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Radiative transfer equation for media with spatially varying refractive index
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The radiative transfer equation is fundamental to multiple physical applications based on light propagation.
There have been three different formulations of the radiative transfer equation for media with spatially varying
refractive index. Because the radiative transfer equation demonstrates macroscopic phenomena of radiation, the
intensity law from geometric optics has been used to validate these formulations of radiative transfer equations.
We review the different formulations and compute the steady-state intensity for each of the radiative transfer
equations in a nonabsorption and nonscattering medium with a spatially variant refraction index without light
sources. By checking each one of the intensities with the intensity law from geometric optics, we find that there
is only one formulation that is consistent with the intensity law of geometric optics.
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The radiative transfer equation has found its applications
in astrophysics, atmospheric science, biomedical optics, etc.
[1–3]. It describes how light propagates through random media
via photon packets [4,5]. It is based on the conservation of
radiant energy underlying the processes such as absorption,
emission, scattering, and refraction, while propagating through
random media. Although these processes are due to interac-
tions at the quantum level, they are observable and hence
demonstrate macroscopic phenomena of radiation. Therefore,
the radiative transfer equation is at the intermediate mesoscale
for the radiation phenomena in random media.

Although the interactions due to absorption, emission, and
scattering are well understood at this mesoscopic level, the
interaction of refraction is not. There are currently three
different versions of radiative transfer equations involving
refraction for nonhomogeneous media, though these equations
reduce to the same equation for homogeneous media with
constant refraction indices [6–12]. Because the radiative
transfer equation demonstrates macroscopic phenomena of
radiation, the intensity law from geometric optics has been
used to validate these different formulations [13,14]. We will
remark on the approaches in Refs. [13,14].

In this paper we aim to validate the three formulations of
radiative transfer equations by checking each one of them with
the intensity law of geometric optics. This is done by finding
the steady-state specific intensity for each of the radiative trans-
fer equations in a nonabsorption and nonscattering medium
with a spatially variant refraction index without light sources.
Then the intensity is computed from the specific intensity and
checked if it is consistent with the intensity law of geometric
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optics, for each formulation. We consider only the typical case
for monochromatic light propagation in this paper. It is found
that the radiative transfer equations from Refs. [10,12] lead to
an intensity that follows the intensity law of geometric optics
among those in Refs. [6–12]. The paper ends with relevant
discussions.

We begin with a review of the current formulations of
radiative transfer equations in random media with spatially
variant refraction indices. The fundamental quantity of radia-
tive transfer is the specific intensity L(r,�,t) in the phase space
R3 × S2, i.e., the radiant power flux density at position r ∈ R3,
direction � ∈ S2 (where S2 is the unit sphere), and time t .
Let the absorption coefficient and the scattering coefficient
be μa(r) and μs(r), respectively, in the volume. Then the
extinction coefficient is given by as μt = μa + μs . Let the
light source be ε(r,�,t), and the refractive index be n(r) inside
the volume. The radiative transfer equations in Refs. [6–12]
can be written in the form

n

c

∂L

∂t
+ � · ∇L + �

= ε − μtL + μs

∫
S2

p(�,�′)L(r,�′,t) d�′, (1)

where c is the light speed in vacuum, ∇ the gradient
with respect to position r, and p(�,�′) the phase function,
describing the probability of scattering from direction �′ to
�. The right-hand side of (1) is the accumulative change of
the specific intensity because of light sources, absorption,
and scattering. The term � on the left-hand side is the
streaming term, different among the three formulations from
Refs. [6–12], which describes the changes of the specific
intensity because of refraction. In the following, we label the
three different formulations of the radiative transfer equations
as RTE1, RTE2, and RTE3. Their corresponding streaming
terms �1, �2, and �3 are given, respectively, as follows:
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FIG. 1. (Color online) The specific intensity (left) and inten-
sity (right) at two points along the ray path with arc lengths s

and s ′, respectively. At s and s ′, the transverse sections are δA(s)
and δA(s ′), respectively; the solid angle elements (in blue) are
δ�(s) and δ�(s ′), respectively.

RTE1 ([6,8,11]):

�1 = 1

n
[∇n − (∇n · �)�] · ∇�L − 2

n
(∇n · �)L, (2)

RTE2 ([7,9]):

�2 = 1

n
[∇n − (∇n · �)�] · ∇�L + �L, (3)

RTE3 ([10,12]):

�3 = 1

n
[∇n − (∇n · �)�] · ∇�L − 2

n
(∇n · �)L + �L.

(4)

In the above equations, ∇� is the gradient with respect
to direction �, and � is the so-called ray divergence to
be explained below. As can be seen, three terms are used
to describe the change of the specific intensity because of
refraction. The first term, 1

n
[∇n − (∇n · �)�] · ∇�L, is due

to the differential change of the specific intensity along a ray
path, which is the same in the three formulations. The second
term, − 2

n
(� · ∇n)L, is due to the change of the directional

differential along the ray path, which is in RTE1 and RTE3 but
not in RTE2. The third term �L is the ray divergence term
due to the refractive variation of the transverse section of a
ray tube along the ray path; see Fig. 1. It is given by zero in
Refs. [6,8,11]. In Ref. [10] the ray divergence � is given by

� = 1

R1(s)
+ 1

R2(s)
, (5)

where R1(s) and R2(s) are the principle radii of curvatures of
the wave front, with s being the arc length of the ray path. In
Refs. [9,12] the ray divergence � is given by

� = ∇2S
n

− � · ∇n

n
, (6)

where S is the eikonal for the eikonal equation [15], [p. 119,
Eq. (15a)]:

|∇S|2 = n2. (7)

It can be shown that Eq. (5) and Eq. (6) give the same result
for the ray divergence.

Next we are to find the steady-state specific intensity
solution for the radiative transfer equations RTE1, RTE2, and
RTE3 in a nonabsorption and nonscattering medium with a
spatially variant refraction index without light sources. The
three radiative transfer equations reduce to

� · ∇L + �i = 0, (8)

for i = 1,2,3. Light propagates as a collection of photon
packets streaming along ray paths. Now consider a ray path
parameterized by its arc length s. Along this ray path, the
position r and direction � of light are functions of the arc
length s, by the following equations:

dr
ds

= �, (9)

d�

ds
= 1

n
[∇n − �(� · ∇n)] . (10)

See, for example, [Ref. 4], [Eqs. (5.30) and (5.32), p. 148].
Thus, on the ray path, L can be written as a function of the arc
length by L(s) = L(r(s),�(s)). In the following, we solve the
specific intensity on the ray path from Eq. (8) for RTE1, RTE2,
and RTE3, respectively, given the specific intensity L(s0) at a
point s0 on the ray path. We need the following two equations to
reduce the radiative transfer equations. By direct computation,
we have

n2� · ∇
(

L

n2

)
= � · ∇L − 2

n
(� · ∇n)L, (11)

and because the refractive index n is independent of the
direction variable �, we find

n2∇�

(
L

n2

)
= ∇�L. (12)

RTE1: Substituting �1 in Eq. (2) into Eq. (8), we obtain
RTE1 in the following form:

� · ∇L − 2

n
(� · ∇n)L + 1

n
[∇n − �(� · ∇n)] · ∇�L

= 0. (13)

By Eqs. (11) and (12), Eq. (13) becomes

n2� · ∇
(

L

n2

)
+ 1

n
[∇n − �(� · ∇n)] · n2∇�

(
L

n2

)
= 0. (14)

Dividing both sides of Eq. (14) by n2, by Eqs. (9) and
(10), yields

dr
ds

· ∇
(

L

n2

)
+ d�

ds
· ∇�

(
L

n2

)
= 0. (15)

By the chain rule of differentiation, Eq. (15) reduces to

d

ds

(
L

n2

)
= 0. (16)

The specific intensity L for RTE1 along the ray path is
then given by

L(s) = n2(s)

n2(s0)
L(s0). (17)
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RTE2: Substituting �2 in Eq. (3) into Eq. (8), we obtain
RTE2 in the following form:

� · ∇L + 1

n
[∇n − �(� · ∇n)] · ∇�L + �L = 0.

(18)
By using Eq. (9) and Eq. (10), Eq. (18) becomes

dL

ds
+ �L = 0. (19)

The specific intensity L for RTE2 along the ray path is
then given by

L(s) = L(s0) exp

(
−

∫ s

s0

�ds

)
. (20)

RTE3: Substituting �3 in Eq. (4) into Eq. (8), we obtain
RTE3 in the following form:

� · ∇L + 1

n
[∇n − �(� · ∇n)]

· ∇�L − 2

n
(� · ∇n)L + �L = 0. (21)

It has one more term, the ray divergence term �L,
than Eq. (13). Similarly, we can reduce Eq. (21) to the
following form:

d

ds

(
L

n2

)
+ �

L

n2
= 0. (22)

The specific intensity L for RTE3 along the ray path is
then given by

L(s) = n2(s)

n2(s0)
L(s0) exp

(
−

∫ s

s0

�ds

)
. (23)

Note that Eq. (23) has been obtained in Ref. [10] by using
Eq. (5).

We proceed to compute the intensity from Eq. (17), Eq. (20),
and Eq. (23). The intensity I (r) is the radiant power flux
density at a position r, i.e., the (time average) amount of
radiant energy per unit time through a unit area perpendicular
to the propagation direction. Along the ray path, the intensity
is a function of the arc length, I (r(s)) = I (s). Let δA(s) be
the transverse section of the ray tube at s. It is in the order
of the wavelength. Let δ�(s) be the solid angle element
at r(s) surrounding �(s). The intensity I (s) is equal to
the illumination δE(s) onto the surface element δA(s) [15],
[p. 195, footnote]. Because the illumination δE(s) and the
specific intensity L(s) = L(r(s),�(s)) have the following
relationship [15], [p. 195, Eq. (5)]:

δE(s) = L(s)δ�(s), (24)

the intensity I (s) and the specific intensity L(s), as shown in
Fig. 1, satisfy

I (s) = L(s)δ�(s). (25)

To find the steady-state intensity for each of the radiative
transfer equations, we need the following theorem about the
variation of the solid angle element δ�(s) along the ray path.

Theorem 1. Along a ray path, at the initial point s0, given an
element δ�(s0) of the solid angle surrounding �(s0), the solid

angle element at s surrounding �(s) is

δ�(s) = n2(s0)

n2(s)
δ�(s0), (26)

which holds to the first order of the differential element of the
solid angle.

Proof. Let d�(s0) and d�(s) be the differential elements
of the solid angle surrounding, respectively, �(s0) and �(s).
The variation of d�(s) along the ray path has been studied in
Refs. [6,8,10,12] and is given by

d

ds
(d�) = −2

n
(� · ∇n) d�. (27)

By Eq. (9), we obtain

d

ds
(d�) + 2

n

(
dr
ds

· ∇n

)
d� = 0. (28)

By the chain rule of differentiation, it follows that

dr
ds

· ∇n = dn

ds
. (29)

Therefore, Eq. (28) reduces to

d

ds
(d�) + 2

n

dn

ds
d� = 0. (30)

Multiplying n2 on both sides and applying the chain rule of
differentiation again yields

d

ds
(n2d�) = 0. (31)

Hence n2(s)d�(s) = n2(s0)d�(s0), and it follows that

d�(s) = n2(s0)

n2(s)
d�(s0). (32)

Now we approximate the solid angle element δ� by the
differential element d� of the solid angle, at, respectively,
s and s0. This is a first order approximation. With Eq. (32),
then we immediately obtain

δ�(s) = n2(s0)

n2(s)
δ�(s0). (33)

�
Then we multiply both sides of Eq. (17), Eq. (20), and
Eq. (23), respectively, with δ�(s), and apply Theorem 1.
We obtain the following intensity solutions from the three
steady-state radiative transfer equations RTE1, RTE2, and
RTE3, respectively, as follows:
RTE1:

L(s)δ�(s) (34)

= n2(s)

n2(s0)
L(s0)δ�(s) (35)

= n2(s)

n2(s0)
L(s0)

n2(s0)

n2(s)
δ�(s0) (36)

= L(s0)δ�(s0). (37)

By Eq. (25), the intensity at r(s) is

I (s) = I (s0). (38)
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RTE2:

L(s)δ�(s) (39)

= L(s0) exp

(
−

∫ s

s0

�ds

)
δ�(s) (40)

= L(s0) exp

(
−

∫ s

s0

�ds

)
n2(s0)

n2(s)
δ�(s0) (41)

= n2(s0)

n2(s)
L(s0) exp

(
−

∫ s

s0

�ds

)
δ�(s0). (42)

By Eq. (25), the intensity at r(s) is

I (s) = n2(s0)

n2(s)
I (s0) exp

(
−

∫ s

s0

�ds

)
. (43)

RTE3:

L(s)δ�(s) (44)

= n2(s)

n2(s0)
L(s0) exp

(
−

∫ s

s0

�ds

)
δ�(s) (45)

= n2(s)

n2(s0)
L(s0) exp

(
−

∫ s

s0

�ds

)
n2(s0)

n2(s)
δ�(s0) (46)

= L(s0) exp

(
−

∫ s

s0

�ds

)
δ�(s0). (47)

By Eq. (25), the intensity at r(s) is

I (s) = I (s0) exp

(
−

∫ s

s0

�ds

)
. (48)

Finally, we check if the intensity solutions in Eq. (38),
Eq. (43), and Eq. (48), respectively, from the three steady-
state radiative transfer equations RTE1, RTE2, and RTE3, are
consistent with the intensity law of geometric optics. By the
intensity law of geometric optics [15, p. 125, Eq. (40)], the
intensity ratio

I (s)

I (s0)
= n(s)

n(s0)
exp

(
−

∫ s

s0

∇2S
n

ds

)
, (49)

where S is the eikonal. For RTE2 and RTE3, we compute the
exponential integral of the ray divergence � by Eq. (6) as

follows:

exp

(
−

∫ s

s0

�ds

)
= exp

(
−

∫ s

s0

∇2S
n

− � · ∇n

n
ds

)
.

(50)

Because

exp

(∫ s

s0

� · ∇n

n
ds

)
= exp

(∫ s

s0

dn
ds

n
ds

)
= n(s)

n(s0)
, (51)

we have

exp

(
−

∫ s

s0

�ds

)
= n(s)

n(s0)
exp

(
−

∫ s

s0

∇2S
n

ds

)
. (52)

By Eq. (38), Eq. (43), and Eq. (48), the intensity ratios from
the three steady-state radiative transfer equations RTE1, RTE2,
and RTE3 are the following, respectively:
RTE1:

I (s)

I (s0)
= 1, (53)

RTE2

I (s)

I (s0)
= n(s0)

n(s)
exp

(
−

∫ s

s0

∇2S
n

ds

)
, (54)

RTE3

I (s)

I (s0)
= n(s)

n(s0)
exp

(
−

∫ s

s0

∇2S
n

ds

)
. (55)

It can be seen that only the intensity ratio in Eq. (55) from
RTE3 is consistent with the intensity law of geometric optics
in Eq. (49). This result is different from other work [13,14].
In Ref. [13], RTE2 is shown to be consistent with the intensity
law from geometric optics. In Refs. [13,14], the intensity is by
the average of the specific intensity, I = ∫

S2 L(r,�) d�, rather
than by Eq. (25). Thus the refractive variation of the solid angle
element along the ray path diminishes. In Ref. [14], under the
assumption that the specific intensity is peaked in one direc-
tion, the intensity is “defined as equal to the average diffuse
intensity.” The difference of our result from Refs. [13,14] is
because the difference of the intensity definition.

In conclusion, we find that only the radiative transfer
equation RTE3 is consistent with the intensity law of geometric
optics.

This work is supported in part by the National Basic
Research Program of China (973 Program) (Grant No.
2011CB809105) and the National Science Foundation of
China (Grants No. 61121002, No. 10990013, and No.
60325101).

[1] S. Chandrasekhar, Radiative Transfer (Dover Publications, New
York, 1960).

[2] A. Marshak and A. Davis, 3D Radiative Transfer in Cloudy
Atmospheres (Springer, Berlin, 2005).

[3] S. R. Arridge and J. C. Schotland, Inverse Probl. 25, 123010
(2009).

[4] G. C. Pomraning, The Equations of Radiation Hydrodynamics
(Pergamon Press, New York, 1973).

[5] A. Ishimaru, Wave Propagation and Scattering in Random
Media (Academic Press, New York, 1978).

[6] G. C. Pomraning, Astrophys. J. 153, 321 (1968).
[7] H. A. Ferwerda, J. Optics A 1, L1 (1999).

023803-4

http://dx.doi.org/10.1088/0266-5611/25/12/123010
http://dx.doi.org/10.1088/0266-5611/25/12/123010
http://dx.doi.org/10.1088/0266-5611/25/12/123010
http://dx.doi.org/10.1088/0266-5611/25/12/123010
http://dx.doi.org/10.1086/149664
http://dx.doi.org/10.1086/149664
http://dx.doi.org/10.1086/149664
http://dx.doi.org/10.1086/149664
http://dx.doi.org/10.1088/1464-4258/1/3/001
http://dx.doi.org/10.1088/1464-4258/1/3/001
http://dx.doi.org/10.1088/1464-4258/1/3/001
http://dx.doi.org/10.1088/1464-4258/1/3/001


RADIATIVE TRANSFER EQUATION FOR MEDIA WITH . . . PHYSICAL REVIEW A 90, 023803 (2014)

[8] J.-M. Tualle and E. Tinet, Opt. Commun. 228, 33 (2003).
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