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Controlling the signal angular profile in a Bessel-beam-pumped optical parametric amplifier
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An optical parametric amplifier pumped by a Bessel beam is investigated. It is revealed that under propagation
in a nonlinear crystal, the signal angular profile after a transient process does not depend on the input profile and
the signal beam becomes localized in the pump field. The control of the output signal angular profile by variation
of the pump cone angle and intensity is demonstrated. The effect is elucidated by the numerical simulations as
well as experiment. The explanation by the derived eigenvalue problem is given.
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I. INTRODUCTION

The Bessel beams (BBs) were introduced by Durnin in
1987 [1]. A main feature of BBs is their immunity to
diffraction. The wave vectors of BBs lie on a cone surface and
its angular spectrum is a ring. Many interesting experiments
such as self-healing of a BB and micromanipulation using
optical tweezers have been discussed; see Ref. [2] and
references therein. The research on nonlinear optics of BBs
began with the study of second harmonic generation by a BB
in 1993 [3]. Since then, special attention has been paid to
the optical parametric processes with a BB pump [4–7]. The
optical parametric amplifier (OPA) [4], generator (OPG) [7],
and oscillator (OPO) [5,6] were studied. Interestingly, even
a distorted BB or, more precisely, incoherent conical beam
can parametrically amplify a coherent signal beam [4]. The
incoherence of the conical pump can be transferred to the
generated idler conical beam [5]. Such experiments confirm
the idea of the parametric combining [8]. In Ref. [8], the
parametric amplification of a single signal beam by several
intersecting pump beams was demonstrated. The incoherent
BB can be described as a superposition of a large number of
intersecting incoherent beams [9].

The parametric amplification by a BB is specific since, in
this case, the pump intensity is not smooth because the BB
obeys a sharp peak at the center and vanishing oscillations
around it. In this case, the transverse phase matching of
interacting beams conditions the output angular spectrum of
the axial signal and conical idler beams [4]; see Fig. 1. It
seems that only the signal beam propagating along the pump
cone axis can be simultaneously phase matched with all plane
waves that constitute the conical pump beam. For this reason,
an acceptance angle of OPA pumped by a BB should decrease
under propagation in a nonlinear crystal. Here, we study the
parametric amplification of an injected signal beam in the field
of the BB pump in order to determine the acceptance angle
of the OPA and to elucidate how it can be controlled by the
parameters of the pump beam: BB cone angle and intensity.

The paper is organized as follows. In Sec. II, the governing
equations and the results of their simulation are presented.
The nonlinear coupling equations and the derived eigenvalue
problem as well as its solution by the iterative method are
introduced. In Sec. III, the experiment of the amplification of
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the signal beam by the Bessel beam in the OPA is described.
Finally, in Sec. IV, the conclusions are drawn.

II. THEORETICAL DETAILS

A. Nonlinear coupling equations

In the case of noncritical phase matching, the nonlinear
coupling equations for signal (1), idler (2), and pump (3) beams
propagating in the z direction read
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where A, k, and � are the complex amplitude, wave number,
and phase mismatch, respectively. (x,y,z) are the Cartesian
coordinates. σ is a nonlinear coupling coefficient. We assume
that all optical fields are axially symmetric and that there is
no pump depletion and diffraction. Then, in the case of a
Bessel-Gauss (BG) pump beam,
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where J0(β0r) is a zero-order Bessel function, β0 = k3α3, and
2α3 is a pump cone angle (Fig. 1). r =

√
x2 + y2 and a30

is a pump amplitude. At the input of the crystal, z = 0, the
amplitudes of signal and idler read
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)
,
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where a10 is a signal amplitude and d0 is a beam radius. Further
we assume an exact noncollinear phase matching of Gaussian
signal beam with the conical pump and idler beams. In this
case, due to nonlinear Snell’s law [10], the components of the
wave vectors k2 and k3 in the xy plane are the same (β0) and, as

a result, for the phase mismatch �, we obtain � = β2
0

2 ( 1
k3

− 1
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).
Further, we make use of Hankel transform:
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FIG. 1. Schematic depiction of conical pump (wave number k3),
axial signal (k1), and conical idler (k2) beams.

Here, S(β) is a spectral amplitude. Function |S(β)|2 is an
angular spectrum. From Eqs. (1), one obtains
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Here, Ln = 1/(
√

σ1σ2a30) is a characteristic length of nonlin-
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where F is a transverse phase-matching integral,
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Boundary conditions at z = 0 are the following:
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Let us seek for the solutions of Eqs. (6) in the form

S1(z,β1) = f1(β1) exp(�z),
(9)
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where f1,2 = |f1,2| exp(i	1,2). The functions |f1,2| are the
angular profiles, 	1,2 are the spectral phases of signal and
idler beams, and Re(�) is an increment, i.e., the spectral
amplitudes S1,2 of signal and idler beams grow exponentially
with z as exp[Re(�)z]. Re(·) denotes a real part. We arrive at

the eigenvalue problem:(
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This system of equations can be solved by the method of
iterations. One guesses arbitrary f10(β1) and �0 and inserts
them into the following equations:
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After this step, one assumes �0 = �, f10 = f1, and inserts the
new values into Eqs. (11) again. We note that the solution of
the eigenvalue problem takes much less time than computing
the differential equations (6).

B. Numerical simulations

We have simulated Eqs. (6) and the obtained signal and
idler beam angular profiles were compared to the profiles f1,2,
which were obtained from iterative solution of the eigenvalue
problem, given by Eqs. (10). The results are presented in Fig. 2.
Superscripts “in” and “out” denote the values at the input and
output, respectively. Here and in the other figures, all angles
are outside the crystal, α = β/k10, and �α1 is a signal angular
spectrum width at FWHM, i.e., �α1 was calculated by taking
the width of angular spectrum |S1|2 at its half maximum. The
calculations were performed for a KTiOPO4 (KTP) type-II
crystal at pump and signal wavelengths 532 and 1064 nm,
respectively. The refractive indices from Ref. [11] were used
and noncritical phase matching was assumed due to small
walk-off angles in this case.

Note that an output profile of the signal angular spectrum
does not depend on the input profile. So, the localization
(capture) of signal beam in the OPA pumped by the Bessel
beam occurs. This is true even when the input profile is
incoherent. In Fig. 2(c), the noisy seed was simulated by
means of the method described in [12] for simulation of
Gaussian-Gaussian noise. After [12], the noisy amplitude is
calculated from

A10(x) = a10
1√
Ns

exp

(
−x2

d2
3

) Ns∑
s=1

exp(iKsx − iξs), (12)

where Ks are the random numbers of normal distribution with
variance

√
2/ρ, where ρ is a correlation radius, and ξs is a uni-

formly distributed phase. The correlation radius ρ = 40 μm.
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(a)

(b)

(c)

FIG. 2. (Color online) (a),(c) Angular profiles of amplified signal
(1) and idler (2) beams. Solution of Eqs. (6) (lines) and Eqs. (10)
(squares). (3) (red lines) shows the input signal angular profile.
(b) Spectral phase of the signal and idler beams, given by Eqs. (10).
(a),(b) Regular and (c) incoherent input. �αin

1 = 4 mrad. α3 = 0.02
rad, d3 = 800 μm, Ln = 350 μm. z: (a),(b) 1 cm, (c) 2 cm. Squares
in (a) and lines in (b): 20 iterations, input f10 = S10, �0 = 1/Ln. Inset
in (a): input (3) and output (1) signal fields.

The amplitude is truncated by a Gaussian envelope of radius
d3, so Eq. (12) describes a Gaussian Schell-model beam [13].
Input spectrum S10(βx) was calculated by taking the one-
dimensional Fourier transform of A10(x). S10(β) was obtained
by leaving the values at βx � 0.

In Fig. 2(c), the output signal profile is smooth. The idler
spectrum part appears in the spectrum of the signal, and vice
versa. This does not take place when the input spectrum is
rather narrow [Fig. 2(a)]. In Fig. 2(c), the crystal length was
taken larger than in Figs. 2(a) and 2(b) because the parametric
gain is less in the case of incoherent seed. The phases of the
signal and idler beams are depicted in Fig. 2(b).

(a)

(b)

FIG. 3. Dependence of (a) angular spectrum width and (b)
parametric gain (at β = 0) of amplified signal on crystal length.
α3 = 0.02 rad, d3 = 800 μm, Ln = 350 μm. �αin

1 : (1) 28, (2) 20,
(3) 12, and (4) 4 mrad. Solutions of Eqs. (6).

The localization of the signal beam can also be seen from
Fig. 3. Here the spectrum width �αout

1 and the increment
Re(�) are depicted. The spectrum width �αout

1 of the amplified
signal does not depend on the input spectrum width �αin

1 , and
the increment becomes the same after a transient process.
By transient process, we mean the variation of spectrum
width at z < 0.8 cm. The value of the spectrum width at
the output depends on the pump beam intensity (nonlinear
interaction length Ln) and cone angle 2α3. The dependence
on the nonlinear interaction length is elucidated by Figs. 4
and 5. As we can see, the spectrum width approaches less
value when Ln increases, meanwhile the increment becomes
smaller. Note that the dependences on z were calculated from
Eqs. (6) and the localized values of Fig. 5 were estimated from
the eigenvalue problem.

However, the variation of spectrum width before the local-
ization cannot be obtained from the eigenvalue problem (10).
Only steady solutions can be extracted from it. We note that
a localization of the signal beam in the process of linear
parametric amplification was discussed earlier in Refs. [14,15].
The localization is possible when signal and idler beams are
propagating in different directions with respect to the pump
beam. Under such condition, the outgoing signal and idler
beams can be captured by the pump beam and an exponential
amplification takes place. A simultaneous temporal and spatial
localization of signal and idler pulsed beams occurs under
parametric amplification in a degenerate OPA when group-
velocity dispersion and diffraction of the pulsed pump beam
can be neglected [16]. An angular dispersion inside the
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(a)

(b)

FIG. 4. Dependence of (a) angular spectrum width and (b)
parametric gain (at β = 0) of amplified signal on crystal length.
α3 = 0.02 rad, d3 = 800 μm, �αin

1 = 4 mrad. Ln: (1) 300, (2) 350,
(3) 400 μm. Solutions of Eqs. (6).

nonlinear crystal of the OPG coincides with an angular
dispersion of localized pulsed beams, which are free of
diffraction and dispersion spreading [17], and the parametric
amplification of dispersionless and diffractionless polychro-
matic Bessel beams is possible [18–20].

From Fig. 6, it is evident that the output signal spectrum
width decreases when the cone angle of the pump beam
increases [compare curves (1) and (2)]. Within the given
range of the input spectrum width, the spectrum width of
the amplified signal does not change. This range involves the
values which are much smaller and much larger than the value
for the amplified signal. The spectrum width does not change
when the beam radius of the pump beam varies; see Fig. 7.

FIG. 5. Dependence of signal angular spectrum width and in-
crement on the nonlinear interaction length. α3 = 0.02 rad, d3 =
800 μm, �αin

1 = 4 mrad. Solutions of Eqs. (10), 20 iterations, input
f10 = S10, �0 = 1/Ln.

FIG. 6. Dependence of signal angular spectrum width on input
signal spectrum width. (1) α3 = 0.02 rad and (2) 0.03 rad. d3 =
800 μm, Ln = 350 μm, z = 1 cm. Solutions of Eqs. (6).

Of course, at very small radius d3 of the BG pump beam, this
result does not hold because considerable diffraction of the
pump beam would take place in this case.

We note that the obtained results are valid when the
diffraction of the BG beam can be neglected. Further we shall
determine a characteristic diffraction length LB of the BG
beam. The diffraction properties of BG beams were discussed
earlier in Ref. [21]. In the case of free propagation of the BG
pump beam, its angular spectrum is described by equation

S3(β,z) = S30(β) exp(iβ2z/2k3), (13)

where

S30(β) = S3(β,0)

= 2πa0

∫ ∞

0
r exp

(−r2/d2
3

)
J0(β0r)J0(βr)dr. (14)

An axial amplitude of diffracting BG beam reads

A3(0,z) = 1

2π

∫ ∞

0
βS3(β,z)dβ. (15)

An integration in Eqs. (14) and (15) yields

A3(0,z) = ia30

z

LG

1 + iq
exp

[−β2
0d2

3/4(1 + iq)
]
, (16)

FIG. 7. Dependence of the signal angular spectrum width on
pump beam radius. α3 = 0.02 rad, Ln = 350 μm, z = 1 cm, �αin

1 =
4 mrad. Solutions of Eqs. (6).
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FIG. 8. (Color online) Experimental setup. L1, L2, L3: lenses; M: dichroic mirrors; F: filter.

where q = LG/z and LG = k3d
2
3/2 is a Rayleigh length

calculated for the Gaussian envelope of the BG beam. We
determine a diffraction length LB of the BG beam as a distance
where an axial intensity of the beam decreases by factor of 2.
Thus, we obtain |A(0,zB)|2/a2

30 = 0.5 and find

q2

1 + q2
exp

[−β2
0d2

3/2(1 + q2)
] = 0.5. (17)

We note that for a good quality BG beam it follows β0d3 � 1.
In this case, a solution of Eq. (17) exists only for q � 1 and,
as a result, we obtain

LB ≈
√

2 ln 2

β0d3
LG ≈ 0.6d3

α3
. (18)

The diffraction of the BG beam can be neglected at z � LB .
For d3 = 800 μm and α3 = 0.02 rad, we obtain LB = 24 mm.
As we can see from Figs. 3(a) and 4(a), the localization of the
signal beam takes place at smaller crystal lengths than LB .

FIG. 9. Intensity distribution of amplification in the OPA radia-
tion in the far field (signal: central spot; idler: ring around it).

III. EXPERIMENTAL DETAILS

The experiment was performed with a diode-pumped
Nd:YAG regenerative amplifier (APL 2210B, UAB “Ekspla”)
producing 50-ps-duration pulses at 1 kHz repetition rate. The
Bessel beam was formed using a high-quality glass axicone
with the cone angle 2α3 equal to 0.04 rad. An experimental
setup is presented in Fig. 8. The OPA was pumped by the
second harmonic of the Nd:YAG laser (λ = 532 nm) and
seeded by the fundamental harmonic of the same laser. The
beam radius before the axicone was 800 μm and the parameter
defining the quality of the Bessel beam (ratio of ring radius
to ring width) was ∼170. The Bessel beam formed by the
axicone was imaged to the OPA crystal by two lenses, L1
and L2, of equal focal lengths (f1 = 10 cm). Bessel-beam
pulse energy up to 200 μJ was adequate to amplify the seed
in the KTP crystal (length 8 mm). The signal was injected
into the OPA and type-II interaction close to the noncritical
phase matching (KTP crystal orientation θ = 0, ϕ = 23.2◦)
was realized. The far field of the crystal output was imaged by
the lens L3 (f3 = 15 cm) onto the CCD camera and angular
spectra of parametric waves were registered. The far-field
intensity distribution of amplified radiation is shown in Fig. 9,
where the central spot denotes an amplified signal and the
ring denotes the generated idler wave. The signal beams with
different spectrum widths (5–50 mrad) were injected into the

FIG. 10. Angular spectrum width of amplified signal in x and y

projections vs angular spectrum width of seed. Circles and triangles:
measured data; lines: mean values.
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FIG. 11. Amplification of incoherent signal. Normalized angular
spectra of signal beam at the input (left) and output (right). Although
the input seed was distorted, the amplified signal spectrum is smooth.

OPA and the dependence of the output angular spectrum widths
measured at FWHM versus input angular spectrum widths
for Bessel pump beam cone angle 0.04 rad is presented in
Fig. 10. As can be seen, the angular spectrum width of the
amplified radiation does not depend on the spectrum width of
the injected signal and remains nearly constant, in agreement
with theoretical findings. The obtained angular spectrum width
is comparable with the theoretical one; see curve (1) in Fig. 6.
The amplification was of the order of one hundred. Finally, we
amplified an incoherent signal. The seed was passed through
a phase-distortion film before injecting it into the OPA. The
film was chosen such that the intensity distribution and angular
spectrum of the seed were significantly distorted. The angular
spectrum of the injected and amplified signal is depicted in
Fig. 11, left and right sides, respectively. As can be seen, while
the angular spectrum of the seed is distorted, the distribution
of the amplified signal angular spectrum is rather smooth,
which is in agreement with the theory. The experimental
and theoretical [see Fig. 2(c)] output spectrum widths are
comparable, at about 10 mrad.

IV. CONCLUSIONS

It is demonstrated that a signal angular spectrum in the OPA
pumped by a Bessel beam after a transient process does not
depend on the input signal spectrum and nonlinear crystal
length when the pump beam diffraction can be neglected.
The signal beam becomes localized in the pump field and
is amplified exponentially. As a result, an acceptance angle
of the OPA is predefined by the cone angle and intensity of
the pump Bessel beam. That takes place also in the case of
incoherent input signal beam. A good qualitative agree-
ment between the theoretical and experimental results was
obtained.

Note that the parametric amplification in the field of the
Bessel pump differs from the amplification in the field of
the Gaussian beam. In the case of the Gaussian beam, the
acceptance angle of the OPA depends on the crystal length
and no localization takes place. The localization property
of the OPA pumped by the Bessel beam is determined by
transverse phase-matching integral F (β1,β2); see Eq. (7). In
this case, the signal beam angular profile depends on the idler
angular profile integrated with a kernel F (β1,β2); see Eq. (10).
This means that one arrives at the eigenvalue problem and, as
a consequence, the localization is obtained. The eigenvalue
problem would be destroyed in the case of pump diffraction
and depletion, so the localization of the signal beam takes place
only when the pump is not depleted and its diffraction can be
neglected.
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