= A(t + τ )Y(t,τ ). (8)

Thus the power spectrum of the scattered light [Eq. (5)] can
be computed if Y1(t,τ ) is known. Note that Y1(t,τ ) represents
the incoherently scattered radiation since the coherent con-
tribution, 〈S̃+(t)〉〈S̃−(t + τ )〉, has been subtracted from the
full correlation function 〈S̃+(t)S̃−(t + τ )〉. Equation (8) can
be solved with the help of the harmonic expansion

Yj (t,τ ) =
∞∑

l=−∞
Y

(l)
j (t,τ )eilδ(t+τ ) (9)
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with slowly varying coefficients Y
(l)
j (t,τ ), which transforms

the problem into an infinite set of equations, written, after a
Laplace transform, as

zŶ
(l)
1 (z) − Y

(l)
1 (t,0) = −(�/2 + i� + ilδ)Ŷ (l)

1 (z)

+
p∑

n=−p

	nŶ
(l+n)
3 (z), (10)

zŶ
(l)
2 (z) − Y

(l)
2 (t,0) = −(�/2 − i� + ilδ)Ŷ (l)

2 (z)

+
p∑

n=−p

	∗
nŶ

(l−n)
3 (z), (11)

and

zŶ
(l)
3 (z) − Y

(l)
3 (t,0) = −(� + ilδ)Ŷ (l)

3 (z)

− 1

2

p∑
n=−p

(
	∗

nŶ
(l−n)
1 (z) + 	nŶ

(l+n)
2 (z)

)
,

(12)

where Ŷ
(l)
j (z) = ∫ ∞

0 Y
(l)
j (t,τ )e−zτ dτ .

The set of (complex) coefficients {	n}−p�n�p, together
with the comb spacing δ and the detuning � of the central
tooth from the natural resonance frequency, specify in full the
magnitude and phase of the interaction between the input field
and the two-level system. By substitution of Eqs. (10) and (11)
into Eq. (12) one then obtains a recursive relation for Ŷ

(l)
3 (z),

written as

(z + � + ilδ)Ŷ (l)
3 (z) + 1

2

∑
n,m

(
	∗

n	m

z + �/2 + i� + i(l − n)δ
Ŷ

(l−n+m)
3 (z) + 	n	

∗
m

z + �/2 − i� + i(l + n)δ
Ŷ

(l+n−m)
3 (z)

)

= Y
(l)
3 (t,0) − 1

2

∑
n

(
	∗

nY
(l−n)
1 (t,0)

z + �/2 + i� + i(l − n)δ
+ 	nY

(l+n)
2 (t,0)

z + �/2 − i� + i(l + n)δ

)
, (13)

where Y
(l)
j (t,0) are the initial values of the correlations’ expan-

sion coefficients. The initial values of the correlations Yj (t,0)
are given by setting τ = 0 in Eq. (7). Since the calculation of
the correlation function in Eq. (6) is at steady state, we can re-
place Yj (t,0) with their steady-state values Y ss

j (t,0), which are
computed as

Y ss
1 (t,0) = 1

2 + Xss
3 (t) − Xss

1 (t)Xss
2 (t), (14)

Y ss
2 (t,0) = −Xss

2 (t)Xss
2 (t), (15)

and

Y ss
3 (t,0) = −(

1
2 + Xss

3 (t)
)
Xss

2 (t), (16)

where the superscript “ss” denotes steady state. Using the
expansion

Xss
j (t) =

∞∑
l=−∞

X
(l)
j eilδt (17)

with time-independent coefficients X
(l)
j (steady state) we then

obtain

Y
(l)
1 (t,0) = 1

2
δl,0 + X

(l)
3 −

∑
k

X
(l−k)
1 X

(k)
2 , (18)

Y
(l)
2 (t,0) = −

∑
k

X
(l−k)
2 X

(k)
2 , (19)

and

Y
(l)
3 (t,0) = −

∑
k

(
1

2
δk,0 + X

(k)
3

)
X

(l−k)
2 . (20)

The coefficients X
(l)
j can be found by inserting Eq. (17) into

Eq. (2) with dX/dt → 0 (steady state) which yields the set of
equations

(�/2 + i� + ilδ)X(l)
1 =

p∑
n=−p

	nX
(l+n)
3 , (21)

(�/2 − i� + ilδ)X(l)
2 =

p∑
n=−p

	∗
nX

(l−n)
3 , (22)

and

(� + ilδ)X(l)
3 = −�

2
δl,0 − 1

2

p∑
n=−p

(
	∗

nX
(l−n)
1 + 	nX

(l+n)
2

)
. (23)

After substitution of Eqs. (21) and (22) into Eq. (23) one then obtains

(� + ilδ)X(l)
3 + 1

2

∑
n,m

(
	∗

n	m

�/2 + i� + i(l − n)δ
X

(l−n+m)
3 + 	n	

∗
m

�/2 − i� + i(l + n)δ
X

(l+n−m)
3

)
= −�

2
δ0,l . (24)
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Once the input field is specified via the set of coefficients
{	n}−p�n�p in Eq. (4), the calculation of the time-averaged
scattered-light spectrum [Eq. (6)] then begins with the compu-
tation of X

(l)
3 using Eq. (24). This can be done, e.g., using the

matrix methods described in Ref. [27], in which the harmonic
expansions are truncated. With X

(l)
3 known, X

(l)
1 and X

(l)
2 can

be computed from Eqs. (21) and (22), respectively. This then
allows the calculation of the initial values of the correlations’
expansion coefficients using Eqs. (18)–(20), which can be used
to solve Eq. (13) for Ŷ

(l)
3 (z). Finally, Ŷ

(l)
1 (z) can be computed

using Eq. (10).

IV. COHERENTLY-SCATTERED-LIGHT SPECTRUM

A. Radiatively broadened two-level system

The light scattered coherently by a radiatively broadened
two-level quantum system has its origins in the equilib-
rium oscillations of the two-time dipole correlation func-
tion. Its spectrum is calculated as the Fourier transform of
〈S+(t)〉〈S−(t + τ )〉 as

Scoh(ν) = � lim
T →∞

δ

2π

×
∫ T +2π/δ

T

∫ ∞

−∞
eiντ 〈S+(t)〉〈S−(t + τ )〉dτdt

(25)

and therefore by

Scoh(ν) = �
δ

2π

∫ 2π/δ

0

∫ ∞

−∞
ei(ν−ωs )τXss

2 (t)Xss
1 (t + τ )dτdt

(26)

or

Scoh(ν)

= �
δ

2π

∫ 2π/δ

0

∫ ∞

−∞
ei(ν−ωs+lδ)τ

∑
k,l

X
(k)
2 X

(l)
1 ei(k+l)δt dτdt,

(27)

and since X
(−l)
2 = X

∗(l)
1 ,

Scoh(ν) = 2π�
∑

l

∣∣X(l)
1

∣∣2
δD(ν − ωs + lδ), (28)

where δD(x) denotes the Dirac delta function. The frequency-
integrated rate of coherently scattered photons is then given
by

γcoh = �
∑

l

∣∣X(l)
1

∣∣2
, (29)

while the total rate of scattered photons is given by

γtot = �
(

1
2 + X

(0)
3

)
. (30)

B. Radiatively broadened two-level system in the presence
of a fluctuating environment

In any real system, particularly in solids, the resonance
frequency ω0 of the two-level system will fluctuate with time.
The time scale on which this fluctuation occurs is typically

much slower than any other relevant time scales, except for
the data acquisition time. Therefore, such effects can be
included by simply averaging the spectra obtained for an ideal,
radiatively broadened two-level system over a distribution of
resonance frequencies.

In the case of InAs QDs, it is well known that random
Stark shifts due to fluctuations of the charge density in the
surrounding solid matrix are responsible for such spectral
diffusion [40]. Although in general the distribution of resulting
detunings may be nontrivial [21] it is often sufficient to
approximate it with a normal distribution [17]. The resulting
spectrum Scoh(ν) is then given by

Scoh(ν) = 2π�
∑

l

∣∣X(l)
1

∣∣2
δD(ν − ωs + lδ), (31)

where ∣∣X(l)
1

∣∣2 = 1

σ
√

2π

∫ ∞

−∞

∣∣X(l)
1

∣∣2
e−(ω′

0−ω0)2/2σ 2
dω′

0. (32)

Here the Gaussian distribution of resonance frequencies has
a FWHM, in Hz, of s/2π ≈ 2.355σ/2π . For InAs QDs
epitaxially grown on GaAs, it is typical to measure s/2π ∼
1 GHz at cryogenic temperatures. Likewise, we obtain the
frequency-integrated rate of coherently scattered photons in
the presence of spectral diffusion as

γ coh = �
∑

l

∣∣X(l)
1

∣∣2
, (33)

while the total rate of scattered photons in the presence of
spectral diffusion is given by

γ tot = �
(

1
2 + X

(0)
3

)
, (34)

where

X
(0)
3 = 1

σ
√

2π

∫ ∞

−∞
X

(0)
3 e−(ω′

0−ω0)2/2σ 2
dω′

0. (35)

V. INCOHERENTLY-SCATTERED-LIGHT SPECTRUM

A. Radiatively broadened two-level system

The spectrum of the light scattered incoherently by an ideal
two-level quantum system is given by

Sinc(ν)

= � lim
T →∞

δ

2π

∫ T +2π/δ

T

∫ ∞

−∞
Y1(t,τ )ei(ν−ωs )τ dτdt, (36)

or

Sinc(ν) = 2�Re
(
Ŷ

(0)
1 (z)

∣∣
z=−i(ν−ωs )

)
, (37)

where the quantity Ŷ
(0)
1 (z) is obtained from Eq. (10) with l = 0.

B. Radiatively broadened two-state system in the presence
of a fluctuating environment

When spectral diffusion is present, we obtain the scattered-
light spectrum as

Sinc(ν) = 2�Re
(
Ŷ

(0)
1 (z)

∣∣
z=−i(ν−ωs )

)
, (38)
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where

Ŷ
(0)
1 (z) = 1

σ
√

2π

∫ ∞

−∞
Ŷ

(0)
1 (z)e−(ω′

0−ω0)2/2σ 2
dω′

0, (39)

with the same parameter σ as for the case of coherently
scattered light.

VI. CALCULATION OF SECOND-ORDER
CORRELATION FUNCTION

The unnormalized time-averaged second-order correlation
function of the scattered light is given by

G(2)(τ )

= δ

2π
lim

T →∞

∫ T +2π/δ

T

〈S+(t)S+(t + τ )S−(t + τ )S−(t)〉dt.

(40)

With the help of the quantum regression theorem it can be seen
that the two-time correlation functions

Z1(t,τ ) = 〈S̃+(t)S̃−(t + τ )S̃−(t)〉 − 〈S̃+(t)S̃−(t)〉〈S̃−(t + τ )〉,
(41)

Z2(t,τ ) = 〈S̃+(t)S̃+(t + τ )S̃−(t)〉 − 〈S̃+(t)S̃−(t)〉〈S̃+(t + τ )〉,
(42)

and

Z3(t,τ ) = 〈S̃+(t)S̃z(t + τ )S̃−(t)〉 − 〈S̃+(t)S̃−(t)〉〈S̃z(t + τ )〉,
(43)

satisfy the same equations of motion as 〈S̃−(t + τ )〉, 〈S̃+(t +
τ )〉, and 〈S̃z(t + τ )〉, respectively, namely, Eq. (2), with v = 0,
d/dt → d/dτ , and t → t + τ , i.e.,

dZ(t,τ )

dτ
= A(t + τ )Z(t,τ ). (44)

Thus G(2)(τ ) can be computed once Z3(t,τ ) is known.
Equation (44) can be solved similarly to Eq. (8) with the help
of the harmonic expansion

Zj (t,τ ) =
∞∑

l=−∞
Z

(l)
j (t,τ )eilδ(t+τ ) (45)

with slowly varying coefficients Z
(l)
j (t,τ ). Note that in the final

evaluation process the sum in Eq. (45) will be truncated to
some large integer so that an arbitrary degree of precision can
be achieved. This expansion transforms the problem into one
involving an infinite set of equations written, after a Laplace
transform, as

zẐ
(l)
1 (z) − Z

(l)
1 (t,0) = −(�/2 + i� + ilδ)Ẑ(l)

1 (z)

+
p∑

n=−p

	nẐ
(l+n)
3 (z), (46)

zẐ
(l)
2 (z) − Z

(l)
2 (t,0) = −(�/2 − i� + ilδ)Ẑ(l)

2 (z)

+
p∑

n=−p

	∗
nẐ

(l−n)
3 (z), (47)

and

zẐ
(l)
3 (z) − Z

(l)
3 (t,0) = −(� + ilδ)Ẑ(l)

3 (z)

− 1

2

p∑
n=−p

(
	∗

nẐ
(l−n)
1 (z) + 	nẐ

(l+n)
2 (z)

)
.

(48)

After solving for Ẑ
(l)
1 (z) in Eq. (46) and for Ẑ

(l)
2 (z) in Eq. (47)

and substituting the results into Eq. (48), one obtains a
recursive relation for Ẑ

(l)
3 (z), written as

(z + � + ilδ)Ẑ(l)
3 (z) + 1

2

∑
n,m

(
	∗

n	m

z + �/2 + i� + i(l − n)δ
Ẑ

(l−n+m)
3 (z) + 	n	

∗
m

z + �/2 − i� + i(l + n)δ
Ẑ

(l+n−m)
3 (z)

)

= Z
(l)
3 (t,0) − 1

2

∑
n

(
	∗

nZ
(l−n)
1 (t,0)

z + �/2 + i� + i(l − n)δ
+ 	nZ

(l+n)
2 (t,0)

z + �/2 − i� + i(l + n)δ

)
, (49)

where Z
(l)
j (t,0) are the initial values of the correlations’

expansion coefficients. The initial values of the correlations
Zj (t,0) are given by setting τ = 0 in Eqs. (41)–(43). Since
the calculation of G(2)(τ ) is at steady state, we can replace
Zj (t,0) with their steady-state values Zss

j (t,0), which are
computed as

Zss
1 (t,0) = −(

Xss
3 (t) + 1/2

)
Xss

1 (t), (50)

Zss
2 (t,0) = −(

Xss
3 (t) + 1/2

)
Xss

2 (t), (51)

Zss
3 (t,0) = −(

Xss
3 (t) + 1/2

)2
. (52)

Using again the expansion in Eq. (17), with time-independent
coefficients X

(l)
j (steady state) we then obtain

Z
(l)
1 (t,0) = −1

2
X

(l)
1 −

∑
k

X
(k)
1 X

(l−k)
3 , (53)

Z
(l)
2 (t,0) = −1

2
X

(l)
2 −

∑
k

X
(k)
2 X

(l−k)
3 , (54)

Z
(l)
3 (t,0) = −1

4
δl,0 − X

(l)
3 −

∑
k

X
(k)
3 X

(l−k)
3 . (55)
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With the initial values known, the second-order correlation

function (τ > 0) is then given as

G(2)(τ ) = F−1
{
2ReẐ(0)

3 (z)
∣∣
z=−iν ′

}
+

∑
k

X
(k)
3 X

(−k)
3 eikδτ + X

(0)
3 + 1

4
, (56)

where F−1 denotes the inverse Fourier transform with respect
to ν ′, defined as

F−1{f (ν ′)} = 1

2π

∫ ∞

−∞
f (ν ′)e−iν ′τ dν ′. (57)

The quantity usually measured in an experiment is proportional
to the normalized second-order correlation function of the
scattered light defined as

g(2)(τ ) = G(2)(τ )/N, (58)

where N is a normalization factor given by

N = δ

2π
lim

T →∞

∫ T +2π/δ

T

〈S+(t)S−(t)〉2dt. (59)

This normalization factor can be computed as

N = 1

4
+ X

(0)
3 +

∑
k

X
(k)
3 X

(−k)
3 . (60)

Thus for obtaining the desired normalized second-order
correlation function [Eq. (58)], Eq. (49) must first be solved
for Ẑ

(l)
3 (z). For this calculation the initial values of the

second-order correlation expansion function coefficients must
be first obtained using Eqs. (53)–(55) using the Xj obtained
before with Eqs. (21), (22), and (24).

VII. SECOND-ORDER CORRELATION FUNCTION IN THE
PRESENCE OF A FLUCTUATING ENVIRONMENT

In the presence of a slowly varying, normally distributed,
random detuning, as in Secs. IV B and V B, we must further
perform an average of the second-order correlation functions
over these detunings as

g(2)
av (τ ) = G(2)(τ )/N, (61)

where

G(2)(τ ) = 1

σ
√

2π

∫ ∞

−∞
G(2)(τ )e−(ω′

0−ω0)2/2σ 2
dω′

0 (62)

and

N = 1

σ
√

2π

∫ ∞

−∞
Ne−(ω′

0−ω0)2/2σ 2
dω′

0. (63)

VIII. SCATTERED-LIGHT CORRELATIONS UNDER
MODE-LOCKED LASER FREQUENCY-COMB

EXCITATION

We now numerically evaluate the first- and second-order
correlations of light scattered by a QD for the specific case
for which the incoming field’s temporal envelope is given by

the function

E(t) =
∞∑

n=0

Es

(
t − 2πn

δ

)
, (64)

with

Es(t) = E0sech(1.76t/tp), (65)

where tp is the FWHM of the temporal intensity profile
of a single pulse. Mode-locked laser oscillators commonly
produce such pulse trains, for which the time-bandwidth
product is tp�νp ≈ 0.315, where �νp is the FWHM, in Hz,
of the pulse’s power spectrum. We will further assume that
the laser cavity has been sufficiently stabilized so that over the
measurement duration we can describe the applied field by

E(t) = E(t)cos(ωst), (66)

and thus in the notation of Eq. (1), φn = 0 and

En = δ

2π

∫ π/δ

−π/δ

Es(t)e
inδtdt. (67)

The laser’s power spectrum is then given by

Slaser(ν) ∝ 2π

p∑
n=−p

|En|2δD(ν − ωs − nδ). (68)

Note that the detection frequency ν is denoted in circular
measure. Thus, together with the detuning �, the pulse width
tp and the (temporal) peak Rabi frequency 	R = |μE0|/�

quantify the strength of the interaction between the QD and
the laser pulse. Since we are concerned here with the time-
averaged interaction involving a large number of pulses, the
magnitude of the pulse repetition period, 2π/δ, relative to the
QD radiative lifetime, 2π/�, is another determinant factor for
the magnitude of the average interaction strength. In particular
we must distinguish whether prior to the arrival of a subsequent
pulse the QD has returned to its ground state (δ < �) or not.
We define the input pulse area θ in the usual way as

θ = μ

�

∫ ∞

−∞
Es(t)dt = 	R

πtp

1.76
(69)

to describe maxima (θ = π,3π,5π , etc.) or minima
(θ = 2π,4π,6π , etc.) of the population of the two-level
system after passage of the pulse. Throughout we will assume
that the radiative decay rate of the QD is �/2π = 200 MHz,
consistent with the radiative lifetime of ∼1 ns typically
measured for InAs QDs [41].

A. Regime in which the radiative lifetime is shorter than
the pulse repetition period (δ < �)

We begin with the specific case in which the pulse repetition
rate is fixed at δ/2π = 100 MHz (as in, e.g., a table-top
Ti:sapphire oscillator), and the temporal pulse width is tp =
800 ps (�νp ≈ 0.39 GHz). The corresponding field intensity
as a function of time is represented in Fig. 2(a). Making use
of Eqs. (29), (30), (33), and (34), we represent the rate of
photons scattered coherently, incoherently, and their sum, with
and without including the effect of spectral diffusion, as a
function of pulse area θ [Fig. 2(b)]. It can be seen that for
θ < π the scattered-light intensity is dominated by coherent
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FIG. 2. (Color online) (a) Temporal envelope of the applied
field’s intensity. (b) Intensity of total (γtot, γ tot, red), coherently (γcoh,
γ coh, blue), and incoherently (γinc = γtot − γcoh, γ inc = γ tot − γ coh,
green) scattered light, calculated with (solid lines) and without
(dashed lines) spectral diffusion. (c)–(f) Calculated spectra of
scattered light for the applied field in Fig. 2(a) with Rabi frequencies
	R/2π = 0.1, 1, 2, and 5 GHz, respectively, with (blue) and without
(red) spectral diffusion. These correspond to pulse areas of θ = 0.3π ,
3.0π , 5.7π and 14.3π , respectively. (g)–(j) Calculated second-order
correlation functions under the same conditions with (solid blue line)
and without (dashed red line) spectral diffusion.

scattering, as anticipated, whereas for θ > π , incoherent
scattering dominates. However, unlike the monochromatic
case in which the intensity of coherently scattered photons
keeps decreasing with Rabi frequency, it remains steady for the
pulsed case. Furthermore, it is also seen from Fig. 2(b) that the
effect of spectral diffusion is generally to increase the fraction
of coherently scattered photons for a given Rabi frequency.

In Figs. 2(c)–2(j) the power spectrum (left) and second-
order correlation function (right) are plotted with (blue) and
without (red) inclusion of spectral diffusion for increasing
Rabi frequency 	R from top to bottom. It is seen that the

FIG. 3. (Color online) (a) Temporal envelope of the applied
field’s intensity. (b) Intensity of total (γtot, γ tot, red), coherently (γcoh,
γ coh, blue) and incoherently (γinc = γtot − γcoh, γ inc = γ tot − γ coh,
green) scattered light, calculated with (solid lines) and without
(dashed lines) spectral diffusion. (c)–(d) Calculated spectra of scat-
tered light for the applied field in Fig. 3(a) with pulse areas θ = 0.06π

(	R/2π = 0.1 GHz) and θ = π (	R/2π = 1.76 GHz), respectively,
with (blue) and without (red) spectral diffusion. (e)–(f) Calculated
second-order correlation function under the same conditions with
(solid blue line) and without (dashed red line) spectral diffusion.

dominant sidebands are separated from the central frequency
by approximately ±	R/2π , as in the conventional Mollow
triplet [1]. In addition, other sidebands are present which are
closer to the central peak than the dominant sidebands. These
are most visible at the largest Rabi frequencies. The light
scattered coherently appears in the form of a comb, for which
a 20 MHz convolution has been applied to mimic a realistic
instrument response function.

It is interesting to see that even for a small pulse area
[Fig. 2(g)], pulse-integrated photon antibunching is incom-
plete, in the sense that the area around the central peak (τ = 0)
does not vanish. This changes when we decrease the temporal
duration of the pulse. Figure 3 shows the case where the
temporal pulse width is now reduced to tp = 160 ps. The
corresponding spectral width of the frequency comb is then
�νp ≈ 2 GHz. Although pulse-integrated photon antibunch-
ing is suppressed for large Rabi frequencies, it is now clearly
taking place for θ � π [Fig. 3(e)]. With increasing spectral
bandwidth of the frequency comb, the effect of spectral
diffusion is also more visible, but only in the scattered-light
spectrum [Figs. 3(c) and 3(d)]. The second-order correlation
functions are not affected significantly by spectral diffusion
[Figs. 3(e) and 3(f)].

As we further decrease the temporal pulse width, these
trends continue. In Fig. 4, the pulse width is now 50 ps
(�νp ≈ 6.3 GHz). The scattered light spectra and correlations
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FIG. 4. (Color online) (a) Temporal envelope of the applied
field’s intensity. (b) Intensity of total (γtot, γ tot, red), coherently (γcoh,
γ coh, blue), and incoherently (γinc = γtot − γcoh, γ inc = γ tot − γ coh,
green) scattered light, calculated with (solid lines) and without
(dashed lines) spectral diffusion. (c)–(d) Calculated spectra of scat-
tered light for the applied field in Fig. 4(a) with pulse areas θ = 0.05π

(	R/2π = 0.29 GHz) and θ = π (	R/2π = 5.6 GHz), respectively,
with (blue) and without (red) spectral diffusion. (e)–(f) Calculated
second-order correlation function under the same conditions with
(solid blue line) and without (dashed red line) spectral diffusion.

are shown for θ = 0.05π and θ = π , which corresponds to
	R/2π = 0.29 GHz and 	R/2π = 5.6 GHz, respectively.
The effect of spectral diffusion is striking, but only for the
spectral correlations [Figs. 4(c) and 4(d)], and the probability
of emitting two photons in the same pulse is very small only
when θ � π [Fig. 4(e)].

With decreasing temporal pulse width the spectral width
of the excitation source will eventually exceed significantly
the natural linewidth � of the transition. It is then expected
that spectral components at the edge of the spectrum will
not contribute to the correlations of the scattered light due to
their off-resonance character. In fact, the determinant factor is
whether the detuning of these spectral components is larger
than either the spectral diffusion broadened linewidth s or the
Rabi frequency 	R , whichever is greater, i.e., modes for which

n � max(s,	R)

δ
(70)

can be safely ignored. Thus, truncation of the excitation
field’s spectral decomposition [Eq. (1)] can be made at p ≈
max(s,	R)/δ when carrying out the numerical evaluations.

B. Regime in which the radiative lifetime is longer
than the pulse repetition period (δ > �)

When the pulse repetition period is shorter than the radiative
lifetime, then the two-level system population does not have

FIG. 5. (Color online) (a) Temporal envelope of the applied
field’s intensity. (b) Intensity of total (γtot, γ tot, red), coherently (γcoh,
γ coh, blue) and incoherently (γinc = γtot − γcoh, γ inc = γ tot − γ coh,
green) scattered light, calculated with (solid lines) and without
(dashed lines) spectral diffusion. (c)–(d) Calculated spectra of scat-
tered light for the applied field in Fig. 5(a) with pulse areas θ = 0.29π

(	R/2π = 0.1 GHz) and θ = 22π (	R/2π = 5 GHz), respectively,
with (blue) and without (red) spectral diffusion. (e)–(f) Calculated
second-order correlation function under the same conditions with
(solid blue line) and without (dashed red line) spectral diffusion.

time to return to the ground state before the arrival of a
subsequent pulse. This situation corresponds to a comb teeth
separation exceeding the QD linewidth. In Fig. 5 we show the
spectra calculated for such a case when δ/2π = 300 MHz,
and tp = 800 ps for weak and strong excitation. Subsequent
peaks in the second-order correlation functions now signif-
icantly overlap and the latter are more sensitive to spectral
diffusion.

When reducing the temporal pulse width down to 160 ps
(Fig. 6), the correlations overall resemble still closely those
observed for lower pulse repetition rates (Fig. 3). In particular,
Rabi oscillations are clearly seen [Fig. 6(b)], and dominant
spectral sidebands are visible [Fig. 6(d)] at a separation from
the central frequency of approximately ±	R/2π .

Finally, when the pulse repetition rate is exceedingly large
(Fig. 7) the interaction involves in effect only several modes
of the comb. Although pulse-area-dependent Rabi oscillations
still remain visible [Fig. 7(b)], the photon correlations re-
semble more closely those observed under monochromatic
excitation. Both spectral and temporal correlations are affected
significantly by spectral diffusion.

IX. BICHROMATIC EXCITATION

To confirm the validity of our calculations, we compare
the correlations evaluated numerically using the formalism
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FIG. 6. (Color online) (a) Temporal envelope of the applied
field’s intensity. (b) Intensity of total (γtot, γ tot, red), coherently (γcoh,
γ coh, blue) and incoherently (γinc = γtot − γcoh, γ inc = γ tot − γ coh,
green) scattered light, calculated with (solid lines) and without
(dashed lines) spectral diffusion. (c)–(d) Calculated spectra of scat-
tered light for the applied field in Fig. 6(a) with pulse areas θ = 0.06π

(	R/2π = 0.1 GHz) and θ = 2.9π (	R/2π = 5 GHz), respectively,
with (blue) and without (red) spectral diffusion. (e)–(f) Calculated
second-order correlation function under the same conditions with
(solid blue line) and without (dashed red line) spectral diffusion.

described above with experimental data recorded for the case
of bichromatic excitation [29]. Bichromatic excitation corre-
sponds to p = 1 and thus a set of three coefficients (	−1,0,	1)
characterize the strength of the interaction [Eq. (4)]. The first
laser, associated with the Rabi frequency 	−1/2π , is detuned
from the second laser, associated with the Rabi frequency
	1/2π , by 2δ/2π . Furthermore, the average frequency of
the two lasers is detuned by an amount �/2π from the QD
resonance frequency. A least-squares fitting was performed
to include the effect of spectral diffusion, for which the
free parameters were a scale factor and the FWHM of the
distribution of resonance frequencies due to spectral diffusion,
s/2π , defined in Eq. (32). The best-fit values for the latter
were found to be close to the value obtained by extrapolating
the FWHM of the single laser excitation spectrum to the limit
of vanishing Rabi frequency, i.e. s/2π ≈ 1 GHz. For both
cases presented in Fig. 8, the two lasers used had the same
intensity, such that 	−1/2π = 	1/2π = 1 GHz, and 	0 = 0.
However, the frequency difference between the two lasers
was 2δ/2π = 0.86 GHz in the experiment of Fig. 8(a) and
2δ/2π = 1.56 GHz in the experiment of Fig. 8(b). Thus the
effective interaction between the external field and the QD
is stronger in Fig. 8(a) than it is in Fig. 8(b). Accordingly,
more peaks are observed in the former case. These peaks can
be regarded as arising from transitions between subsequent

FIG. 7. (Color online) (a) Temporal envelope of the applied
field’s intensity. (b) Intensity of total (γtot, γ tot, red), coherently (γcoh,
γ coh, blue) and incoherently (γinc = γtot − γcoh, γ inc = γ tot − γ coh,
green) scattered light, calculated with (solid lines) and without
(dashed lines) spectral diffusion. (c)–(d) Calculated spectra of scat-
tered light for the applied field in Fig. 7(a) with pulse areas θ = 0.06π

(	R/2π = 0.1 GHz) and θ = 2.9π (	R/2π = 5 GHz), respectively,
with (blue) and without (red) spectral diffusion. (e)–(f) Calculated
second-order correlation function under the same conditions with
(solid blue line) and without (dashed red line) spectral diffusion.

manifolds of the “dressed states ladder” which is composed
of an infinite number of levels for p � 1 [29]. Differences
are visible when spectral diffusion is included. In particular,
the magnitude of the sharp peaks corresponding to coherent
light scattering are faithfully represented only when spectral
diffusion is included.

Second-order correlations measured for the case of bichro-
matic light scattering were also compared to our theoretical
calculations (Fig. 9). As for excitation with broader frequency
combs discussed above, spectral diffusion has a lesser effect
on the second-order correlations than it has on the scattered-
light spectra. Nonetheless, subtle differences can be seen in
Fig. 9 when computing the theoretical functions with (blue
traces) and without (red, dashed traces) spectral diffusion. The
persisting oscillations visible at long correlation time occur at
the frequency 2δ/2π .

We finally note that we have also compared the results of
our calculations using the formalism presented here with a
direct numerical integration of differential equations obeyed
by the relevant correlation functions. Such an approach leads
to similar results, but can be computationally intensive,
in particular for the calculation of scattered-light spectra
involving dense frequency combs. It also lacks some of the
insights provided by the spectral decomposition used here,
such as the separation of coherent and incoherent scattering.
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FIG. 8. (Color online) (a) Experimental (gray solid line) and
theoretical scattered-light spectra under bichromatic excitation with
parameters δ,�,	−1, and 	1 as indicated. The theoretical spectrum
is computed with (blue) and without (red, dashed) spectral diffusion.
(b) Scattered-light spectra as in (a) but with different δ and � as
indicated.
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FIG. 9. (Color online) Experimental (gray solid shaded area) and
theoretical scattered-light second-order correlation functions under
bichromatic excitation for δ and � as indicated, with (blue) and
without (red, dashed) spectral diffusion.

X. DISCUSSION

A. Scattered wave-packet properties

A number of potential applications in quantum-information
science rely upon processes involving single or few photons,
and often specific spectral and temporal characteristics are
needed. It is therefore of interest to determine the “shape”
of the photon wave packets generated in the resonant light-
scattering process investigated here.

The properties of the scattered wave packets can be inferred
from the mean value of the scattered electric field. The positive
frequency part of the latter at position r can be related to the
atomic lowering operator by [1]〈

E(+)
scatt(r,t)

〉 = f(r)〈S−(t − r/c)〉, (71)

where f(r) denotes the spatial distribution of the radiation
generated during the scattering process. In the case of a dipole
in bulk, the spatial function f(r) is given by

f(r) = ω2
0μ

4πε0c2r
(r̂ × êμ) × r̂, (72)

where êμ is a unit vector along the dipole. In the presence
of nearby reflecting surfaces, as is commonly the case in
experiments with QDs, f(r) is modified compared to the bulk
case. In particular, using a microresonator, the spatial pattern
can be tailored so that the scattered light is directed in a
preferred direction. We assume here that the QD is placed
inside a microresonator such that most of the scattered photons
can be collected, e.g., into an optical fiber, without significantly
modifying the total rate of scattering compared to the bulk case.
The electric field associated with these photons is then given,
at steady state, by

〈Escatt(r,t + r/c)〉 = |f(r)|
2

e−i(ωs t+�s )
k∑

l=−k

X
(l)
1 eilδt

+ |f(r)|
2

e+i(ωs t+�s )
k∑

l=−k

X
(l)
2 eilδt . (73)

According to Eq. (73) the scattered electric field is directly
associated with the coefficients X

(l)
1 , the magnitude of which

is in turn proportional to the rate of coherently scattered light
[Eq. (29)]. Since the fraction of coherently scattered light
remains elevated, even at large Rabi frequencies, a portion of
the scattered light always maintains a fixed phase relationship
with the incoming laser. An interesting situation thus arises
when the input pulse area is less than π , since in that regime
a high degree of pulse-integrated photon antibunching also
indicates that only a single photon can be scattered at most for
one laser pulse. The temporal “shape” of the corresponding
wave packet is then that of a decaying exponential (with decay
constant �) convolved with the temporal profile of the pulse.

B. Experimental challenges

The experimental measurement of the scattered-light
spectra and second-order correlations calculated above for the
case when the excitation source is a frequency comb poses
significant practical challenges. In general, stabilization of the
frequency comb may be required in order to not blur out the
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spectral features over the measurement duration. However,
even without active laser cavity stabilization, commonly
used commercial Ti:sapphire mode-locked lasers can produce
pulses with comb linewidths smaller than their pulse repetition
rate as long as the integration time is short enough compared to
the time scale of environmental perturbations (typically ∼1s).
Scanning Fabry-Perot spectral measurements are typically
performed using sweeps on the ms time scale. Therefore, in
the measured scattered-light spectrum, the separation between
individual comb peaks (the laser repetition rate δ/2π ) should
be resolvable.

Perhaps one reason that the scattered-light spectrum from a
two-level system under pulsed excitation has not been reported
before is due to the stringent requirements imposed on the
measurement instrument. To resolve the relevant features,
the latter must be able to sample a spectrum with very
high resolution over a relatively large range of frequencies.
For instance, a scanning Fabry-Perot interferometer able to
produce the simulated data above would require a resolution
of about 20 MHz, but at the same time a free spectral range of
order 100 GHz. That in turn implies a cavity finesse of 5000
with low loss, and frequency stabilization over the period of a
measurement (typically ∼1 s). Such instruments are not readily
available commercially.

Finally, in practice the frequency-comb spectral bandwidth
cannot be excessively large, otherwise contributions from other
QDs with different resonance frequencies in close proximity
to the QD under test will mask the measured spectrum. In
particular, contributions from off-resonant coherent scattering
may be most problematic.

XI. CONCLUSIONS

In conclusion, a comprehensive theoretical description
of resonant light scattering of a laser frequency comb by

a two-level system has been given. Unlike previous ap-
proaches describing single-pulse or monochromatic scattered-
light spectra, we are able to rigorously account for realistic
experimental features which result from the time-averaged
measurement involving millions of single pulses for both
first-order correlations (spectra) and second-order correlations
(photon statistics). Using parameters corresponding to typical
experimental conditions, e.g., excitation by a mode-locked
Ti:sapphire oscillator with pulse repetition frequency of order
100 MHz and values for commonly grown InAs QDs, we find
that coherent light scattering plays a significant role even at
high Rabi frequencies. Furthermore, we also see that complete
pulse-integrated photon antibunching can only be expected for
input pulse areas of less than π . Spectral diffusion was included
and shown to capture subtle differences, in particular for the
spectra of coherently scattered light. By comparison with
experimental data for bichromatic excitation, we have verified
in detail these effects. Under certain conditions, the degree of
photon antibunching can be rather elevated. These conditions
include one in which the scattering is dominated by coherent
scattering, thus implying that the generated single-photon
wave packet maintains a fixed phase relationship with the
incoming laser. The formalism described here can also be
extended in a straightforward manner to include resonances
with a three-dimensionally-confining optical microcavity,
which may be of interest for a variety of applications in
quantum-information science.
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