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Anisotropy in scattering of light from an atom into the guided modes of a nanofiber
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We study the scattering of guided light from a multilevel cesium atom with the transitions between the hyperfine
levels 6S1/2F = 4 and 6P3/2F

′ = 5 of the D2 line into the guided modes of a nanofiber. We show that the rate
of scattering of guided light from the atom in the steady-state regime into the guided modes is asymmetric with
respect to the forward and backward directions and depends on the polarization of the probe field. The asymmetry
between the forward and backward scattering is a result of the complex transition structure of the atom and the
existence of a longitudinal component of the guided-mode profile function. In the case of a two-level atom, the
rates of spontaneous emission (and consequently the rates of scattering) into the forward and backward guided
modes differ from each other when the atomic dipole matrix-element vector is a complex vector in the plane that
contains the fiber axis and the atomic position.
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I. INTRODUCTION

Over the last decade, optical fibers that are tapered to a
diameter comparable to or smaller than the wavelength of
light [1–3] have attracted considerable attention for a wide
range of potential practical applications [4]. In such a thin fiber,
called a nanofiber, the guided field penetrates an appreciable
distance into the surrounding medium and appears as an
evanescent wave carrying a significant fraction of the propa-
gation power and having a complex polarization pattern [5–7].
Nanofiber-guided light fields can be used for trapping
atoms [8–10], for probing atoms [11–17], molecules [18],
quantum dots [19], and color centers in nanodiamonds [20,21],
and for mechanical manipulations of small particles [22–24].

The ability to control and manipulate atoms individually
is of great importance for various applications in both
fundamental and applied physics [25–27]. In order to find
an effective way to probe, control, and manipulate an atom
trapped outside a nanofiber, we need to know the optical
response of the atom to a near-resonant field propagating along
the fiber. Absorption and scattering are the usual outcomes
of the interaction of an atom with a near-resonant light field.
The absorption and scattering of guided light by a single atom
have been studied [11,12]. It has been shown by Domokos
et al. [11] for a two-level atom that, due to the transverse
confinement of the field in a waveguide, a single atom is able
to have a significant effect on a wave packet of light. When
the transverse extension of the field in a guided mode is close
to the radiative cross section of the atom, the latter becomes a
significant scatterer. Similar to the radiation of an oscillating
electric dipole, the scattering of light from a two-level atom
with a real dipole matrix-element vector in free space has
equal rates for the forward and backward directions [28–30].
This property is a consequence of the point symmetry of
the system. The effect of the multilevel structure of a real
atom on the absorption and scattering characteristics has been
examined [12]. While the general formalism and the results
of calculations for the total scattering rate in Ref. [12] are
correct, the phenomenological separation of the total scattering
rate into two equal components for backward and forward
scattering is naive and generally not correct. For an atom with

a multilevel structure or with a complex dipole matrix-element
vector in the vicinity of an object, the point symmetry may be
broken. Recent experimental progress has demonstrated that
the scattering of guided light from realistic multilevel atoms
is very different from the case of atoms in free space [31,32].
Therefore, it is necessary to develop a systematic microscopic
theory for the forward and backward scattering of guided light
from a multilevel atom taking into account the complexity of
the atomic dipole polarization and the field polarization.

Before we proceed, we note that the excitation of a
multilevel atom by laser light of arbitrary polarization has been
thoroughly studied [33–39]. It has been shown that elliptically
polarized light creates an anisotropic distribution of atomic
angular momentum [34]. Scattering of guided light from an
atom involves not only the atomic excitation but also the
subsequent spontaneous emission. The latter is a quantum
electrodynamic process caused by vacuum fluctuations. The
presence of the fiber opens the channel of spontaneous
emission into guided modes, modifies the rate of spontaneous
emission into radiation modes, and leads to the appearance of
cross-level decay coefficients [40].

In this paper, we study the scattering of guided light from a
multilevel atom into the forward and backward guided modes
of a nanofiber. We show that the scattering rate is asymmetric
with respect to the forward and backward directions and
depends on the polarization of the probe field.

The paper is organized as follows. In Sec. II we study the
scattering of guided light from a multilevel atom. In Sec. III
we discuss the directional spontaneous emission of a two-
level atom with a complex dipole matrix-element vector. Our
conclusions are given in Sec. IV.

II. SCATTERING OF GUIDED LIGHT FROM A
MULTILEVEL ATOM

Consider the scattering of a guided light field from a single
alkali-metal atom trapped outside an optical nanofiber (see
Fig. 1). The nanofiber has a cylindrical silica core, with the
radius a and the refractive index n1 = 1.45, surrounded by
vacuum, with the refractive index n2 = 1. The diameter 2a of
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FIG. 1. (Color online) Probing an atom by an evanescent light
field propagating along a thin optical fiber.

the nanofiber is comparable to or smaller than the wavelength
λ of light. Such a thin fiber can be produced by the taper
fiber technology [1–3]. The essence of the technology is to
heat and pull a single-mode optical fiber to a very small
thickness, maintaining the taper condition to keep adiabatically
the single-mode condition. Due to tapering, the original core
is almost vanishing. Therefore, the refractive indices that
determine the guiding properties of the tapered fiber are the
refractive index of the original silica clad and the refractive
index of the surrounding vacuum. Subwavelength-diameter
vacuum-clad silica-core fibers are nanofibers.

In view of the very low losses of silica in the wavelength
range of interest, we neglect material absorption. In the pres-
ence of the fiber, the electromagnetic field can be decomposed
into guided modes and radiation modes [41]. The guided
modes have the evanescent behavior on the outside of the
core. They can travel in the waveguide without loss of power,
provided that losses in the dielectric material are ignored.
Meanwhile, the radiation modes are oscillatory at large dis-
tances from the fiber and do not have the evanescent behavior.
They cannot be normalized to a finite amount of power.

We assume that the single-mode condition [41] is satisfied
for a finite bandwidth around a central atomic transition
frequency ω0. Although our theory is general and applicable,
in principle, to an arbitrary multilevel atom, we assume a
cesium atom throughout this paper. For simplicity, we neglect
the effect of the surface-induced potential on the atomic energy
levels. This approximation is good when the atom is not too
close to the fiber surface [42].

A. Interaction of the atom with the guided field

We use the Cartesian coordinates {x,y,z} and the associated
cylindrical coordinates {r,ϕ,z}, with z being the fiber axis (see
Fig. 1). We represent the electric component of the guided light
field as E = (Ee−iωt + c.c.)/2 = (Eue−iωt + c.c.)/2, where ω

is the angular frequency and E = Eu is the slowly varying
envelope of the positive-frequency part, with E and u being
the field amplitude and the polarization vector, respectively.
We assume that the guided probe field E propagates in the
positive direction +z, from the left-hand side to the right-hand
side of Fig. 1. In general, the amplitude E is a complex scalar
and the polarization vector u is a complex unit vector. The
guided light field can be decomposed into a superposition of
quasicircularly or quasilinearly polarized modes [41]. In the
cylindrical coordinates, the electric component of the guided
field is given, in the case of quasicircularly polarized modes,

by

Ecirc = Acirc(r̂er + lϕ̂eϕ + f ẑez)e
ifβz+ilϕ (1)

and, in the case of quasilinearly polarized modes, by

E lin = Alin[r̂er cos(ϕ − ϕ0) + iϕ̂eϕ sin(ϕ − ϕ0)

+ f ẑez cos(ϕ − ϕ0)]eifβz. (2)

Here the notations r̂ = x̂ cos ϕ + ŷ sin ϕ, ϕ̂ = −x̂ sin ϕ +
ŷ cos ϕ, and ẑ stand for the unit basis vectors of the cylindrical
coordinate system, where x̂ and ŷ are the unit basis vectors
of the Cartesian coordinate system for the fiber transverse
plane xy. The index f = +1 or −1 (or simply + or −) stands
for the forward (+ẑ) or backward (−ẑ) propagation direction,
respectively, and the index l = +1 or −1 (or simply + or
−) refers to the counterclockwise or clockwise circulation,
respectively, of the transverse component of the field with
respect to the positive direction of the fiber axis z. The
angle ϕ0 = 0 or π/2 in Eq. (2) for quasilinearly polarized
modes specifies the principal direction x or y, respectively,
of the polarization vector u in the fiber transverse plane xy.
The parameter β is the longitudinal propagation constant for
the fiber fundamental mode. The explicit expressions for the
cylindrical components er (r), eϕ(r), and ez(r) of the guided-
mode profile function e(r,ϕ,z) are given in Refs. [7,40,41]
and are summarized in Appendix A. The coefficients Acirc and
Alin can be determined from the propagation power Pz of the
guided light field. The power Pz is given by the formula [41]

Pz = ε0vg

2

∫
n2

ref(r)|E(r)|2 d2r, (3)

where vg = 1/β ′(ω) ≡ (dβ/dω)−1 is the group velocity of
guided light, nref(r) = n1 and n2 for r < a and r > a,
respectively, is the position-dependent refractive index, and∫

d2r = ∫ 2π

0 dϕ
∫ ∞

0 r dr is the integral over the fiber cross-
section plane. The notation β ′ stands for the derivative of the
propagation constant β with respect to the frequency ω. It is
interesting to note from Eqs. (1) and (2) that the difference
between the forward and backward guided fields is expressed
by not only the change in sign of the phase factor fβz but
also the change in sign of the longitudinal component f ez (see
also Appendix A). The latter may affect the magnitude of the
coupling between the atom and the field and, consequently,
may cause a difference between the forward and backward
scattering. However, as will be shown later, the existence of a
longitudinal component of the guided field is just a necessary
condition but not a sufficient condition for asymmetry between
the forward and backward scattering.

We study the D2 line of atomic cesium, which occurs at
the wavelength λ0 = 852 nm and corresponds to the transition
from the ground state 6S1/2 to the excited state 6P3/2. We
assume that the cesium atom is initially prepared in the
hyperfine-structure (hfs) level F = 4 of the ground state 6S1/2

and that the probe field is tuned close to resonance with the
transition from this ground-state hfs level to the hfs level
F ′ = 5 of the excited state 6P3/2. Among the hfs components
of the D2 line, the transition 6S1/2F = 4 ↔ 6P3/2F

′ = 5 has
the strongest oscillator strength. Because of the selection rule
�F = 0,±1, spontaneous emission from the excited hfs level
6P3/2F

′ = 5 to the ground state is always to the ground-state
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hfs level 6S1/2F = 4, not to the other ground-state hfs level
6S1/2F = 3. Therefore, the magnetic (Zeeman) sublevels of
the hfs levels 6S1/2F = 4 and 6P3/2F

′ = 5 form a closed set,
which is used for laser cooling in magneto-optical traps [43].

In order to describe the internal state of the cesium atom,
we use the fiber axis z as the quantization axis. In addition,
we assume that the atom is located on the positive side of
the axis x unless stated otherwise [32]. For convenience,
we introduce the notations |e〉 ≡ |F ′M ′〉 and |g〉 ≡ |FM〉
for the magnetic sublevels F ′M ′ and FM of the hfs levels
6P3/2F

′ = 5 and 6S1/2F = 4, respectively. The q spherical
tensor component d

(q)
M ′M of the dipole matrix-element vector

dM ′M for the transition between |F ′M ′〉 and |FM〉, where
q = M ′ − M = 0,±1, is given by the formula [44]

d
(q)
M ′M = (−1)I+J ′−M ′ 〈J ′‖D‖J 〉

√
(2F + 1)(2F ′ + 1)

×
{

J ′ F ′ I

F J 1

}(
F 1 F ′

M q −M ′

)
. (4)

Here the array in the curly braces is a 6j symbol, the
array in the parentheses is a 3j symbol, and 〈J ′‖D‖J 〉 is
the reduced electric-dipole matrix element in the J basis.
For the cesium D2 line, we have 〈J ′‖D‖J 〉 = 6.347 a.u. =
5.38 × 10−29 C m [43]. We note that the spherical tensor
components d

(q)
M ′M represent the dipole matrix-element vector

dM ′M = ∑
q(−1)qd (q)

M ′Mε−q in the spherical basis {ε−1,ε0,ε1},
where ε−1 = (x̂ − iŷ)/

√
2 and ε1 = −(x̂ + iŷ)/

√
2 are com-

plex basis vectors and ε0 = ẑ is a real basis vector. It is clear
that dM ′M is a real vector for M ′ = M (π transitions) and is a
complex vector for M ′ = M ± 1 (σ± transitions).

We introduce the notation Eq with q = 0,±1 for the spher-
ical tensor components of the field envelope vector E , that is,
E−1 = (Ex − iEy)/

√
2, E0 = Ez, and E1 = −(Ex + iEy)/

√
2.

The interaction of the atom with the classical coherent probe
field is characterized by the set of Rabi frequencies


eg = 1

�
(deg · E) = 1

�

∑
q=0,±1

(−1)qd (q)
eg E−q . (5)

The time evolution of the reduced density operator ρ of the
atom is governed by the generalized Bloch equations [12]

ρ̇ee′ = i

2

∑
g

(
egρge′ − 
∗
e′gρeg)

− 1

2

∑
e′′

(
γ

(tot)
ee′′ ρe′′e′ + γ

(tot)
e′′e′ ρee′′

)
,

ρ̇gg′ = − i

2

∑
e

(
eg′ρge − 
∗
egρeg′ ) +

∑
ee′

γ
(tot)
e′eg′gρee′ ,

ρ̇eg = iδegρeg + i

2

∑
g′


eg′ρg′g − i

2

∑
e′


e′gρee′

− 1

2

∑
e′

γ
(tot)
ee′ ρe′g. (6)

Here δeg = ω − ωeg is the detuning of the field from the
atomic transition frequency ωeg = ωe − ωg . In the case of
the transitions between the Zeeman sublevels of the hfs

levels F ′ and F , we have ωeg = ω0 and δeg = δ = ω − ω0.
The coefficients γ

(tot)
ee′gg′ and γ

(tot)
ee′ characterize the effect of

spontaneous emission on the reduced density operator of the
atomic state. They are given as [40] γ

(tot)
ee′gg′ = γ

(gyd)
ee′gg′ + γ

(rad)
ee′gg′

and γ
(tot)
ee′ = ∑

g γ
(tot)
ee′gg = γ

(gyd)
ee′ + γ

(rad)
ee′ . Here the set of coef-

ficients γ
(gyd)
ee′gg′ and γ

(gyd)
ee′ = ∑

g γ
(gyd)
ee′gg describes spontaneous

emission into guided modes, and the set of coefficients γ
(rad)
ee′gg′

and γ
(rad)
ee′ = ∑

g γ
(rad)
ee′gg describes spontaneous emission into

radiation modes. The total decay rate of the population of the
excited magnetic sublevel |e〉 is γ (tot)

ee = γ
(gyd)
ee + γ (rad)

ee . The
explicit expressions for the decay coefficients are given in
Ref. [40] and are summarized in Appendixes A and B.

We note that the density-matrix equations (6) are consistent
with those used in the treatments for the excitation of a
multilevel atom by light of arbitrary polarization [33–39].
Equations (6) can, in principle, be used for an arbitrary
(degenerate and nondegenerate) multilevel atom. The tensor
nature of the Zeeman sublevels and the hfs levels of a realistic
alkali-metal atom is expressed by Eq. (4) for the spherical
tensor components d

(q)
eg of the atomic dipole matrix elements

deg . These quantities enter Eqs. (6) through expression (5) for
the Rabi frequencies 
eg . Unlike the case of the atom-field
system in free space [39], the presence of the nanofiber
modifies the decay rates γ (tot)

ee and leads to the appearance
of the cross-level decay coefficients γ (tot)

e1e2
(with e1 �= e2) in

Eqs. (6) (see [40]).

B. Scattering rates into the guided modes with given
propagation directions and polarizations

We assume that the atom is initially prepared in an
incoherent mixture of the Zeeman sublevels |M〉 of the
ground-state hyperfine level F and that the initial population
distribution of the atom is independent of M . We are interested
in the regime where the probe field E is stationary and the atom
is in its steady state.

The total rate of scattering of incident photons from the
atom is given by �tot = ∑

ee′ γ
(tot)
ee′ ρe′e = �gyd + �rad, where

�gyd = ∑
ee′ γ

(gyd)
ee′ ρe′e and �rad = ∑

ee′ γ
(rad)
ee′ ρe′e are the rates

of scattering into guided modes and radiation modes, respec-
tively.

We are interested in the rate of scattering into the guided
modes with a given propagation direction and a given polar-
ization. We consider not only the quasicircular polarizations
with the index l = +,− but also the quasilinear polarizations
with the index ξ = x,y. To combine the two cases, we use
the notation p that can be either l = +,− or ξ = x,y. The
description of the structure of the guided field is given in [7,41]
and is summarized in Appendixes A and B. The set of modes
with quasicircular polarizations l = +,− and the set of modes
with quasilinear polarizations ξ = x,y can be used each to
define an orthogonal mode basis for the fundamental guided
modes HE11 [41]. These two sets overlap each other and have
different properties. They are chosen not only for convenience
but also to describe the experimental situations where a guided
probe field with a given polarization is employed and/or a
scattered field with a given polarization is measured [31].
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The rate of scattering into the guided modes with a given
propagation direction f = ± and a given polarization p = +,
−, x, or y is given by

�fp =
∑
ee′

γ
(fp)
ee′ ρe′e. (7)

Here we have introduced the notation

γ
(fp)
ee′ = γ

(fpfp)
ee′ , (8)

where

γ
(fpf ′p′)
ee′ = 2π

∑
g

Gω0fpegG
∗
ω0f ′p′e′g. (9)

In the above expression, Gω0fpeg is the coefficient for the
coupling between the resonant guided mode ω0fp and the
atomic transition |e〉 ↔ |g〉. For quasicircularly polarized
modes, that is, for p = l = ±, the general expression for
the coefficient Gωfpeg = Gωf leg is given by Eq. (A19) in
Appendix A, which reads

Gωf leg =
√

ωβ ′

4πε0�
(deg · e(ωf l))ei(fβz+lϕ). (10)

Here e(ωf l) is the normalized profile function for quasicir-
cularly polarized guided modes and is given by Eqs. (A6)
and (A7). For quasilinearly polarized modes, that is, for p =
ξ = x,y, the general expression for the coefficient Gωfpeg =
Gωf ξeg is given by Eq. (A20) in Appendix A, which reads

Gωf ξeg =
√

ωβ ′

4πε0�
(deg · e(ωf ξ ))eifβz. (11)

Here e(ωf ξ ) is the normalized profile function for quasilinearly
polarized guided modes and is given by Eqs. (A15).

We introduce the notation

γ
(f )
ee′ =

∑
l=+,−

γ
(f l)
ee′ =

∑
ξ=x,y

γ
(f ξ )
ee′ (12)

for the coefficients of spontaneous emission into guided modes
in a given direction f . We use the abbreviations γ

(fw)
ee′ = γ

(+)
ee′

and γ
(bw)
ee′ = γ

(−)
ee′ . We have the relation γ

(gyd)
ee′ = γ

(fw)
ee′ + γ

(bw)
ee′ .

Similarly, we introduce the notation

�f =
∑

l=+,−
�f l =

∑
ξ=x,y

�f ξ (13)

for the rate of scattering into guided modes in a given direction
f . We use the abbreviations �fw = �+ and �bw = �−. The
scattering rate into guided modes �gyd can be decomposed as
�gyd = �fw + �bw.

We note that the output guided probe field is the result of the
interference between the input guided probe field and the field
scattered into the forward guided modes. It follows from the
energy conservation law that the loss rate for the input guided
probe field is given by

�loss = �rad + �bw. (14)

The total rate of scattering �tot and its components �gyd and
�rad have been calculated systematically in Ref. [12]. In this
earlier work, the rates �fw, �bw, and �loss have been deduced
from �gyd and �rad by using the incorrect formula �fw = �bw.

The latter relation is valid in the cases of the far field emitted
from a two-level atom with a real dipole matrix-element vector
in free space [28–30] or in the presence of a waveguide [11].
For a two-level atom with a complex dipole matrix-element
vector or a multilevel atom in the vicinity of a fiber, the formula
�fw = �bw is, as shown below, not valid.

Indeed, it follows from Eq. (A29) that, when the fiber axis z

is used as the quantization axis for the internal state of an alkali-
metal atom, the coefficients γ

(fp)
ee′ and γ

(f̄ p)
ee′ of spontaneous

decay into the guided modes with the opposite propagation
directions f and f̄ = −f , respectively, satisfy the relation
γ

(fp)
ee′ = (−1)Me−Me′ γ

(f̄ p)
ee′ . When we take e′ = e, e ± 1, or e ±

2, we get the symmetry relations

γ (fp)
ee = γ (f̄ p)

ee , (15a)

γ
(fp)
e,e±1 = −γ

(f̄ p)
e,e±1, (15b)

γ
(fp)
e,e±2 = γ

(f̄ p)
e,e±2, (15c)

respectively. All other decay coefficients, i.e., the coefficients
γ

(fp)
ee′ with e′ �= e,e ± 1,e ± 2, are equal to zero due to the

transition selection rules. When the atom has a single upper
level |e〉, only the diagonal coefficient γ

(fp)
ee appears in the

expression for the scattering rate �fp. In this case, due to the

relation γ
(fp)
ee = γ

(f̄ p)
ee [see Eq. (15a)], we have the equalities

�fp = �f̄ p and, consequently, �fw = �bw for the scattering
rates in the opposite directions. However, when the atom has
two or more upper levels, the expression for the scattering
rate �fp contains not only the diagonal coefficients γ

(fp)
ee but

also the off-diagonal coefficients γ
(fp)
e,e±1. Note that γ

(fp)
e,e±1 =

2π
∑

g Gω0fp,e,gG
∗
ω0fp,e±1,g . Since the guided-mode profile

function e(ωf l) has a longitudinal component e
(ωf l)
z in addition

to the transverse components e
(ωf l)
r and e

(ωf l)
ϕ , we may have

γ
(fp)
e,e±1 �= 0. This fact and the relation γ

(fp)
e,e±1 = −γ

(f̄ p)
e,e±1 [see

Eq. (15b)] may lead to �fp �= �f̄ p and, hence, to �fw �= �bw.
Thus, the rates of scattering of light from a multilevel atom into
the guided modes of a nanofiber in the forward and backward
directions may differ from each other. Such asymmetry is a
result of the complexity of the atomic level and transition
structures and the existence of a longitudinal component of
the guided-mode profile function. We note that Eqs. (15) are
valid only in the case where the fiber axis z is used as the
quantization axis for the atomic internal states and the atomic
transitions |e〉 ↔ |g〉 are of the type π , σ+, or σ− with respect
to this specific quantization axis. We emphasize that, when we
perform the summation over the Zeeman sublevels of the atom
with the initial M-independent distribution of populations, we
obtain the answers that are independent of the choice of the
quantization axis.

For a two-level atom with a real dipole matrix-element
vector or a complex dipole matrix element of the σ± transition
type with respect to the fiber axis z, we have γ (fw)

ee = γ (bw)
ee

and, hence, �fw = �bw. For a two-level atom with an arbitrary
dipole matrix-element vector d, the relations γ (fw)

ee = γ (bw)
ee and

�fw = �bw are, in general, not valid. We will show in Sec. III
that we may obtain γ (fw)

ee �= γ (bw)
ee and, consequently, �fw �=

023805-4



ANISOTROPY IN SCATTERING OF LIGHT FROM AN . . . PHYSICAL REVIEW A 90, 023805 (2014)

�bw for a two-level atom with a transition of the σ± type with
respect to the y axis.

The differences between the rates of the forward and
backward scattering processes are

�fp − �f̄ p = 4Re
∑

e

γ
(fp)
e,e+1ρe+1,e,

(16)
�fw − �bw = ±4Re

∑
e

γ
(±)
e,e+1ρe+1,e.

The above expressions show clearly that the difference
between the forward and backward scattering processes is
caused by the interference between the π and σ± downward
transitions of the atom. Such interference may be constructive
or destructive depending on the scattering direction. The
interference between the downward transitions from the levels
Me and Me ± 1 may appear only if the spontaneous emission
coefficients γ

(fp)
e,e±1 as well as the off-diagonal density matrix

elements ρe±1,e are not zero.
We note that, for an arbitrary position on the x axis, the

longitudinal component e
(ωfy)
z of the profile function e(ωfy)

of the y-polarized guided modes is vanishing. Consequently,
when the atom is positioned on the x axis, we have γ

(fy)
e,e±1 = 0.

This leads to

�fy = �f̄ y. (17)

Thus, the rate of scattering of light from the atom into the
quasilinearly y-polarized guided modes, where the principal
polarization direction y is perpendicular to the radial direction
x of the atomic position, does not depend on the scattering
direction f . Due to this property, the difference between the
rates of scattering into the forward and backward guided modes
is

��fwbw ≡ �fw − �bw = �+,x − �−,x . (18)

To make the rates of scattering into forward and backward
guided modes different from each other, not only the spon-
taneous emission coefficients γ

(fp)
e,e±1 but also the off-diagonal

density matrix elements ρe,e±1 must not be all equal to zero.
Nonzero coherence between neighboring Zeeman levels Me

and Me ± 1 of the atom can be induced only if the probe field
E , which is general (not necessarily a guided light field) in this
discussion, has a nonzero component Ez along the fiber axis z,
that is,

Ez �= 0. (19)

In addition, the presence of a nonzero component E⊥ of the
probe field E in the fiber transverse plane xy is also required.
Moreover, the phases of the off-diagonal density matrix
elements ρe,e±1 must be appropriate so that the interference
described by the terms Re(γ (··· )

e,e+1ρe+1,e) is not washed out by
the summation over e in Eqs. (16).

We can show that, when the probe field E has no component
along the radial direction x of the atomic position, that is, when

Ex = 0, (20)

we have the properties Eq = E−q (with q = 0,±1) and, con-
sequently, 
eg = (−1)F−F ′+1
ēḡ . Here we have introduced
the notations ē and ḡ for the Zeeman sublevels with the

magnetic quantum numbers −Me and −Mg , respectively,
of the excited-state hyperfine level F ′ and the ground-state
hyperfine level F , respectively. Then, we obtain the relation
ρee′ = ρēē′ in the steady-state regime. In deriving this relation
we have used Eqs. (6) and the symmetry properties of the
spontaneous emission coefficients given in Appendixes A
and B. On the other hand, since the atom is on the axis x,
Eq. (A42) yields γ

(f lf l′)
ee′ = (−1)Me−Me′ γ

(f l̄f l̄′)
ēē′ , where l = ±

and l̄ = −l = ∓. Hence we find that the interference terms
Re(γ (f x)

e,e+1ρe+1,e) for the scattering into the guided modes
with the quasilinear polarization x are washed out by the
summation over e in the steady-state regime. Consequently, we
have �f x = �f̄ x . This equality and the equality �fy = �f̄ y ,
which is valid for arbitrary polarization of the probe field
E , give �fw = �bw. Thus, under the condition (20) and in
the steady-state regime, the forward and backward scattering
processes have the same rates. In addition, we obtain the
equality �f l = �f̄ l̄ for l = ± for the rates of scattering into the
guided modes with the opposite circular polarizations l = ±
and l̄ = −l in the opposite directions f = ± and f̄ = −f .
When we combine the result of the above discussion with the
result of the discussion in the previous paragraph, we see that
both components Ez and Ex of the probe field must be nonzero
to produce a difference between the forward and backward
scattering rates.

Our additional analysis shows that, when the probe field E
has no component along the direction y, which is perpendicular
to the radial direction x of the atomic position, that is, when

Ey = 0, (21)

we have the properties Eq = (−1)qE−q (with q = 0,±1) and,
hence, 
eg = (−1)F−F ′+1+Me−Mg
ēḡ . Using these properties
and the symmetry properties of the spontaneous emission
coefficients, we find from Eqs. (6) the relation ρee′ =
(−1)Me−Me′ ρēē′ for the populations of and coherences between
the Zeeman sublevels of the excited state in the steady-state
regime. Then, the difference ��fwbw between the rates of
scattering into the forward and backward guided modes is,
in general, nonvanishing, unlike the result in the case (20).
In the particular case where the probe field E is elliptically
polarized in the zx plane, the rate difference ��fwbw can
become significantly different from zero. When the probe field
E is exactly linearly polarized in the zx plane, the difference
��fwbw is zero for δ = 0 but may be slightly different from
zero for δ �= 0, depending on the orientation of the field
polarization vector u in the zx plane.

C. Numerical results

We solve the density-matrix equations (6) in the steady-state
regime and use the results to calculate the efficiency coeffi-
cients ηfw = �ω�fw/Pz and ηbw = �ω�bw/Pz for scattering
into guided modes in the forward and backward directions, re-
spectively. Here Pz is the propagation power. We also calculate
the efficiency coefficients ηfp = �ω�fp/Pz for scattering into
the guided modes with a given propagation direction f and
a given polarization p. In the numerical calculations, we use
the fiber radius a = 250 nm. As already stated, we consider
the transitions between the hyperfine levels 6S1/2F = 4 and
6P3/2F

′ = 5 of the D2 line of atomic cesium, with the
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FIG. 2. (Color online) Radial-distance dependencies of the scat-
tering efficiency coefficients in the case where the guided probe field E
is quasicircularly polarized. The principal circulation direction of the
polarization of the probe field is counterclockwise. The coefficients
ηfw and ηbw for scattering into forward and backward guided modes,
respectively, are shown by the solid black lines in parts (a) and
(b), respectively. The coefficients ηf l with l = + (dashed red lines)
and l = − (dotted green lines) for the modes with the individual
counterclockwise and clockwise polarizations, respectively, are also
shown. The fiber radius is a = 250 nm, the light wavelength is
λ = 852 nm, and the light propagation power is Pz = 10 fW. The
detuning of the field frequency from the atomic transition frequency
is δ = 0.

wavelength λ0 = 852 nm. The atom is positioned on the
positive side of the axis x. The propagation power of the guided
probe light field is assumed to be Pz = 10 fW. This power is
much lower than the saturation power Psat = 4.4 pW. Here Psat

is estimated as the power of a quasicircularly polarized guided
light field that produces the intensity I ≡ cε0|E |2/2 = Isat on
the fiber surface, where Isat = 1.1 mW/cm2 is the saturation
intensity for a cesium atom with the cycling transition [43].
The power of 10 fW of the probe field corresponds to a flux
of one photon per τphoton � 23 μs. The corresponding value of
the Rabi period for the cycling transition of a cesium atom on
the fiber surface is τRabi � 7 μs. The characteristic times τphoton

and τRabi are short as compared to the experimentally observed
trapping lifetime τtrap � 100 ms for atoms in the two-color
fiber-based trap [9]. Note that the power of 10 fW of the
guided probe field is low enough that the hyperfine pumping
is negligible in the interaction process [45]. Indeed, a simple
estimate shows that the off-resonant hyperfine scattering rate
for a cesium atom on the fiber surface is on the order of 4 s−1.
It is clear that the effect of the off-resonant hyperfine scattering
is very small in the characteristic times τphoton and τRabi and is
small in the trapping lifetime τtrap.

We plot in Figs. 2–4 the dependencies of the scattering
efficiency coefficients on the normalized radial distance r/a in
the cases where the guided probe field E is quasicircularly
polarized, x polarized, and y polarized, respectively. A
common feature of these figures is that, in general (except for
ηfy in the case of Fig. 3), the scattering efficiency coefficients
reduce with increasing radial distance r . Such a reduction
is due to the evanescent-wave profiles of the guided-mode
functions outside the fiber, which affect the scattering rates
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FIG. 3. (Color online) Radial-distance dependencies of the scat-
tering efficiency coefficients in the case where the guided probe field
E is quasilinearly polarized along the direction of the axis x, on which
the atom is located. The coefficients ηfw and ηbw for scattering into
forward and backward guided modes, respectively, are shown by the
solid black lines in parts (a) and (b), respectively. The coefficients
ηf ξ with ξ = x (dashed red lines) and ξ = y (dotted green lines) for
the modes with the individual x and y polarizations, respectively, are
also shown. The insets in parts (a) and (b) show the details of ηf ξ

with ξ = y. Other parameters are as in Fig. 2.

�fp via the Rabi frequencies 
eg and the spontaneous emission
coefficients γ

(fp)
ee′ .

We plot in Figs. 5–7 the dependencies of the scattering
efficiency coefficients on the field detuning δ in the cases
where the guided probe field E is quasicircularly polarized, x

polarized, and y polarized, respectively. A common feature of
the plotted curves is that they look like Lorentzian lines, with
a peak at the resonance frequency ω = ω0. We note that the
linewidth of the calculated curves is about 5.4 MHz. This value
is slightly larger than the literature value of 5.2 MHz for the
atomic natural (free-space) linewidth [43] although the power
of the field is very low and hence the effect of power broadening
is very weak. The numerically observed broadening depends
on the radial position of the atom and is due to the enhancement
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FIG. 4. (Color online) Same as Fig. 3 but the guided probe field
E is quasilinearly polarized along the axis y, which is perpendicular
to the radial direction of the position of the atom.
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FIG. 5. (Color online) Frequency dependencies of the scattering
efficiency coefficients in the case where the guided probe field E is
quasicircularly polarized. The principal circulation direction of the
polarization of the probe field is counterclockwise. The coefficients
ηfw and ηbw for scattering into forward and backward guided modes,
respectively, are shown by the solid black lines in parts (a) and
(b), respectively. The coefficients ηf l with l = + (dashed red lines)
and l = − (dotted green lines) for the modes with the individual
counterclockwise and clockwise polarizations, respectively, are also
shown. The radial position of the atom is r/a = 1.8. Other parameters
are as in Fig. 2.

of spontaneous emission by the fiber [40]. For the parameters
used, the enhancement factor is about 1.03.

Figures 2 and 5 show the radial-distance and field-frequency
dependencies of the scattering efficiency coefficients in the
case where the guided probe field E is counterclockwise
quasicircularly polarized. We note that the case where the field
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FIG. 6. (Color online) Frequency dependencies of the scattering
efficiency coefficients in the case where the guided probe field E is
quasilinearly polarized along the direction of the axis x, on which
the atom is located. The coefficients ηfw and ηbw for scattering into
forward and backward guided modes, respectively, are shown by the
solid black lines in parts (a) and (b), respectively. The coefficients
ηf ξ with ξ = x (dashed red lines) and ξ = y (dotted green lines) for
the modes with the individual x and y polarizations, respectively, are
also shown. The insets in parts (a) and (b) show the details of ηf ξ with
ξ = y. The radial position of the atom is r/a = 1.8. Other parameters
are as in Fig. 2.
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FIG. 7. (Color online) Same as Fig. 6 but the guided probe field
E is quasilinearly polarized along the axis y, which is perpendicular
to the radial direction of the position of the atom.

is clockwise polarized is similar to the case where the field is
counterclockwise polarized. Comparison between parts (a) and
(b) of Fig. 2 and between that of Fig. 5 shows that, when the
probe field is quasicircularly polarized, the efficiency of the
scattering into the forward guided modes is a few times larger
than that of the scattering into the backward guided modes. We
observe from Figs. 2 and 5 the appearance of a new polarization
component, namely the clockwise polarization (see the dotted
green lines), of the field in the guided modes. The relative
magnitude of the secondary polarization field component is
significant in the forward modes but not substantial in the
backward modes.

Figures 3 and 6 show the radial-distance and field-frequency
dependencies of the scattering efficiency coefficients in the
case where the guided probe field E is quasilinearly polarized
along the axis x. Comparison between parts (a) and (b) of
Fig. 3 and between that of Fig. 6 shows that, when the probe
field is quasilinearly polarized along the axis x, the efficiency
of the scattering into the forward guided modes is about one
order of magnitude stronger than that of the scattering into the
backward guided modes. We observe from Figs. 3 and 6 that
the main component of the total light scattered into the guided
modes in the forward or backward direction (solid black lines)
is the component with the polarization x (dashed red lines),
which is the same as the polarization of the probe field. The
insets of the figures show that the magnitude of the scattering
efficiency of the y-polarized component (dotted green lines) is
independent of the scattering direction and is three (in the case
of backward direction) or four (in the case of forward direction)
orders smaller than that of the x-polarized component (dashed
red lines). The observed independence of the parameter ηfy

from the scattering direction f is in agreement with Eq. (17).
It is a consequence of the fact that the axial component of the
mode profile function of the y-polarized guided modes is zero
for the positions on the x axis. We observe from the insets of
Fig. 3 that the scattering efficiency coefficient ηfy increases
with increasing r/a in the interval from ∼1.1 to ∼1.5. Such an
increase is different from the typical behavior of the scattering
efficiency coefficients and is a result of interference between
different channels of atomic transitions.
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Figures 4 and 7 show the radial-distance and field-frequency
dependencies of the scattering efficiency coefficients in the
case where the guided probe field E is quasilinearly polarized
along the axis y. Comparison between parts (a) and (b) of
Fig. 4 and between that of Fig. 7 shows that these parts are
identical to each other. This means that, when the probe field is
quasilinearly polarized along the y axis, the rates �f x and �fy

of scattering into the guided modes with the individual x and y

polarizations, respectively, and the total rate �f = �f x + �fy

for both types of polarizations in a given direction f are
independent of the scattering direction f = ±. This behavior
is a consequence of the fact that the axial component Ez of
the probe field E is zero in the case considered. We observe
from Figs. 4 and 7 that both components with the x (dashed
red lines) and y (dotted green lines) polarizations are present
in the forward- and backward-scattered light fields (solid
black lines). Furthermore, we note that the magnitude of the
x-polarized component (dashed red lines) of the scattered field
is slightly larger than that of the y-polarized component (dotted
green lines) although the y polarization is the polarization of
the incident probe field. This feature is a consequence of the
differences between the x- and y-polarized guided modes at
the position of the atom, the properties of the atomic dipole
matrix elements, and the properties of the atomic steady-state
density matrix.

We plot in Fig. 8 the dependencies of the scattering
efficiency coefficients on the azimuthal angle ϕ0 of the
polarization vector u of the guided probe field in the case
where the latter is quasilinearly polarized. The figure shows
that the scattering efficiency coefficients ηf ξ are symmetric
functions of ϕ0, i.e., ηf ξ (ϕ0) = ηf ξ (−ϕ0). In addition, we
have ηf ξ (ϕ0) = ηf ξ (π ± ϕ0). These properties are obvious
consequences of the symmetry of the atom-fiber system with
respect to the radial direction of the atomic position in the
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FIG. 8. (Color online) Dependencies of the scattering efficiency
coefficients on the azimuthal angle ϕ0 of the polarization vector u
of the guided probe field in the case where the latter is quasilinearly
polarized. The coefficients ηfw and ηbw for scattering into forward and
backward guided modes, respectively, are shown by the solid black
lines in parts (a) and (b), respectively. The coefficients ηf ξ with ξ = x

(dashed red lines) and ξ = y (dotted green lines) for the modes with
the individual x and y polarizations, respectively, are also shown.
The atom is located on the x axis at the distance r/a = 1.8. Other
parameters are as in Fig. 2.
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FIG. 9. (Color online) Dependencies of the loss coefficient ηloss

on the radial position of the atom (a) and the detuning of the guided
probe field (b) in the cases where the probe field is quasicircularly
polarized (solid black lines), quasilinearly polarized along the x

direction (dashed red lines), and quasilinearly polarized along the
y direction (dotted green lines). The atom is located on the x axis.
In (a), the field is tuned to exact resonance with the atom. In (b), the
radial position of the atom is r/a = 1.8. Other parameters are as in
Fig. 2.

fiber transverse plane. We observe from the figure that the
scattering efficiency coefficients vary significantly when we
vary the relative orientation of the field polarization vector
u with respect to the radial direction of the atomic position.
Figure 8(a) shows that, in the forward direction, the x-polarized
component (dashed red line) of the scattered field is always
larger than the y-polarized component (dotted green line).
However, in the backward direction, according to Fig. 8(b), the
y-polarized component (dotted green line) becomes larger than
the x-polarized component (dashed red line) in two intervals
of ϕ0 in the region −π/2 � ϕ0 � π/2 (in four intervals of
ϕ0 in the region −π � ϕ0 � π ). When we take into account
the difference between the scales of the vertical axes and
closely inspect the dotted green curves in parts (a) and (b)
of Fig. 8, we see that the scattering efficiency coefficient ηfy

does not depend on the scattering direction f , that is, we have
ηfy = ηf̄ y , in agreement with Eq. (17).

It is not easy to measure the rate of scattering into
forward guided modes directly in experiments. It is much
more convenient to measure the loss of the field in forward
guided modes. The loss rate �loss is given by Eq. (14). The
lost power is Ploss = �ω�loss. We introduce the loss coefficient
ηloss = Ploss/Pz, which is related to the transmission |T |2 as
ηloss = 1 − |T |2. We note that the loss coefficient ηloss can be
considered as the generalized optical depth per atom for an
array of atoms aligned in a line parallel to the fiber axis.
To get insight into scattering into forward guided modes,
we plot in Fig. 9 the spatial and tuning dependencies of
the loss coefficient ηloss. In addition, we plot in Fig. 10 the
dependence of the loss coefficient on the azimuthal angle ϕ0

of the polarization vector u of the guided probe field in the
case where the latter is quasilinearly polarized. The dashed
red curve in Fig. 9(a) shows that the maximal value of ηloss,
achieved for the guided light with the x polarization and the
atom at the distance r/a = 1, is ηloss � 0.59. Thus, in the
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FIG. 10. Dependence of the loss coefficient ηloss on the azimuthal
angle ϕ0 of the field polarization vector u in the case where the guided
probe field is quasilinearly polarized. The atom is located on the x

axis at the distance r/a = 1.8. Other parameters are as in Fig. 2.

vicinity of the fiber surface, the power Ploss lost by scattering
into radiation modes and backward guided modes can be up
to 59% of the propagation power Pz. This means that the
transmittance of the guided probe field can be reduced to
41%. It is clear from Fig. 9(a) that the magnitude of the loss
coefficient ηloss reduces with increasing radial distance r and
depends significantly on the polarization of the field. When
the guided probe field is y polarized, the maximal value of
ηloss, achieved at r/a = 1, is ηloss � 0.12. When the guided
probe field is quasicircularly polarized, the maximal value of
ηloss is ηloss � 0.40. It is interesting that this value is far from
the mean value between the values for the cases of the fields
with the principal x and y polarizations. This deviation is a
consequence of optical pumping in a multilevel atom. Due
to the population redistribution, which is significant in the
considered steady-state regime, the scattering efficiency of a
quasicircularly polarized field is not the mean value of the
scattering efficiencies of x- and y-polarized fields. Figure 10
shows that the loss coefficient ηloss is a symmetric and periodic
function of ϕ0 with the period of π .

The propagation power Pz = 10 fW is small enough that
any further decrease in Pz would not practically change
the scattering efficiency coefficients and the loss coefficient.
Consequently, Figs. 2–10 remain valid when Pz � 10 fW =
10−14 W. Due to the population redistribution of the ground-
state sublevels, the conventional result of the perturbation
approach [46,47] for the scattering cross section in the steady-
state regime cannot be used [12] even though the atomic
excitation is weak. We recognize that the results obtained for
the atom on the fiber surface (r/a = 1) are of only academic
interest because the effect of the surface-induced potential
is not considered in this paper. However, this effect can be
neglected in the case of r/a = 1.8 and a = 250 nm, which
corresponds to the situation realized in the experiment by
Vetsch et al. [9].

III. DIRECTIONAL SPONTANEOUS EMISSION
OF A TWO-LEVEL ATOM

In order to get deep insight into the asymmetry between
the forward and backward scattering, we consider a two-level

atom with a single upper level |e〉 and a single lower level |g〉
outside a nanofiber. The rate of spontaneous emission into the
guided modes with the positive (f = +) or negative (f = −)
propagation direction is

γ (f ) = γ (f x) + γ (fy), (22)

where [40]

γ (f ξ ) = ω0β
′
0

2ε0�
|d · e(ω0f ξ )|2 (23)

is the rate of spontaneous emission into the guided modes
with the propagation direction f = +,− and the polarization
ξ = x,y. We note that the dipole matrix-element vector d
is, in general, a complex vector. It is clear that γ (f ξ ) and,
consequently, γ (f ) depend on the magnitude, the orientation,
and the polarization of the dipole matrix-element vector d.
The rate �f of scattering into the guided modes with a
given propagation direction f is related to the corresponding
spontaneous emission rate γ (f ) as �f = ρeeγ

(f ).
Assume that the atom is positioned on the positive side of

the x axis in the Cartesian coordinate system {x,y,z}, with z

being the fiber axis. In this case, we obtain the expressions

e(ω0f x) =
√

2 (i|er |,0,f |ez|) (24)

and

e(ω0fy) =
√

2 (0,i|eϕ |,0) (25)

for the profile functions of the x- and y-polarized guided
modes, respectively [see Eqs. (A15)]. It is clear from Eqs. (23)
and (25) that the rate γ (fy) of spontaneous emission into the
guided modes with the y polarization does not depend on the
emission direction f . Meanwhile, it follows from Eqs. (23)
and (24) that the rate γ (f x) of spontaneous emission into the
guided modes with the x polarization does not depend on
the emission direction f if the dipole components dz and dx

have the same phase, that is, if the atomic dipole is linearly
polarized in the zx plane. In particular, the rates γ (f x) and γ (f )

do not depend on f in the cases where d is a real vector or
the transition of the atom is of the type π (dx = dy = 0) or
σ± (dz = 0 and dx = ±idy) with respect to the fiber axis z.
However, the rates γ (f x) and γ (f ) may depend on f if both
components dz and dx are nonzero and have different phases,
that is, if there is an ellipticity of the polarization of the atomic
dipole matrix-element vector d in the zx plane.

To illustrate such a situation, we consider the case where
the atomic transition is of the type σ± with respect to the y

axis, that is, the polarization of the atomic dipole is circular
in the zx plane. In this case, it is natural to use the axis y as
the quantization axis. The quantization coordinate system is
{xQ,yQ,zQ}, where

xQ = z, yQ = x, zQ = y. (26)

In this coordinate system, the dipole matrix element d of the
atom has only a single nonzero spherical tensor component
dq = −q(dxQ

+ iqdyQ
)/

√
2, where q = Me − Mg = ±1 cor-

responds to the transition type σ±. An example of such a
two-level atom is a cesium atom with the cycling transition
between the Zeeman levels |F ′ = 5,M ′ = ±5〉 and |F =
4,M = ±4〉 of the excited state 6P3/2 and the ground state
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6S1/2, respectively. The initial state can be prepared by optical
pumping with the use of a circularly polarized field freely
propagating along the y direction. In the Cartesian coordinate
system {x,y,z}, the dipole matrix-element vector is

d = dq√
2

(i,0,−q). (27)

The above expression shows that, in the Cartesian coordinate
system {x,y,z}, the dipole matrix-element vector d has two
nonzero components, dz and dx = −iqdz, which are different
in phase from each other by π/2. This is a consequence of the
fact that the polarization of the atomic dipole is circular in the
zx plane. From Eq. (27), we find

d · e(ω0f ξ ) = dq√
2

(
ie(ω0f ξ )

x − qe(ω0f ξ )
z

)
. (28)

For the y-polarized guided modes, Eq. (25) yields e
(ω0fy)
x =

e
(ω0fy)
z = 0. This leads to d · e(ω0fy) = 0 and, hence, γ (fy) = 0.

For the x-polarized guided modes, Eq. (24) yields e
(ω0f x)
x =

i
√

2|er | and e
(ω0f x)
z = f

√
2|ez|. This leads to

d · e(ω0f x) = −dq(|er | + f q|ez|). (29)

Hence, we find

γ (f ) = γ (f x) = ω0β
′
0d

2
q

2ε0�
(|er | + f q|ez|)2. (30)

It is clear that γ (f ) depends on the emission direction f = ±
and on the transition type σ± characterized by the number q =
Me − Mg = ±1. Moreover, when we set f = + and f = −
in Eq. (30) and then calculate the ratio between the results, we
find

γ (+)

γ (−)

∣∣∣∣
q=1

= γ (−)

γ (+)

∣∣∣∣
q=−1

=
( |er | + |ez|

|er | − |ez|
)2

. (31)

Thus, the spontaneous emission of the two-level atom into the
guided modes of the nanofiber may have different rates for
different directions f = ±. We emphasize that the occurrence
of γ (+) �= γ (−) is due to the existence of the longitudinal com-
ponent ez of the guided-mode profile function, the existence of
the components dz and dx of the atomic dipole matrix element,
the ellipticity of the polarization of the x-polarized guided
mode in the zx plane, and the ellipticity of the polarization
of the atomic dipole in the zx plane. We note that the ratio
γ (+)/γ (−) is determined by just the ratio between the radial and
axial components er and ez, respectively, of the guided-mode
profile function. In Fig. 11, we plot the dependence of the
ratio γ (+)/γ (−) on the radial position r of the atom. The figure
shows that γ (+)/γ (−) decreases slowly with increasing r and
can be as large as about 13.3 for the atom on the fiber surface
(r/a = 1).

We note that, in the case where the atom is positioned
on the negative side of the x axis, we find from the first
equation in Eqs. (A15) the expressions e

(ω0f x)
x |ϕ=π = i

√
2|er |

and e
(ω0f x)
z |ϕ=π = −f

√
2|ez| for the nonzero components of

the profile function e(ω0f x)|ϕ=π of the x-polarized guided
modes. In this case, we obtain

γ (+)

γ (−)

∣∣∣∣
q=1

= γ (−)

γ (+)

∣∣∣∣
q=−1

=
( |er | − |ez|

|er | + |ez|
)2

. (32)
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FIG. 11. Ratio γ (+)/γ (−) between the rates γ (+) and γ (−) of
spontaneous emission from a two-level atom into the guided modes
in the directions +ẑ and −ẑ, respectively. The levels of the atom
are |F ′ = 5,M ′ = 5〉 and |F = 4,M = 4〉 of the D2 line of atomic
cesium with respect to the quantization axis ẑQ = ŷ. The atom is
positioned on the positive side of the x axis. Other parameters are as
in Fig. 2.

It follows from the above results that the scattering of light
from a system of two identical and equally excited two-level
atoms, one above and one symmetrically below the fiber, into
the guided modes has equal rates for the forward and backward
directions.

According to the previous section, the asymmetry between
the forward and backward scattering from an alkali-metal atom
into the guided modes is associated with the decay coefficients
γ

(f )
e,e±1 and the atomic level coherences ρe±1,e and therefore

requires at least two upper levels. One may think that the
explanation for the asymmetry in the case of a two-level atom
contradicts that for the asymmetry in the case of a multilevel
alkali-metal atom. However, the two pictures are consistent
with each other. Indeed, the upper level of a two-level atom
with a transition of the σ± type with respect to the y axis
corresponds to a superposition of several upper levels of a
multilevel alkali-metal atom with the transitions of the π and
σ± types with respect to the z axis.

IV. SUMMARY

We have presented a systematic theory for the scattering of
guided light from a multilevel atom outside a nanofiber into the
guided modes. In our numerical calculations, we used atomic
cesium, with the transitions between the hyperfine levels
6S1/2F = 4 and 6P3/2F

′ = 5 of the D2 line. We have cal-
culated the scattering rate in the steady-state regime. We have
demonstrated analytically and numerically that the scattering
rate is asymmetric with respect to the forward and backward
directions and depends on the polarization of the probe field.
The asymmetry between the forward and backward scat-
tering is a result of the complexity of the level and transition
structures of the atom and the existence of a longitudinal
component of the guided-mode profile function. We have
found that, in the case where the probe field is quasicircularly
polarized, the rate of the scattering into the forward guided
modes is a few times larger than that of the scattering into the
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backward guided modes. When the probe field is quasilinearly
polarized along the axis x, which is the radial direction of the
position of the atom, the rate of the scattering into the forward
guided modes is about one order of magnitude larger than that
of the scattering into the backward guided modes. However,
when the probe field is quasilinearly polarized along the axis
y, which is perpendicular to the radial direction of the position
of the atom, the forward and backward scattering processes
have the same rate.

We have shown that, in the case of a two-level atom, the
rates of spontaneous emission and consequently the rates of
scattering into the forward and backward guided modes differ
from each other when the atomic dipole matrix-element vector
is a complex vector in the zx plane, which contains the fiber
axis z and the atom-position radial axis x. In particular, for a
two-level atom with the parameters of the cycling transition
of atomic cesium, the ratio between the rates of spontaneous
emission (or scattering) into the forward and backward guided
modes is as large as about 13.3 for the atom on the surface
of the nanofiber with the radius a = 250 nm. The directional
spontaneous emission (or directional scattering) from such a
two-level atom is a consequence of the ellipticity of both the
field polarization and the atomic dipole vector in the zx plane.
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APPENDIX A: GUIDED MODES OF A NANOFIBER

Consider a nanofiber that is a silica cylinder of radius
a and refractive index n1 and is surrounded by an infinite
background medium of refractive index n2, where n2 < n1.
The radius of the nanofiber is well below a given free-space
wavelength λ of light. Therefore, the nanofiber supports only
the hybrid fundamental modes HE11 corresponding to the
given wavelength λ [41]. The light field in such a mode is
strongly guided. It penetrates into the outside of the nanofiber
in the form of an evanescent wave carrying a significant
fraction of energy [7]. For a fundamental guided mode HE11

of a light field of frequency ω (free-space wavelength λ =
2πc/ω and free-space wave number k = ω/c), the propagation
constant β is determined by the fiber eigenvalue equation [41]

J0(ha)

haJ1(ha)
= −n2

1 + n2
2

2n2
1

K ′
1(qa)

qaK1(qa)
+ 1

h2a2

−
[(

n2
1 − n2

2

2n2
1

K ′
1(qa)

qaK1(qa)

)2

+ β2

n2
1k

2

(
1

q2a2
+ 1

h2a2

)2]1/2

. (A1)

Here the parameters h = (n2
1k

2 − β2)1/2 and q = (β2 −
n2

2k
2)1/2 characterize the fields inside and outside the fiber,

respectively. The notations Jn and Kn stand for the Bessel

functions of the first kind and the modified Bessel functions
of the second kind, respectively.

According to [41], the cylindrical-coordinate vector com-
ponents of the profile function e(r) of the electric part of the
fundamental guided mode that propagates in the forward (+ẑ)
direction and is counterclockwise quasicircularly polarized are
given, for r < a, by

er = iC
q

h

K1(qa)

J1(ha)
[(1 − s)J0(hr) − (1 + s)J2(hr)],

eϕ = −C
q

h

K1(qa)

J1(ha)
[(1 − s)J0(hr) + (1 + s)J2(hr)], (A2)

ez = C
2q

β

K1(qa)

J1(ha)
J1(hr),

and, for r > a, by

er = iC[(1 − s)K0(qr) + (1 + s)K2(qr)],

eϕ = −C[(1 − s)K0(qr) − (1 + s)K2(qr)], (A3)

ez = C
2q

β
K1(qr).

Here the parameter s is defined as

s = 1/h2a2 + 1/q2a2

J ′
1(ha)/haJ1(ha) + K ′

1(qa)/qaK1(qa)
. (A4)

The parameter C is the normalization coefficient. We take C to
be a positive real number and use the normalization condition∫ 2π

0
dϕ

∫ ∞

0
n2

ref |e|2r dr = 1. (A5)

Here nref(r) = n1 for r < a, and nref(r) = n2 for r > a. We
note that the axial component ez is significant in the case of
nanofibers [7]. This makes guided modes of nanofibers very
different from plane-wave modes of the field in free space
and from guided modes of conventional (weakly guiding)
fibers [7,41].

We label quasicircularly polarized fundamental guided
modes HE11 by using a mode index μ = (ω,f,l), where ω is
the mode frequency, f = +1 or −1 (or simply + or −) denotes
the forward (+ẑ) or backward (−ẑ) propagation direction,
respectively, and l = +1 or −1 (or simply + or −) denotes
the counterclockwise or clockwise circulation, respectively,
of the transverse component of the polarization around the
axis +ẑ. In the cylindrical coordinates, the components of the
profile function e(μ)(r) of the electric part of the quasicircularly
polarized fundamental guided mode μ are given by

e(μ)
r = er ,

e(μ)
ϕ = leϕ, (A6)

e(μ)
z = f ez.

Consequently, the profile function of the quasicircularly
polarized mode (ω,f,l) can be written as

e(ωf l) = r̂e(ωf l)
r + ϕ̂e(ωf l)

ϕ + ẑe(ωf l)
z

= r̂er + lϕ̂eϕ + f ẑez, (A7)
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where the notations

r̂ = x̂ cos ϕ + ŷ sin ϕ,
(A8)

ϕ̂ = −x̂ sin ϕ + ŷ cos ϕ,

and ẑ stand for the unit basis vectors of the cylindrical
coordinate system {r,ϕ,z}. Here x̂ and ŷ are the unit basis
vectors of the Cartesian coordinate system for the fiber
transverse plane xy.

We note that expression (A7) for the mode profile function
e(ωf l) does not include the phase factor eifβz+ilϕ , which is
present in the full expression for the electric part of the guided
field in a quasicircularly polarized mode. Indeed, the electric
part E (ωf l)

circ of the guided field in the quasicircularly polarized
mode (ω,f,l) is given by [41]

E (ωf l)
circ = A(r̂er + lϕ̂eϕ + f ẑez)e

ifβz+ilϕ, (A9)

where the coefficient A is determined by the power of the field.
Quasilinearly polarized guided modes are linear superposi-

tions of quasicircularly polarized guided modes. The electric
part E (ωf ϕ0)

lin of the guided field in a quasilinearly polarized
mode (ω,f,ϕ0) is given by [41]

E (ωf ϕ0)
lin = 1√

2

(
E (ωf +)

circ e−iϕ0 + E (ωf −)
circ eiϕ0

)
, (A10)

where the angle ϕ0 determines the orientation of the principal
component of the polarization of the guided field in the
fiber transverse plane. In particular, the angle ϕ0 = 0 or π/2
specifies the principal direction x or y of the polarization
vector in the fiber transverse plane, respectively. In terms of
the components er , eϕ , and ez of the profile function of the
quasicircularly polarized guided modes, we can rewrite E (ωf ϕ0)

lin
as

E (ωf ϕ0)
lin =

√
2A[r̂er cos(ϕ − ϕ0) + iϕ̂eϕ sin(ϕ − ϕ0)

+ f ẑez cos(ϕ − ϕ0)]eifβz. (A11)

Hence, we have

E (ωf ϕ0)
lin = Ae(ωf ϕ0)eifβz, (A12)

where

e(ωf ϕ0) = 1√
2

(e(ωf +)ei(ϕ−ϕ0) + e(ωf −)e−i(ϕ−ϕ0))

=
√

2[r̂er cos(ϕ − ϕ0) + iϕ̂eϕ sin(ϕ − ϕ0)

+ f ẑez cos(ϕ − ϕ0)] (A13)

is the profile function of the quasilinearly polarized guided
mode (ω,f,ϕ0).

In particular, the profile functions of quasilinearly polarized
modes (ω,f,ξ ), where ξ = x or y, are given by

e(ωf x) = 1√
2

(e(ωf +)eiϕ + e(ωf −)e−iϕ),

(A14)

e(ωfy) = 1

i
√

2
(e(ωf +)eiϕ − e(ωf −)e−iϕ).

In terms of the functions er , eϕ , and ez, the profile functions
e(ωf x) and e(ωfy) can be expressed as

e(ωf x) =
√

2(r̂er cos ϕ + iϕ̂eϕ sin ϕ + f ẑez cos ϕ),
(A15)

e(ωfy) =
√

2(r̂er sin ϕ − iϕ̂eϕ cos ϕ + f ẑez sin ϕ).

We introduce the notations V0 = Vz and V±1 = ∓(Vx ±
iVy)/

√
2 for the spherical tensor components of an arbitrary

vector V. Due to the properties of the guided-mode profile
functions [41], we can represent the spherical tensor compo-
nents e

(ωf l)
q of the profile function e(ωf l) of the quasicircularly

polarized guided mode (ω,f,l) in the form

e(ωf l)
q = f 1+qeiq(ϕ−π/2)|eql |. (A16)

Here we have introduced the notations

|e0| = |ez|,
|e+1| = |er | − |eϕ|√

2
, (A17)

|e−1| = |er | + |eϕ|√
2

.

We now examine the coefficients of spontaneous emission
from a multilevel atom in the vicinity of a nanofiber into the
guided modes. We use the notations |e〉 and |g〉 for the magnetic
sublevels of the atom. According to Ref. [40], the spontaneous
emission from the atom into the guided modes of the nanofiber
affects the evolution of the reduced density matrix of the atom
through the set of decay coefficients

γ
(gyd)
ee′gg′ = 2π

∑
f

∑
l=±

Gω0f legG
∗
ω0f le′g′

= 2π
∑
f

∑
ξ=x,y

Gω0f ξegG
∗
ω0f ξe′g′ ,

(A18)
γ

(gyd)
ee′ = 2π

∑
f

∑
l=±

∑
g

Gω0f legG
∗
ω0f le′g

= 2π
∑
f

∑
ξ=x,y

∑
g

Gω0f ξegG
∗
ω0f ξe′g.

Here the coefficients

Gωf leg =
√

ωβ ′

4πε0�
(deg · e(ωf l))ei(fβz+lϕ) (A19)

with l = + or − characterize the coupling of the atomic
transitions |e〉 ↔ |g〉 with the quasicircularly polarized guided
modes (ω,f,l), while the coefficients

Gωf ξeg =
√

ωβ ′

4πε0�
(deg · e(ωf ξ ))eifβz (A20)

with ξ = x or y characterize the coupling of the atomic
transitions |e〉 ↔ |g〉 with the quasilinearly polarized guided
modes (ω,f,ξ ). The notation β ′ stands for the derivative of
the propagation constant β with respect to the frequency ω.
The notation deg stands for the atomic dipole matrix element,
which may be a complex vector.
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We have the relations

Gωf xeg = 1√
2

(Gωf +eg + Gωf −eg),

(A21)

Gωfyeg = 1

i
√

2
(Gωf +eg − Gωf −eg),

which lead to

γ
(f x)
ee′gg′ = 1

2

(
γ

(f +)
ee′gg′ + γ

(f −)
ee′gg′ + γ

(f +f −)
ee′gg′ + γ

(f −f +)
ee′gg′

)
,

(A22)
γ

(fy)
ee′gg′ = 1

2

(
γ

(f +)
ee′gg′ + γ

(f −)
ee′gg′ − γ

(f +f −)
ee′gg′ − γ

(f −f +)
ee′gg′

)
,

and

γ
(f x)
ee′ = 1

2

(
γ

(f +)
ee′ + γ

(f −)
ee′ + γ

(f +f −)
ee′ + γ

(f −f +)
ee′

)
,

(A23)
γ

(fy)
ee′ = 1

2

(
γ

(f +)
ee′ + γ

(f −)
ee′ − γ

(f +f −)
ee′ − γ

(f −f +)
ee′

)
.

Here we have introduced the notations

γ
(fp)
ee′gg′ = γ

(fpfp)
ee′gg′ , γ

(fp)
ee′ = γ

(fpfp)
ee′ , (A24)

where

γ
(fpf ′p′)
ee′gg′ = 2πGω0fpegG

∗
ω0f ′p′e′g′ ,

(A25)
γ

(fpf ′p′)
ee′ =

∑
g

γ
(fpf ′p′)
ee′gg .

We introduce the notations

γ
(f )
ee′gg′ = γ

(f x)
ee′gg′ + γ

(fy)
ee′gg′ = γ

(f +)
ee′gg′ + γ

(f −)
ee′gg′ ,

(A26)
γ

(f )
ee′ = γ

(f x)
ee′ + γ

(fy)
ee′ = γ

(f +)
ee′ + γ

(f −)
ee′ .

We find the relations

γ
(gyd)
ee′gg′ = γ

(+)
ee′gg′ + γ

(−)
ee′gg′ ,

(A27)
γ

(gyd)
ee′ = γ

(+)
ee′ + γ

(−)
ee′ .

According to Eq. (4), only one spherical tensor component
d

(q)
eg ≡ (deg)q of the dipole vector deg , with q = Me − Mg =

−1, 0, or 1, is nonzero. Hence, we obtain the formula

Gωf leg = f 1+qe−iqπ/2eifβzei(l−q)ϕ

√
ωβ ′

4πε0�
d (q)

eg |e−ql |. (A28)

For the opposite propagation directions f and f̄ = −f , we
find the relation

Gωf leg = (−1)1+Me−Mge2ifβzGωf̄ leg, (A29)

which yields

Gωf legG
∗
ωf l′e′g′ = (−1)Me−Me′−Mg+Mg′ Gωf̄ legG

∗
ωf̄ l′e′g′ .

(A30)

Hence, for the spontaneous emission coefficients γ
(fpfp′)
ee′ ,

given by Eq. (9), we find the relation

γ
(fpfp′)
ee′ = (−1)Me−Me′ γ

(f̄ pf̄ p′)
ee′ . (A31)

In particular, for the coefficients γ
(fp)
ee′ = γ

(fpfp)
ee′ , we obtain

the relation

γ
(fp)
ee′ = (−1)Me−Me′ γ

(f̄ p)
ee′ . (A32)

We set l = l′ in Eq. (A30) and then apply the summations
over f and l. Then, we find the relation

γ
(gyd)
ee′gg′ = (−1)Me−Me′ −Mg+Mg′ γ

(gyd)
ee′gg′, (A33)

which yields

γ
(gyd)
ee′ = (−1)Me−Me′ γ

(gyd)
ee′ . (A34)

It follows from Eq. (A34) that

γ
(gyd)
e,e±1 = 0. (A35)

From Eq. (A16), we find

e(ωf l)
q = (−1)qe2iqϕe

(ωf l̄)
−q , (A36)

where l̄ = −l. On the other hand, when we use the properties
of the Clebsch-Gordan coefficients and Eq. (4), we find

d (q)
eg = (−1)F−F ′+1d

(q̄)
ēḡ , (A37)

where ē and ḡ are the levels |F ′,−Me〉 and |F,−Mg〉,
respectively, q = Me − Mg , and q̄ = −q. Then, we obtain the
relation

Gωf leg = (−1)F−F ′+1+Me−Mge−2i(Me−Mg−l)ϕGωf l̄ēḡ, (A38)

which leads to

Gωf legG
∗
ωf ′l′eg = e2i(l−l′)ϕGωf l̄ēḡG

∗
ωf ′ l̄′ ēḡ , (A39)

Gωf legG
∗
ωf l′e′g = (−1)Me−Me′ e−2i(Me−Me′ −l+l′)ϕ

× Gωf l̄ēḡG
∗
ωf l̄′ ē′ḡ , (A40)

and

Gωf legG
∗
ωf le′g′ = e−i(Me−Me′ −Mg+Mg′ )(2ϕ−π)

× Gωf l̄ēḡG
∗
ωf l̄ē′ḡ′ . (A41)

When we apply the summation over g to Eq. (A40), we find
the relation

γ
(f lf l′)
ee′ = (−1)Me−Me′ e−2i(Me−Me′−l+l′)ϕγ

(f l̄f l̄′)
ēē′ , (A42)

which yields

γ
(f l)
ee′ = e−i(Me−Me′ )(2ϕ−π)γ

(f l̄)
ēē′ . (A43)

When we take into account the relation (A32), we obtain

γ
(f l)
ee′ = e−2i(Me−Me′ )ϕγ

(f̄ l̄)
ēē′ . (A44)

We apply the summations over f and l to Eq. (A41) and use
the property (A33) to simplify the result. Then, we obtain the
relation

γ
(gyd)
ee′gg′ = e−2i(Me−Me′ −Mg+Mg′ )ϕγ

(gyd)
ēē′ḡḡ′ , (A45)

which leads to

γ
(gyd)
ee′ = e−2i(Me−Me′ )ϕγ

(gyd)
ēē′ . (A46)

It follows from Eq. (A28) that the complex number
Gωf legG

∗
ωf l′e′g and its complex conjugate are related to each

other as

Gωf legG
∗
ωf l′e′g′ = (−1)Me−Me′−Mg+Mg′ e2i(l−l′−Me+Me′ +Mg−Mg′ )ϕ

× G∗
ωf legGωf l′e′g′ . (A47)
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When we set l = l′ in Eq. (A47), apply the summations over
f and l, and use the property (A33) to simplify the result, we
obtain the relation

γ
(gyd)
ee′gg′ = e−2i(Me−Me′−Mg+Mg′ )ϕγ

(gyd)∗
ee′gg′ , (A48)

which yields

γ
(gyd)
ee′ = e−2i(Me−Me′ )ϕγ

(gyd)∗
ee′ . (A49)

When we set g = g′ in Eq. (A47) and apply the summation
over g, we get the relation

γ
(f lf l′)
ee′ = (−1)Me−Me′ e2i(l−l′−Me+Me′ )ϕγ

(f lf l′)∗
ee′ , (A50)

which leads to

γ
(f l)
ee′ = e−i(Me−Me′ )(2ϕ−π)γ

(f l)∗
ee′ . (A51)

APPENDIX B: RADIATION MODES OF A NANOFIBER

For the radiation modes, we have −kn2 < β < kn2. The
characteristic parameters for the field in the inside and
outside of the fiber are h =

√
k2n2

1 − β2 and q =
√

k2n2
2 − β2 ,

respectively. The mode functions of the electric parts of the
radiation modes ν = (ωβml) [41] are given, for r < a, by

e(ν)
r = i

h2

[
βhAJ ′

m(hr) + im
ωμ0

r
BJm(hr)

]
,

e(ν)
ϕ = i

h2

[
im

β

r
AJm(hr) − hωμ0BJ ′

m(hr)

]
, (B1)

e(ν)
z = AJm(hr),

and, for r > a, by

e(ν)
r = i

q2

∑
j=1,2

[
βqCjH

(j )′
m (qr) + im

ωμ0

r
DjH

(j )
m (qr)

]
,

e(ν)
ϕ = i

q2

∑
j=1,2

[
im

β

r
CjH

(j )
m (qr) − qωμ0DjH

(j )′
m (qr)

]
,

e(ν)
z =

∑
j=1,2

CjH
(j )
m (qr). (B2)

Here A and B as well as Cj and Dj with j = 1,2 are
coefficients. The coefficients Cj and Dj are related to the
coefficients A and B as [48]

Cj = (−1)j
iπq2a

4n2
2

(ALj + iμ0cBVj ),

(B3)

Dj = (−1)j−1 iπq2a

4
(iε0cAVj − BMj ),

where

Vj = mkβ

ah2q2

(
n2

2 − n2
1

)
Jm(ha)H (j )∗

m (qa),

Mj = 1

h
J ′

m(ha)H (j )∗
m (qa) − 1

q
Jm(ha)H (j )∗′

m (qa), (B4)

Lj = n2
1

h
J ′

m(ha)H (j )∗
m (qa) − n2

2

q
Jm(ha)H (j )∗′

m (qa).

We specify two polarizations by choosing B = iηA and B =
−iηA for l = + and l = −, respectively. We take A to be a

real number. The orthogonality of the modes requires∫ 2π

0
dϕ

∫ ∞

0
n2

ref[e
(ν)e(ν ′)∗]β=β ′,m=m′ rdr

= Nνδll′δ(ω − ω′). (B5)

This leads to

η = ε0c

√
n2

2|Vj |2 + |Lj |2
|Vj |2 + n2

2|Mj |2
. (B6)

The constant Nν is given by

Nν = 8πω

q2

(
n2

2|Cj |2 + μ0

ε0
|Dj |2

)
. (B7)

We use the normalization Nν = 1.
We have the following symmetry relations:

e(ω,β,m,l)
r = −e(ω,−β,m,−l)

r ,

e(ω,β,m,l)
ϕ = −e(ω,−β,m,−l)

ϕ , (B8)

e(ω,β,m,l)
z = e(ω,−β,m,−l)

z ,

e(ω,β,m,l)
r = (−1)me(ω,β,−m,−l)

r ,

e(ω,β,m,l)
ϕ = (−1)m+1e(ω,β,−m,−l)

ϕ , (B9)

e(ω,β,m,l)
z = (−1)me(ω,β,−m,−l)

z ,

and

e(ν)∗
r = −e(ν)

r , e(ν)∗
ϕ = e(ν)

ϕ , e(ν)∗
z = e(ν)

z . (B10)

For the spherical tensor components e
(ω,β,m,l)
q , with the index

q = 0,±1, of the radiation mode functions, we find the
relations

e(ωβml)
q = (−1)qe(ωβ̄ml̄)

q , (B11)

e(ωβml)
q = (−1)m+qe2iqϕe

(ωβm̄l̄)
−q , (B12)

and

e(ωβml)
q = (−1)qe2iqϕe(ωβml)∗

q . (B13)

Here we have introduced the notations β̄ = −β, m̄ = −m, and
l̄ = −l.

We now examine the coefficients of spontaneous emission
from a multilevel atom in the vicinity of a nanofiber into
the radiation modes. We use the notations |e〉 and |g〉 for
the magnetic sublevels of a multilevel atom in the vicinity
of the nanofiber. According to Ref. [40], the spontaneous
emission from the atom into the radiation modes of the
nanofiber affects the evolution of the atomic reduced density
matrix through the set of decay coefficients

γ
(rad)
ee′gg′ = 2π

∑
ml

∫ k0n2

−k0n2

dβ Gν0egG
∗
ν0e′g′ ,

(B14)

γ
(rad)
ee′ = 2π

∑
mlg

∫ k0n2

−k0n2

dβ Gν0egG
∗
ν0e′g.
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Here ν0 = (ω0,β,m,l) labels resonant radiation modes and

Gνeg =
√

ω

4πε0�
(deg · e(ν))ei(βz+mϕ) (B15)

characterizes the coupling of the atomic transition |e〉 ↔ |g〉
with the radiation mode ν = (ω,β,m,l).

It follows from the property (B11) that the coupling
coefficients Gνeg = Gωβmleg satisfy the relation

Gωβmleg = (−1)Me−Mge2iβzGωβ̄ml̄eg, (B16)

which leads to

GωβmlegG
∗
ωβmle′g′

= (−1)Me−Me′−Mg+Mg′ Gωβ̄ml̄egG
∗
ωβ̄ml̄e′g′ . (B17)

When we apply the integration over β and the summations
over m and l to Eq. (B17), we find the relation

γ
(rad)
ee′gg′ = (−1)Me−Me′−Mg+Mg′ γ

(rad)
ee′gg′ , (B18)

which yields

γ
(rad)
ee′ = (−1)Me−Me′ γ

(rad)
ee′ . (B19)

It follows from Eq. (B19) that

γ
(rad)
e,e±1 = 0. (B20)

When we use Eqs. (A37) and (B12), we find from
expression (B15) the relation

Gωβmleg = (−1)F−F ′+1e−i(Me−Mg−m)(2ϕ−π)Gωβm̄l̄ēḡ, (B21)

which leads to

GωβmlegG
∗
ωβmle′g′ = e−i(Me−Me′ −Mg+Mg′ )(2ϕ−π)

× Gωβm̄l̄ēḡG
∗
ωβm̄l̄ē′ḡ′ . (B22)

We apply the integration over β and the summations over m

and l to Eq. (B22) and use the property (B18) to simplify the
result. Then, we find the relation

γ
(rad)
ee′gg′ = e−2i(Me−Me′ −Mg+Mg′ )ϕγ

(rad)
ēē′ḡḡ′ (B23)

and, hence,

γ
(rad)
ee′ = e−2i(Me−Me′ )ϕγ

(rad)
ēē′ . (B24)

It follows from Eq. (B13) and expression (B15) that the
coupling coefficient Gνeg and its complex conjugate are related
to each other as

Gνeg = e−iq(2ϕ−π)e2i(βz+mϕ)G∗
νeg. (B25)

Hence, we have

GνegG
∗
νe′g′ = e−i(Me−Me′ −Mg+Mg′ )(2ϕ−π)G∗

νegGνe′g′ . (B26)

We apply the summation over ν (i.e., the integration over β

and the summations over m and l) to Eq. (B26) and use the
property (B18) to simplify the result. Then, we find the relation

γ
(rad)
ee′gg′ = e−2i(Me−Me′ −Mg+Mg′ )ϕγ

(rad)∗
ee′gg′ . (B27)
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