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Jones and Stokes parameters for polarization in three dimensions
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For partially polarized three-dimensional electromagnetic fields, the polarization state is usually expressed in
terms of nine generalized Stokes parameters, the coefficients of the nine Gell-Mann matrices in the expansion
of the coherency matrix. We consider fully polarized fields, for which the Jones vector for the polarization
state can be expressed in terms of five real parameters. Relationships between these five parameters and the
nine generalized Stokes parameters are derived. For partially polarized three-dimensional fields there are four
additional parameters that describe the partial polarization, two that specify the degree of polarization, and two
that specify its orientation.
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I. INTRODUCTION

For highly focused or near-field electromagnetic radiation,
polarization is three dimensional in nature [1–9]. Early
work on three-dimensional (3D) polarization was reported in
diverse application areas such as geophysical waves and radar
scattering [10–16]. The extension for the Stokes parameters
from the 2D case has been based on expansion of the coherency
matrix in terms of Gell-Mann matrices [17], in contrast to the
2D case where the Pauli spin matrices are used. However,
some of the implications are still not fully appreciated and
there are some properties that are different from the 2D case,
notably that a partially polarized field cannot be written simply
as the sum of polarized and unpolarized components [5]. For
the 2D case, the properties of the field, given by the Stokes
parameters, is described in texts on polarization [18]. Here
we concentrate on fully polarized three-dimensional fields.
The most complete description for the 3D fully polarized
case is that of Carozzi et al. [19]. The basic groundwork for
the general polarization properties of fully polarized fields in
three dimensions was presented by Nye and Hajnal [20,21].
They described the existence of special features such as T

surfaces (surfaces where the direction of propagation is in
the plane of the polarization ellipse), LT lines (lines where
the polarization is linear), and CT lines (lines where the
polarization is circular). Török et al. [22] used Stokes vectors in
three dimensions to describe propagation of electromagnetic
fields through an optical system. Hannay has described an
interesting representation for polarization of plane waves
traveling in an arbitrary direction, where a polarization state is
described by two points on the Majorana sphere [23]. However,
there seem surprisingly few papers on the properties of fully
polarized 3D fields.

II. POLARIZATION IN THREE DIMENSIONS

For the fully polarized case, the electric field in three
dimensions can be written as a 3D Jones vector

E =

⎡
⎢⎣

Ex

Ey

Ez

⎤
⎥⎦ =

⎡
⎢⎣

E0xe
iδx

E0ye
iδz

E0ze
iδz

⎤
⎥⎦ = eiδx

⎡
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E0x

E0ye
iδ

E0ze
iδ′

⎤
⎥⎦ ,

δ = δy − δx, δ′ = δz − δx, (1)

so there are six independent parameters, or five discounting
an absolute phase. It has been shown that the electric field
can be described by a planar polarization ellipse, as in the 2D
case. In three dimensions we need two parameters to fix the
plane of the polarization ellipse and three more parameters to
specify the ellipse within the plane: the size, ellipticity, and
orientation, totaling five parameters in all.

For the partially polarized case, several papers have general-
ized the Stokes parameter treatment to the three-dimensional
case. These generalized Stokes parameters become, for the
fully polarized case,
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)
, �4 = 3E0xE0z cos δ′, (2)
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3
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)
and the positive-semidefinite three-dimensional coherency
matrix [24] is

C3 = 1

3

⎡
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3
�8 �1 − i�2 �4 − i�5
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3
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3
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⎤
⎥⎥⎦ , (3)
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which can be expanded in terms of nine Gell-Mann matrices
[25], which are Hermitian, traceless (except for the zeroth-
order matrix), and linearly independent. Note that the ordering
and signs of the Gell-Mann coefficients are taken differently
in some papers. There are advantages in using the standard
ordering, as has been argued for the Pauli matrices in the
2D case [26,27]. These advantages become significant when
Müller matrices are considered, but we do not explore the
9 × 9 generalized Müller matrix (for the partially polarized
case), or the 3 × 3 complex Jones matrix (for the fully polarized
case) here.

From Eq. (2) we have the relationships
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,
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)
, (4)

E2
0z = 1

3

(
�0 − 2

√
3

3
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)
.

There are nine generalized Stokes parameters, but as these can
be expressed in terms of five variables, there are relationships
between the Stokes parameters for the fully polarized case. We
have the three relationships
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,

which can be combined to give the relationship, analogous to
that for the Stokes parameters in two dimensions [18],

�2
0 = 1

3

8∑
i=1

�2
i . (6)

This agrees with the condition obtained by setting the degree
of polarization equal to unity [1,12,13].

For consistency of the off-diagonal terms, we require that

27E2
0xE

2
0yE

2
0z = (�1 + i�2)(�4 − i�5)(�6 + i�7) = S,

(7)

say, is purely real. So

arg(�1 + i�2) + arg(�4 − i�5) + arg(�6 + i�7) = 0,

(8)

and equating real and imaginary parts of Eq. (7) gives

�1�5�6 − �2�4�6 − �1�4�7 = �2�5�7 (9)

and

S = �1�4�6 + �1�5�7 + �2�5�6 − �2�4�7. (10)

Equations (5) and (9) are four conditions relating the nine
Stokes parameters so that they reduce to five degrees of
freedom. Solving the simultaneous equations for the off-
diagonal terms in Eqs. (5) and (7) gives
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(11)

and

δ = arg(�1 + i�2), δ′ = arg(�4 + i�5),

δ′ − δ = arg(�6 + i�7) (12)

or by choosing a particular phase reference to give a cyclical
form

δx = − 1
3 [arg(�1 + i�2) + arg(�4 + i�5)],

δy = − 1
3 [arg(�6 + i�7) − arg(�1 + i�2)], (13)

δz = 1
3 [arg(�4 + i�5) + arg(�6 + i�7)].

The fact that the behavior of the electric field is described by a
polarization ellipse can be proven very simply. There is always
a direction defined by direction cosines l, m, and n such that
the phasor components of the electric field lE0x , mE0ye

iδ , and
nE0ze

iδ′
sum to zero. By applying the sine rule to the triangle

of the phasors, we can establish that, if the direction cosines
of the normal to the plane of the polarization ellipse are l, m,
and n,

lE0x

sin(δ′ − δ)
= −mE0y

sin δ′ = nE0z

sin δ
(14)

and so, as l2 + m2 + n2 = 1,

l = �7√
�2

2 + �2
5 + �2

7

, m = − �5√
�2

2 + �2
5 + �2

7

,

n = �2√
�2

2 + �2
5 + �2

7

. (15)

So the equation of the plane of the polarization ellipse is [19]

�7x − �5y + �2z = 0 (16)

and its normal is
x

�7
= − y

�5
= z

�2
. (17)
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These equations can also be established by considering the
projection of the polarization ellipse into the y-z, z-x, and x-y
planes. The treatment of Carozzi et al. was based on Lie group
arguments [19].

Then we have for the lengths of the semimajor and
semiminor axes of the polarization ellipse

a2 = [
�0 +

√
�2

0 − 4
9

(
�2

2 + �2
5 + �2

7

)]
/2,

(18)

b2 = [
�0 −

√
�2

0 − 4
9

(
�2

2 + �2
5 + �2

7

)]
/2,

so that �0 = a2 + b2 and πab = (π/3)
√

�2
2 + �2

5 + �2
7 is

the area of the polarization ellipse. The case when �2
2 + �2

5 +
�2

7 = 0 (a2 = �0 and b2 = 0) corresponds to linear polar-
ization and when �2

2 + �2
5 + �2

7 = 9
4�2

0 (a2 = b2 = �0/2)
the field corresponds to pure circular polarization. For con-
venience we introduce the dimensionless linear polarization
parameter L, given by

L =
√

�2
0 − 4

9

(
�2

2 + �2
5 + �2

7

)
�0

, 0 � L � 1. (19)

Then L = 1 corresponds to pure linear polarization and L =
0 to circular polarization. We have a2 = �0(1 + L)/2, b2 =
�0(1 − L)/2, and (�2

2 + �2
5 + �2

7) = 9
4�2

0(1 − L2).
We now consider the orientation in the plane of the

polarization ellipse. The point on the polarization ellipse
corresponding to the major axis can be considered to be on
the intersection of the sphere

x2 + y2 + z2 = a2 (20)

and the plane

lx + my + nz = 0. (21)

Its projection onto the x-y plane is then given by(
�2

2 + �2
7

)
x2 + (

�2
2 + �2

5

)
y2 − 2�5�7xy = a2�2

2. (22)

This point must intersect with the projection of the polarization
ellipse

E2
0yx

2 + E2
0xy

2 − 2�1

3
= �2

2

9
. (23)

The solution can be obtained in terms of different choices for
the variables, but after some algebra we can obtain for the
direction cosines of the major and minor axes

λ2
a = 1

2L

[
2E2

0x

�0
− (1 − L)(m2 + n2)

]
,

μ2
a = 1
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[
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�0
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]
, (24)
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a = 1
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[
2E2

0z
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]

and

λ2
b = 1
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[
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�0
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]
,
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b = 1

2L

[
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0y

�0
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]
, (25)

ν2
b = 1

2L

[
−2E2

0z

�0
+ (1 + L)(l2 + m2)

]
,

respectively. We see that the sum of the three squares equals
unity, as of course it must. The sum a2 + b2 is equal to �0,
agreeing with Eq. (18). We also have the relationships

λ2
a + λ2

b = m2 + n2 = �2
2 + �2

5

�2
2 + �2

5 + �2
7

,

μ2
a + μ2

b = n2 + l2 = �2
7 + �2

2

�2
2 + �2

5 + �2
7

, (26)

ν2
a + ν2

b = l2 + m2 = �2
5 + �2

7

�2
2 + �2

5 + �2
7

.

Equations (24) and (25) simplify for the special case when
L = 1, corresponding to linear polarization. When L = 0
(circular polarization) the direction of the major and minor
axes is indeterminate. We now examine these special cases in
more detail.

A. Circular polarization

The special case of circular polarization L = 0 (on CT

lines) gives

E2
0x = 2

9

�2
2 + �2

5

�0
, E2

0y = 2

9

�2
7 + �2

2

�0
,

E2
0z = 2

9

�2
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7

�0
, (27)

so that

�2
2 = 9

4
�0

(
E2

0x + E2
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0z

) = 3

4
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(
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√
3

3
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)
,

�2
5 = 9

4
�0

(
E2

0x − E2
0y + E2

0z

)

= 3

4
�0

(
�0 + 2�3 − 2

√
3

3
�8

)
, (28)

�2
7 = 9

4
�0

(−E2
0x + E2

0y + E2
0z

)

= 3

4
�0

(
�0 − 2�3 − 2

√
3

3
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)
,

and

�1 = 2�5�7

3�0
, �4 = −2�7�2

3�0
, �6 = 2�2�5

3�0
. (29)

Thus

�5�7

�1
= −�7�2

�4
= �2�5

�6
= 3�0

2
(30)
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and

�1�2 = −�4�5 = �6�7 = 2

3

�2�5�7

�0
. (31)

As �0 is positive definite, Eq. (28) gives some requirements
on the positivity or otherwise of the other parameters. The
direction cosines of the normal to the polarization ellipse are
given by

l = 2�7

3�0
, m = −2�5

3�0
, n = 2�2

3�0
. (32)

Note that changing the sign of all of �2, �5, and �7changes
the direction along its length of the normal to the polarization
ellipse and therefore the handedness of the circular polariza-
tion.

B. Linear polarization

For linear polarization (on LT lines) L = 1, δ = δ′ =
0, �2 = �5 = �7 = 0, a2 = �0, and b2 = 0. Then, from
Eq. (2)

�1 = 3E0xE0y, �4 = 3E0xE0z, �6 = 3E0yE0z, (33)

so that

E2
0x = �1�4

3�6
, E2

0y = �6�1

3�4
, E2

0z = �4�6

3�1
, (34)

agreeing with Eq. (11). Then

�3 = �1
(
�2

4 − �2
6

)
2�4�6

, �8 =
√

3

6

�2
1�

2
4 + �2

6�
2
1 − 2�2

4�
2
6

�1�4�6
.

(35)

The direction cosines of the major axis of the polarization
ellipse λ, μ, and ν are given, from Eq. (22), by

λ2 = E2
0x

�0
= �1�4

3�0�6
, μ2 = E2

0y

�0
= �6�1

3�0�4
,

ν2 = E2
0z

�0
= �4�6

3�0�1
, (36)

so that

�1 = 3λμ�0, �4 = 3λν�0, �6 = 3μν�0. (37)

From Eq. (36) �1, �4, and �6 can only be all positive or
any two of �1, �4, and �6 can be negative. Then, from
Eq. (37), only one at most of λ, μ, and ν can be negative.

III. DISCUSSION

The five parameters needed to specify the behavior for the
fully polarized case can be taken in many different ways.
If we know, for example, (�0,�1,�2,�4,�5) (as assumed
by Samson) the remaining generalized Stokes parameters
can be calculated from Eqs. (5), (6), and (8). Another
possibility is to specify (�0,�2,�5,�7), thus determining
the intensity, the plane of the polarization ellipse, and the
ellipticity directly. A further parameter is needed to specify
the orientation of the polarization ellipse within its plane, but
the most appropriate choice for this is not obvious. It could be
(�1 or �4 or �6) or (�3 or �8). Finally (�0,�1,�3,�4,�8)

specifies directly the intensity, magnitude, and direction of
the major axis of the polarization ellipse and the ellipticity.
The plane of the polarization ellipse then follows from
Eqs. (5) and (9).

For the 2D fully polarized case, the Poincaré sphere is a
2D surface in 3D space, represented by the SU(2) symmetry
group. Similarly, for the 3D case, the generalization is a 7D
hyperspherical surface [with the equation given by Eq. (6)],
represented by SU(3), in 8D Stokes parameter space. For the
fully polarized case, however, the nine parameters (including
intensity) reduce to five independent parameters, or four
in addition to intensity. These four parameters specify two
rotations each in 3D space, one rotation giving the plane
of the polarization ellipse and the other the Poincaré sphere
representation of the polarization state within this plane. The
polarization state is then represented by the symmetry group
SU(2) ⊕ SU(2) rather than the SU(3) of the partially polarized
case. It is interesting to note that Hannay’s treatment in terms
of the Majorana sphere also involves two rotations in 3D space,
one for each point on the Majorana sphere [23].

The coherency matrix consists of nine elements, but the
fully polarized case has five independent parameters only.
This suggests that for a partially polarized field there must
be more than one parameter to describe completely the degree
of polarization and hence to attempt to define a single degree of
polarization parameter seems futile [5]. A single scalar degree
of polarization is insufficient to fully describe the degree of
partial polarization. The choice of two appropriate measures
requires them to be mutually independent [28,29].

The coherency matrix C3 can be diagonalized and separated
into an incoherent sum of three purely polarized components
[5,11,12,16] with strengths given by the eigenvalues (real)
λ1 � λ2 � λ3. Then

C3 = λ1e∗
1eT

1 + λ2e∗
2eT

2 + λ3e∗
3eT

3 , (38)

where ei , i = 1,2,3, are the eigenvectors and the partially
polarized field is represented by the sum of three purely
polarized components, the coherency matrix of each of which
factorize. An explicit expression for the (real and non-negative)
eigenvalues has been given and interpreted geometrically
[28,29]. The field is completely defined by the eigenvalues
and eigenvectors, which include nine independent parameters.
Then the coherency matrix can be written [5,12,16,30]

C3 = (λ1 − λ2)e∗
1eT

1 + (λ2 − λ3)(e∗
1eT

1 + e∗
2eT

2 ) + λ3I,

(39)

where, with I the identity matrix, it is decomposed into a purely
polarized component, a component unpolarized within a plane,
and an unpolarized component. Of the nine independent
parameters needed to specify the field, five are necessary to
define the polarized component, three are necessary to define
the component that is unpolarized within a plane (its strength
and two direction cosines to define its orientation), and one to
define the strength of the unpolarized component. Apart from
the intensity and orientational components, two parameters
that depend on the eigenvalues are needed to define the degree
of polarization. We can therefore identify the nine independent
parameters for the partially polarized case as corresponding
to the intensity, two to specify the partial polarization, four
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to define the orientation of the pure polarization component,
and two to describe the orientation of the 2D unpolarized
component. In the purely polarized case λ2 = λ3 = 0 and
Eq. (39) reduces to Eqs. (2) and (3) with E = √

λ1e1 and
�0 = λ1.
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