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We theoretically investigate the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional
optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an
effective model is derived. The bare hopping coefficients are renormalized by zeroth-order Bessel functions of the
first kind with different arguments for the nearest-neighbor and next-nearest-neighbor hopping. The insulating
behavior characterizing the system at half filling in the absence of driving is dynamically suppressed, and for
particular values of the driving parameter the system becomes either a standard metal or an unconventional metal
with four Fermi points. The existence of the four-Fermi-point metal relies on the fact that, as a consequence
of the shaking procedure, the next-nearest-neighbor hopping coefficients become significant compared to the
nearest-neighbor ones. We use the bosonization technique to investigate the effect of on-site Hubbard interactions
on the four-Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the
regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it.
This metallic phase is known to be a Luther-Emery liquid (spin-gapped metal) for both repulsive and attractive
interactions, contrary to the usual Hubbard model, which exhibits a Mott-insulator phase for repulsive interactions.
Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the
realization of this long-studied four-Fermi-point unconventional metal.
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I. INTRODUCTION

In recent years, cold atoms in optical lattices have become
a powerful tool for investigating quantum phase transitions
and realizing new and unconventional states of matter [1–
3]. Since the observation of the superfluid–Mott-insulator
(SF-MI) phase transition for the Bose-Hubbard model [4,5],
many models have been experimentally engineered and inves-
tigated with unprecedented control.

By introducing external time-dependent driving forces that
dynamically suppress the hopping, namely, by shaking the op-
tical lattice [6,7], the SF-MI phase transition has been achieved
without the need of controlling the lattice potential depth
[8–10]. Since then, the shaking technique has been employed
in many other experimental setups to realize, for instance,
classical magnetism [11], artificial gauge potentials in one
[12] and two [13] dimensions, and extended ferromagnetic
domains [14]; to control photon-assisted [15] and correlated
tunneling [16,17]; and to generate super Bloch oscillations [18]
and has inspired theoretical works that proposed schemes to
realize doublon-holon condensates [19], non-Abelian gauge
fields [20], density-dependent gauge potentials [21], and
correlated-hopping models [22].

The high freedom available for generating optical lattices
has also allowed playing with the lattice geometry and creating
bipartite lattices, which turned out to be a key ingredient to
achieve higher-band condensates [23–25], coherence control
[26], density-wave dynamics [27], and graphene-like physics
[28,29] and to measure the Zak phase characterizing topolog-
ical Bloch bands [30].

In condensed-matter systems, the model of correlated
electrons in bipartite lattices with staggered on-site potential,

known as the ionic Hubbard model, has been the subject of
intensive studies during the last few decades [31–39]. Initially,
the ionic Hubbard model was proposed to study organic
mixed-stack charge-transfer crystals [31], and later, it was used
to describe the ferroelectric transition in perovskite materials
[32]. Intensive interest in the study of the low-dimensional
versions of the ionic Hubbard model was motivated by the
extremely rich phase diagram of this model revealing, at half
filling, the possibility for the realization of the band-insulator
to Mott-insulator quantum phase transition with increasing
on-site Hubbard coupling via the sequence of unconventional
insulating and/or metallic phases [33–39].

A similar, but different, mechanism for the realization of
the band-insulating state in the one-dimensional half-filled
electron system was proposed by Peierls in the early 1930s via
the alternation in magnitude of the nearest-neighbor hopping
amplitude [40]. However, contrary to the ionic Hubbard model,
the behavior of the Peierls model smoothly depends on the
on-site Hubbard coupling, and no quantum phase transitions
are realized. Instead, one just finds a crossover from a band-
insulating phase at weak coupling into the spin-Peierls phase at
strong repulsive interaction [41–43]. Therefore, less attention
has been given to the search of quantum phase transitions in
the Peierls insulator.

In this paper, we study a driven one-dimensional (1D)
bipartite optical lattice half filled with fermionic atoms and
show that it is possible to drive (band) insulator to metal tran-
sitions by tuning the shaking parameter. Due to the presence of
the A-B sublattice characterized by nearest-neighbor hopping
coefficients alternating in magnitude, the half-filled system is a
Peierls insulator. Shaking the optical lattice at high frequencies
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leads to a model with effective hopping parameters, where the
bare value is multiplied by a Bessel function. Since the relevant
hopping parameters are renormalized in different ways, the
system realizes a large variety of quantum phases, such as
several metals characterized by a Fermi surface with four
Fermi points or two Fermi points and Peierls insulators with
direct or indirect gaps.

The paper is organized as follows. In Sec. II, we introduce
the bipartite optical potential that we study and show the lowest
two bands obtained by solving the corresponding Schrödinger
equation. In Sec. III we derive a minimal tight-binding model
describing the two lowest bands, discuss its symmetries, and
estimate its main parameters. In Sec. IV, the Floquet theory
is applied to the time-dependent problem of the driven optical
potential, and the effective Hamiltonian for the quasienergy
spectrum is derived. In Sec. V we discuss the quasienergy
spectrum as a function of the shaking parameter, and the
main scenarios are presented. In Sec. VI the half-filled phase
diagram is analyzed. In Sec. VII we comment on the effect of
on-site interactions, and in Sec. VIII we draw our conclusions.

II. OPTICAL POTENTIAL

We consider a one-dimensional optical potential of the form
[44]

V (x) = V1 sin2(qx) + V2 sin2(2qx + π/2), (1)

where V1,V2 > 0 and q = π/d, so that the periodicity of the
lattice is d. In Fig. 1 we show the shape of such a potential for
the choice of parameters V1 = 1Erec and V2 = 7Erec, where
Erec = �

2π2/2Md2 denotes the recoil energy of atoms with
mass M . The choice of the phase π/2 in the optical potential
ensures that the bottom of all the wells is at the same depth,
while the maxima alternate in height, thus leading to a bipartite
lattice. Therefore, the unit cell of the corresponding optical
lattice contains two sites, which we denote by A and B. We
introduce here a notation that will become useful later: since
the spacing between neighboring wells is not constant and is
alternating in length, we call the shortest distance 2al and the
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FIG. 1. (Color online) Potential profile for V1 = 1Erec and V2 =
7Erec. The main hopping coefficients used in the tight-binding model
are also displayed (see text). For this potential profile, one finds
l = 0.2443.

largest distance d − 2al, where a ≡ d/2 is now the average
distance between two neighboring wells.

The aim of this work is to study the optical potential (1)
subject to an external driving that periodically shifts the full
potential according to

x → x + x0 cos(ωτ ), (2)

with x0 being the maximum displacement and ω being the
frequency of the shaking. Recently, such a problem has been
studied for a single atom loaded in the lattice, focusing in
particular on the phenomenon of dynamical localization and
its consequences on the superfluid-Mott insulator transition
for an interacting gas of bosons [45]. In our work, we will
instead discuss the effect of the driving term on a system
of fermions, for which the presence of a Fermi surface has
dramatic consequences already at the noninteracting level.
This time-periodic shift of the potential can be realized, for
instance, by frequency modulation of the laser beams creating
the optical potential [6].

We now focus our attention on the potential (1) in the
absence of driving and leave the study of the time-dependent
problem to the second part of the present work. To calculate
the band structure, it is useful to rewrite the potential as

V (x) = −V1

4
(ei2qx + e−i2qx) + V2

4
(ei4qx + e−i4qx), (3)

where we have dropped an overall constant. The Schrödinger
equation for an atom in a space-periodic potential reads

[
− �

2

2M

∂2

∂x2
+ V (x)

]
ψnk(x) = εn(k)ψnk(x), (4)

with ψnk(x) = eikxunk(x), where n is the band index, k is
quasimomentum, and unk are Bloch functions. Since the Bloch
functions are periodic with the periodicity d of the lattice, we
can perform a Fourier expansion and finally express the wave
function as

ψkn(x) =
∑
m

c(n)
m ei(k+ 2π

d
m)x, (5)

where m ∈ Z. By substituting Eqs. (3) and (5) in Eq. (4), one
can cast the Schrödinger equation in the form

4(k + m)2c(n)
m +

[
−V1

4

(
c

(n)
m−1 + c

(n)
m+1

)

+ V2

4

(
c

(n)
m−2 + c

(n)
m+2

)] = εn(k)c(n)
m , (6)

where we renamed ka/π as k, so that −1/2 � k � 1/2 and
V1,V2, and εn are now expressed in units of Erec. This equation
defines a linear system for the unknown coefficients c(n)

m that
can be easily solved with standard libraries.

We have truncated the Fourier expansion retaining m from
−5 to 5, corresponding to 11 bands. The result for V1 = 1Erec

and V2 = 7Erec is shown in Fig. 2.
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FIG. 2. (Color online) Lowest two bands for V1 = 1Erec and
V2 = 7Erec. The red solid line is the result from the numerical solution
of the Schrödinger equation; the blue dashed line is the tight-binding
spectrum, where the parameters have been chosen by fitting the lowest
band.

III. TIGHT-BINDING MODEL

The single-particle Hamiltonian in second quantization
reads

Ĥ0 =
∫

dxψ̂†(x)

[
− �

2

2M

∂2

∂x2
+ V (x)

]
ψ̂(x) . (7)

In this work, we restrict ourselves to a zero-temperature
analysis, and thus, we retain only the lowest two bands, which
is a reasonable assumption for sufficiently deep optical lattices,
i.e., when max{V1,V2} � 5 Erec and when the interactions
are weak compared to the energy separation between these
two bands and higher ones. One can introduce a set of
maximally localized Wannier functions [46] centered around
the minimum of each well which forms a complete single-
particle orthonormal basis (further details on how to construct
these single-particle states for a bipartite lattice are given
in Refs. [44,47]). Thus, we can expand the field operators
(retaining only the lowest bands states) as

ψ̂(x) =
∑
jν

âjνW0(x − Rjν), (8)

where â
(†)
jν destroys (creates) an atom in the Wannier state

W0(x − Rjν) localized at the minimum ν = A,B in cell j .
From now on, we will suppress the double-index notation to
identify the lattice sites in favor of a single-index notation and
use the convention that A sites are mapped to even sites. The
single-particle tight-binding Hamiltonian is therefore

Ĥ0 = −J1

∑
j

(â†
2j â2j+1 + H.c.) − J2

∑
j

(â†
2j â2j−1 + H.c.)

− J ′ ∑
j

(â†
j âj+2 + H.c.). (9)

The definition of the parameters of the model is given in
Appendix A. We dropped the term

∑
j Ej n̂j because it only

leads to an energy shift, given that one can assume the on-site
energies in each well are equal, i.e., EA = EB (the wells
have the same depth and the same curvature). However, the
on-site energy was determined when fitting the bands (see
Table I). Moreover, because of the symmetries of the potential,
we assumed the next-nearest-neighbor hopping A → A to be

TABLE I. Fitting parameters of the tight-binding
model for V1 = 1 Erec and V2 = 7 Erec. All the parame-
ters are given in units of recoil energy Erec.

Parameter Fit

EA,B 0.612
J1 0.6195
J2 0.4870
J ′ −0.0564

equal to B → B, and we called it J ′. The Hamiltonian can be
diagonalized in momentum space, yielding the spectrum (in
units where we take the lattice spacing a = 1)

ε±(k) = −2J ′ cos 2k ±
√

	(k) , (10)

where

	(k) = J 2
1 + J 2

2 + 2J1J2 cos 2k . (11)

We see that the spectrum is invariant under the following two
transformations:

J1 → −J1, J2 → −J2 , (12)

J1 → J2, J2 → J1. (13)

Moreover, one notices that the gap at k = π/2 is directly
connected to the fact that J1 �= J2. Indeed, were this not the
case, i.e., J1 = J2, one would recover the monopartite limit,
and the gap would close.

The hopping coefficients of the tight-binding model have
been estimated by fitting the lowest branch of the spectrum
ε−(k) in Eq. (10) to the numerical results from the band-
structure calculation. The results for the case V1 = 1Erec and
V2 = 7Erec are summarized in Table I, and the comparison
with the exact band-structure calculation is shown in Fig. 2. A
more accurate estimate of these parameters would require the
calculation of the Wannier functions or the use of the method
described in Ref. [44], which is beyond the scope of this work.

IV. FLOQUET THEORY

Let us now turn to the time-dependent problem and consider
a shaken optical potential according to x → x + x0 cos(ωτ ).
In the reference frame of the lattice, the single-particle
Hamiltonian can thus be written as [8,48]

Ĥ (τ ) = Ĥ0 + Ŵ (τ ), (14)

where the driven part is the dipole term

Ŵ (τ ) = x̂Fω cos(ωτ ), Fω = Mx0ω
2. (15)

In second quantization, the driven part has the form

Ŵ (τ ) = Fω cos(ωτ )
∑
i,j

〈Ri |x̂|Rj 〉â†
i âj , (16)

where we defined

〈Ri |x̂|Rj 〉 =
∫

dxW∗
0 (x − Ri) x W0(x − Rj ). (17)

Performing the shift x → x + (Ri + Rj )/2 and assuming that
the Wannier functions can be chosen to be real and to have
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a well-defined parity (in the present case they can be taken
to be even functions), one finds that the matrix elements (17)
are vanishing unless i = j . Since the Wannier functions are
exponentially localized [44,47], one obtains∫

dxW∗
0 (x − Ri) x W0(x − Ri) 
 Ri. (18)

We choose now the zero of coordinates as in Fig. 1, and we thus
rewrite the positions of the lattice sites Rj as Rj = a(j + lj ),
where lj = −l − j/2 for even j and lj = l − (j + 1)/2 for
odd j . This leads to a time-dependent term

Ŵ (τ ) = K cos(ωτ )
∑

j

(j + lj )n̂jν, K = aMx0ω
2. (19)

To treat the full time-dependent problem, we use the Floquet
theory, which is valid for Hamiltonians that are periodic in
time [49–51]. We introduce a composite Hilbert space H′ =
H ⊗ HT , where H is the original Hilbert space and HT is
the Hilbert space of T -periodic complex-valued functions. We
then define the scalar product in H′ as

〈〈·|·〉〉 = 1

T

∫ T

0
dτ 〈·|·〉, (20)

where 〈·|·〉 is the scalar product in H. According to Floquet’s
theorem, the solutions of the Schrödinger equation have
the form |ψn(τ )〉 = e−iEnτ |un(τ )〉. The quasienergies En and
the Floquet modes |un(τ )〉 satisfy the eigenvalue problem
Ĥ(τ )|un(τ )〉 = En|un(τ )〉, where Ĥ(τ ) ≡ Ĥ (τ ) − i�∂τ is the
so-called Floquet Hamiltonian. Moreover, quasienergies that
differ by m�ω, with m ∈ Z, identify the same solution of the
Schrödinger equation, leading to a Brillouin-zone structure.
The next aim is to calculate the eigenvalues of the Floquet
Hamiltonian. We choose Fock-like states |{nj }〉 as a basis of
H, whereas we consider plane waves as a basis of HT . The
basis vectors in H′ are therefore defined as

|{nj },m〉〉 = |{nj }〉 exp(imωτ ) . (21)

It is now convenient to perform a unitary transformation [8]
that changes the basis vectors into

|{nj }〉 exp

[
−i

K

�ω
sin(ωτ )

∑
j

(j + lj )nj + imωτ

]
, (22)

which is useful for computing the matrix elements of the
Floquet Hamiltonian,

〈〈{n′
j },m′|Ĥ0 + Ŵ (τ ) − i�∂τ |{nj },m〉〉. (23)

We now focus the attention on the hopping terms, i.e., Ĥ0.
They are all of the form

〈〈{n′
j },m′|â†

i âi ′ |{nj },m〉〉 = 〈{n′
j }|â†

i âi ′ |{nj }〉g(T ), (24)

with

g(T ) = 1

T

∫ T

0
dτ exp

{
i
K

�ω
s sin(ωτ ) − i(m′ − m)ωτ

}
,

where we defined s = ∑
j (j + lj )(n′

j − nj ). By using the
integral representation of the Bessel functions of the first

kind

Jn(x) = 1

2π

∫ 2π

0
dτeix sin τ−inτ , (25)

we can rewrite Eq. (24) as

〈{n′
j }|â†

i âi ′ |{nj }〉Jm′−m

(
K

�ω
s

)
. (26)

Only a limited set of matrix elements (24) is needed because
the tight-binding Hamiltonian includes three main hopping
processes. Let us consider, as an example, the case where
i = 2p and i ′ = 2p + 1, with p being an integer, which
corresponds to the hopping term with amplitude J1. The
Fock-state configurations that give nonzero matrix elements
are

{nj } = {n1,n2, . . . ,n2p,n2p+1, . . . } , (27)

{n′
j } = {n1,n2, . . . ,n2p ± 1,n2p+1 ∓ 1, . . . } , (28)

yielding

s = (
2p + l2p

)(
n2p ± 1 − n2p

)
+ (2p + 1 + l2p+1)(n2p+1 ∓ 1 − n2p+1) = ∓2l. (29)

By using the property that Bessel functions of the first kind
with an odd index are odd and Bessel functions with an even
index are even, one can finally write

Jm′−m

(
K

�ω
s

)
= (∓1)m

′−mJm′−m

(
2l

K

�ω

)
. (30)

Similar arguments can be applied when i = 2p − 1, i ′ = 2p

(hopping term J2) and when |i − i ′| = 2 (hopping terms J ′),
leading, respectively, to s = ∓(1 − 2l) and s = ∓1. For the
matrix elements of the density operator, namely, i = i ′, one
finds that s = 0 and thus g(T ) = δm,m′ .

The term Ŵ (τ ) in the matrix elements now drops because
the time-derivative term −i�∂τ cancels it. In the limit �ω 

J1, J2, J

′ one can perturbatively neglect the off-diagonal ele-
ments of the Floquet Hamiltonian with m �= m′ and therefore
write the matrix elements in block-diagonal form,

〈〈{n′
j },m′|Ĥ|{nj },m〉〉 ≈ δm,m′ 〈{n′

j }|Ĥ eff
0 + m�ω|{nj }〉, (31)

where the operator Ĥ eff
0 has the same functional form as Ĥ0

[see Eq. (9)], but with renormalized hopping coefficients

J1 → J̄1 ≡ J0

(
2l

K

�ω

)
J1, (32)

J2 → J̄2 ≡ J0

[
(1 − 2l)

K

�ω

]
J2, (33)

J ′ → J̄ ′ ≡ J0

(
K

�ω

)
J ′. (34)

The behavior of the Bessel functions is shown in Fig. 3. From
now on we take m = 0 in Eq. (31), thus choosing one specific
Brillouin zone for the quasienergies.

V. SPECTRUM OF THE EFFECTIVE HAMILTONIAN

The dependence of the renormalized hopping coefficients
on the driving parameter κ ≡ K/�ω allows for the realization
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FIG. 3. (Color online) Relevant Bessel functions renormalizing
the hopping coefficients as a function of κ ≡ K/�ω. As in Fig. 1, we
have considered l = 0.2443.

of several regimes due to fundamental changes in the shape of
the quasienergy spectrum of the effective Hamiltonian Ĥ eff

0 .
Since for each hopping coefficient the regimes where the
Bessel function changes sign occur for different values of the
argument κ , a very rich behavior is expected, with various
realizations of band-structure configurations. Let us consider
the different scenarios and discuss the changes of the spectrum
as a function of κ . We concentrate on the half-filled case
and investigate the influence of the spectrum on the transport
properties of the different ground states realized.

For relatively small values of κ , the nearest-neighbor
hopping coefficients J1 and J2 simultaneously reduce in
magnitude, but the shape of the bands is not affected much,
as long as these coefficients are large compared with J̄ ′ [see
Fig. 4(a)]. Around κ ≈ 4.5, the second band is inverted, and

FIG. 4. (Color online) Quasienergy spectra of Ĥ eff
0 in units

of Erec for (a) K/�ω = 4, (b) K/�ω = 4.6, (c) K/�ω = 4.8,
(d) K/�ω = 4.824, (e) K/�ω = 5.7, and (f) K/�ω = 11.074. The
dashed red line is the Fermi level at half filling.

FIG. 5. (Color online) Renormalized hopping coefficients near
the (a) first and (b) second zero of the Bessel functions J0 (2lκ)
and J0 [(1 − 2l)κ], respectively.

the system displays an indirect gap, as shown in Fig. 4(b):
the minimum at k = 0 of the second band is larger in
energy than the maximum at k = π/2 of the lowest band.
In Fig. 4(c) we show the case where the minimum at k = 0
of the second band lowers in energy and the indirect gap now
vanishes. This scenario makes possible the realization of a
four-Fermi-point metallic state. In Fig. 4(d), the limiting case
where the two bands touch at k = 0 is shown. This requires,
from Eq. (11), that 	(0) = (J̄1 + J̄2)2 = 0, i.e., J̄1 = −J̄2, as
can be observed by a simple inspection of Fig. 5(a). This
scenario is only realizable because the Bessel functions that
renormalize the nearest-neighbor hopping coefficients have
different arguments, so that J̄2 can change sign before J̄1 does.
Since the renormalized hopping coefficients J̄1 and J̄2 change
with different slopes as functions of κ , they can therefore
become equal, despite the fact that their bare values were
different in the undriven case. This happens at κ ≈ 5.7 and
causes the closing of the gap at k = π/2 since 	(π/2) =
(J̄1 − J̄2)2 [see Fig. 4(e)]. Another case appears for larger
values of κ . For κ = 11.074, near the points where J0 (2lκ)
andJ0 [(1 − 2l)κ] vanish, one finds once again that J̄1 = −J̄2.
The band touching point at k = 0 is shown in Fig. 4(f).

VI. PHASE DIAGRAM AT HALF FILLING

By using the band analysis presented in the previous
section, we can now describe the behavior of the system in
the half-filled case [one particle per site and total (pseudo)spin
Sz

tot = 0] in the absence of interactions. In Fig. 6 we show how
the band gap 	 changes as a function of κ = K/�ω. In the
regimes where 	 �= 0 (which include the undriven case with
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FIG. 6. (Color online) Band gap as a function of the shaking
parameter κ showing several metal-insulator transitions.

κ = 0), the Fermi energy lies inside the gap, and the system is
a Peierls insulator.

One notices that near κ = 4.5, the gap function is not
smooth and starts dropping rapidly to zero. The reason for
this nonsmooth behavior is the inversion of the second band,
leading to a change of the gap from direct to indirect. These
features in the gap behavior appear for many values of κ and
are always related to band inversion (either the first or the
second band).

The system undergoes two metal-insulator transitions
around κ ≈ 4.8. One can easily prove that the metal phase
appears for J̄ ′ � (|J̄1 + J̄2| − |J̄1 − J̄2|)/4. For the parameters
chosen here, this yields 4.74 < κ < 4.89. In this metal phase,
the Fermi surface exhibits four Fermi points, as shown in
Figs. 4(c) and 4(d).

For κ > 4.89, a gap opens again and leads to a (Peierls)
insulating behavior. Eventually, the gap at k = π/2 van-
ishes at κ = 5.7, where J̄1 = J̄2, and one finds again a
metal [see Fig. 4(e)]. Moreover, since the nearest-neighbor
hopping coefficients are now equal, the unit cell consists
of only one lattice site, and the Brillouin zone is dou-
bled. Therefore, the spectrum of Fig. 4(e) corresponds to
a folded cosine-like band, and the metallic phase in this
case is the standard two-Fermi-point gapless phase of a
1D half-filled electron system in the absence of lattice
dimerization.

A remarkable behavior seems to occur at κ = 11.074.
At this point, the bands approach each other linearly at
k = 0 because the gap closes since J̄1 = −J̄2 [see Fig. 4(f)].
However, this dispersion that apparently exhibits one single
Fermi point does not lead to a new metallic phase but to
a conventional Luttinger liquid with two Fermi points. One
can easily reach this conclusion by performing a canonical
transformation on the fermionic operators ân → eiαn ân, where
{αn} ≡ {. . . ,π,π,0,0,π,π,0,0, . . . }. Such a transformation
flips the sign of the hopping coefficient every second bond
and therefore maps the model with alternating hopping
to the typical model with uniform hopping and a cosine-
like band, thus leading to a conventional metal with two
Fermi points. The price to pay is that the next-nearest-
neighbor hopping coefficient will also change sign, but since
it is quite small in magnitude compared to the nearest-
neighbor one, it will have no consequences on the metallic
properties.

VII. EFFECT OF INTERACTIONS

Let us now add to the Hamiltonian (9) a Hubbard interaction
term

ĤU = U
∑

i

n̂i↑n̂i↓ , (35)

which is commonly realized in experimental setups at low
temperatures [52]. The Hubbard parameter U , defined in
Appendix A, depends on the s-wave scattering length as and
can therefore be tuned by using Feshbach resonances (for
example, for 40K atoms), thus spanning the repulsive regime
U > 0, the attractive regime U < 0, and the noninteracting
limit U = 0. Since this term has a density-density form, it is
not affected by the shaking scheme previously discussed and
therefore appears also in the effective Hamiltonian Ĥ eff

0 under
the supplementary condition that �ω 
 U .

We will focus in the rest of this section on the fate of the
region where the unconventional metal with four Fermi points
is found once the Hubbard interaction is turned on. As we will
show, a central role is played by the next-nearest-neighbor
hopping J̄ ′. On the other hand, interactions will not affect
the positions where the two-Fermi-point metals are realized
because this involves only a relation between J̄1 and J̄2,
namely, J̄1 = ±J̄2.

To study the effect of interactions, we first write the
noninteracting part in the Peierls form,

Ĥ0 = −t
∑

n

[1 + (−1)nδ](â†
nân+1 + H.c.)

+ t ′
∑

n

(â†
nân+2 + H.c.) + μN̂

= Ĥt + Ĥtδ + Ĥt ′ + μN , (36)

where we have defined

t(1 + δ) = J̄1 , t(1 − δ) = J̄2 , t ′ = −J̄ ′ , (37)

and a chemical potential has been introduced to control the
filling. In the case discussed in this work, the indirect gap
is due to the band inversion of the upper band, given by the
condition

J̄ ′ > J̄ ′
c1 = 1

4 (|J̄1 + J̄2| − |J̄1 − J̄2|) = 1
2 (|t | − |tδ|). (38)

The transition in the single-particle spectrum from a Peierls
insulator to a metal with four Fermi points appears when the
indirect gap closes, i.e.,

J̄ ′ > J̄ ′
c2 = 1

4 (|J̄1 + J̄2| + |J̄1 − J̄2|) = 1
2 (|t | + |tδ|) . (39)

These critical values are renamed for t ′ as t ′c1 = −J̄ ′
c1 and

t ′c2 = −J̄ ′
c2. The transition therefore occurs for t ′ < t ′c2. The

chemical potential in the Peierls insulator at half filling is
chosen to lie in the center of the (direct or indirect) gap. This
defines the chemical potential,

μ =
{

|tδ| − |t | t ′c2 < t ′ < t ′c1 ,

2t ′ t ′ > t ′c1 .
(40)

A. Bosonization

The theory is bosonized in a way similar to that in Ref. [39].
One considers the terms Ĥt ′ , Ĥtδ , and ĤU to be perturbations.
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The “unperturbed” spectrum given by Ĥt is linearized around
the Fermi points, which are given at half filling by kF =
±π/2a; the corresponding Fermi velocity is vF = ±2ta.

In the continuum limit, one substitutes

ân,σ → √
a eikF xψ̂Rσ (x) + √

a e−ikF xψ̂Lσ (x), (41)

where x = na and ψLσ (x) and ψRσ (x) denote, respectively,
left and right movers. The fermionic fields are then bosonized
according to

ψ̂R(L)σ (x) = 1√
2πa

e±i
√

π[φ̂σ (x)±θ̂σ (x)] . (42)

A change of basis for the bosonic fields φσ (x) and θσ (x) (from
now on we drop the hat on the operators) is performed to
describe the charge and spin degrees of freedom:

φc = 1√
2

(φ↑ + φ↓) , φs = 1√
2

(φ↑ − φ↓), (43)

θc = 1√
2

(θ↑ + θ↓) , θs = 1√
2

(θ↑ − θ↓) . (44)

The Hamiltonian can thus be cast into the following form:

H = Hc + Hs + Hcs, (45)

where

Hc =
∫

dx

{
uc

2Kc

[∂xφc(x)]2 + ucKc

2
[∂xθc(x)]2

−μeff

√
2

π
∂xφc(x) − U

2π2a2
cos[

√
8πφc(x)]

}
,

Hs =
∫

dx

{
us

2Ks

[∂xφs(x)]2 + usKs

2
[∂xθs(x)]2 (46)

+ U

2π2a2
cos[

√
8πφs(x)]

}
,

Hcs = −4tδ

πa

∫
dx cos[

√
2πφc(x)] cos[

√
2πφs(x)] ,

and we defined μeff ≡ μ − 2t ′, ucKc = usKs = vF , uc/Kc =
1 + U/πvF , and us/Ks = 1 − U/πvF . The bosonic model
just derived couples charge and spin degrees of freedom
because of the term Hcs . For this reason, the exact solution of
this model is not known, and one has to resort to approximation
methods or numerical calculations [39].

B. Phase diagram analysis

In the noninteracting limit U = 0 studied in the previous
sections, the half-filled system shows a transition from a
band insulator to a metal with four Fermi points. Such a
transition, which happens when t ′ < t ′c2, can also be predicted
in the bosonized model written in terms of φσ and θσ . The
condition is that the effective chemical potential μeff exceeds
the mass gap 2tδ, which in turn yields t ′ < t ′c2 [39]. In the
charge and spin representation, the model becomes rather more
complicated, but one can obtain a qualitative understanding
(also of the interacting case) by performing a mean-field
decoupling of the Hcs term, along the same lines as in Ref. [39].

One introduces the expectations values

mc = 4tδ〈cos[
√

2πφs(x)]〉 , (47)

ms = 4tδ〈cos[
√

2πφc(x)]〉 (48)

and writes H = H̃c + H̃s , with

H̃c = Hc − mc

πa

∫
dx cos[

√
2πφc(x)], (49)

H̃s = Hc − ms

πa

∫
dx cos[

√
2πφs(x)], (50)

which now displays a clear decoupling between charge and
spin degrees of freedom. However, the new mass terms still
couple the two sectors thanks to the mean-field equations (47).
There is an asymmetry in the charge sector due to the presence
of the effective chemical potential μeff , which is responsible
for the phase transition from metal to insulator as previously
argued for the noninteracting case. In the weak-coupling
limit U � t , where Kc,s ≈ 1, the terms proportional to
cos[

√
8πφc,s(x)] can be neglected because they are irrelevant,

and the new terms cos[
√

2πφc,s(x)] dominate the physics
of this system. One can therefore analyze the model in the
form (49) and (50) by using the exact solution found by
Zamolodchikov [53] for the sine-Gordon Hamiltonian with
β2 = 2π ,

HSG
α =

∫
dx

{
uα

2
[(∂xφα)2 + (∂xθα)2]

− mα

πa
cos[

√
2πKαφα]

}
, (51)

where 0 < Kα < 2 and α = c,s. Here the Luttinger parameter
Kα has been reabsorbed into the newly defined bosonic fields
φα → √

Kα φα and θα → θα/
√

Kα . The excitation spectrum
consists of solitons, antisolitons, and breathers (soliton-
antisoliton bound states). The lowest-energy excitations in this
range of Kα are given by the breathers. The lightest breather
mass 	α (which is twice the energy gap of the system) is
related to the soliton mass Mα via

	α = 2Mα sin

(
π

2

Kα

4 − Kα

)
. (52)

The soliton mass Mα can be calculated from the bare mass mα

using the relation

Mα/� = C(Kα)(mα/�)2/(4−Kα ) , (53)

where � is a high-energy cutoff. Finally, to solve the mean-
field equations one needs [54]

〈cos(
√

2πKαφα)〉 = B(Kα)(Mα/�)Kα/2 . (54)

The coefficients C(Kα) and B(Kα) are given in Appendix B.
Based on this approach, one can solve the self-consistent
equations for the charge and spin gaps, 	c and 	s , respec-
tively, and obtain a qualitative understanding of the role of
interactions. For μeff = 0 the two gaps are equal when U = 0.
The charge gap increases as a function of U , while the
spin gap decreases. Therefore, repulsive interactions lead to
a larger charge gap, while they reduce the spin gap. This
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picture is confirmed by numerical simulations [55], but a
quantitative agreement would require a careful estimate of the
Luttinger parameters, which is beyond the scope of the present
work.

Let us now consider the effect of the chemical potential
μeff on the four-Fermi-point phase. Such a phase appears
for κA < κ < κB , where κA ≈ 4.74 and κB ≈ 4.89. In the
noninteracting picture, the transition occurs when μeff exceeds
the band gap. One can assume an analogous criterion to hold in
the interacting case, i.e., μeff > 	c/2, where 	c is the lowest
breather mass in the charge sector, as discussed above. In the
presence of the interactions the charge gap is renormalized
and increases as a function of U , as concluded already at
the mean-field level. Therefore, the critical value of t ′ for the
metal transition changes because the effective gap to overcome
now depends on U , and for repulsive interactions it is larger
than for U = 0. One thus expects that the interval [κA,κB]
shrinks because the charge gap that t ′ needs to overcome
has now increased. In the limit of strong Hubbard coupling
(U 
 t,t ′) the charge gap 	c ∼ U , and the range of κ where
the metallic phase is reached vanishes above a critical value
Uc, i.e., when the charge gap is large enough, such that the
effect of t ′ is no longer sufficient to close it. On the other hand,
attractive interactions U < 0 have the opposite effect. In the
limit of strong Hubbard coupling (|U | 
 t,t ′) the charge gap
	c ∼ δt2/|U |, and therefore, the region where the metallic
phase is realized increases.

As follows from the performed mean-field analysis, in the
case of weak repulsive interaction and in close proximity to the
metal-insulator transition (t ′ � t ′c2), the charge gapless phase
is also spin gapless and thus shows properties of a Luttinger
liquid. However, deeply inside the metallic phase (t ′ � t ′c2),
where the properties of the system are determined by the four
Fermi points and the effect of the direct single-particle gap is
negligible, the system becomes similar to the one-dimensional
half-filled t − t ′ Hubbard model. This model has been studied
in detail, both analytically and numerically [56–66], and it is
known to give rise to a Luther-Emery liquid for attractive and
repulsive on-site interactions, i.e., a spin-gapped metal.

In the repulsive case, the dominant instability is the charge-
density wave, which exhibits the slowest power-law decay of
the corresponding correlations. Notice that this behavior is
different from the conventional Hubbard model, for which the
charge gap is open, the spin gap is zero, and the dominant
correlation is the spin-density wave. In the opposite case of
attractive on-site coupling, the spin gap is present for arbitrary
t ′ < t ′c2, and the system behaves as a spin-gapped metal with
dominant singlet-superconducting instability, characterized by
a power-law decay of the corresponding correlations.

VIII. CONCLUSIONS

In this paper, we investigate how to realize metal-insulator
transitions for a system of fermionic atoms loaded in a bipartite
one-dimensional optical lattice at half-filling. The bipartite
character of the optical lattice is essential because it ensures
that the nearest-neighbor hopping coefficients alternate in
magnitude, opening a gap at the edge of the Brillouin zone
(k = π/2). The Fermi level lies inside the gap at half filling,

and therefore, the system behaves as a band insulator (Peierls
insulator).

By introducing an external high-frequency driving force
that shakes the lattice, we show that the hopping coefficients
are all renormalized by Bessel functions that depend on the
shaking parameter κ with different arguments. This feature
allows for a competition of the different hopping coefficients,
which can reduce in magnitude and change sign, severely
altering the shape of the bands. We observe that the system
can exhibit band inversion, generating an indirect gap, as well
as band touching and band crossing.

The different regimes reached by this scheme show several
possible transitions from Peierls insulators with direct or
indirect gap to metallic states with two or four Fermi points.
The scheme discussed in this work represents a method
that has been proposed to experimentally realize such an
unconventional four-Fermi-point metallic state, the properties
of which have been theoretically discussed in the literature in
the past decades [56–66]. Notice that this cannot be realized
in conventional lattices, the bipartite nature of the lattice being
an essential requirement.

Finally, we qualitatively investigate the effect of on-site
interactions on the metallic phases. The two-Fermi-point
metallic phase, appearing only at some discrete values of the
driving parameter κ , behaves as an ordinary Luttinger liquid
and therefore is expected to be analogous to the conventional
Hubbard model. Concerning the four-Fermi-point metallic
phase, we argue, based on a mean-field analysis supported by
former numerical calculations, that the region in κ where such
a phase appears would shrink (and eventually disappear) for
repulsive interactions, whereas it would widen for attractive
ones. A quantitative estimate of this process is left for future
investigations.
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APPENDIX A: TIGHT-BINDING PARAMETERS

Define the single-particle Hamiltonian in first quantization
as

Ĥ0 = − �
2

2M

∂2

∂x2
+ V (x) . (A1)

The definition of the parameters of the tight-binding Hamilto-
nian can be written as

J1 = −
∫

dx W∗
0 (x − RjA) Ĥ0 W0(x − RjB), (A2)

J2 = −
∫

dx W∗
0 (x − RjA) Ĥ0 W0(x − R(j−1)B ), (A3)
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J ′ = −
∫

dx W∗
0 (x − Rjν) Ĥ0 W0(x − R(j+1)ν), (A4)

Eν =
∫

dx W∗
0 (x − Rjν) Ĥ0 W0(x − Rjν) . (A5)

In the presence of s-wave interactions, the Hubbard parameter
U introduced in the main text has the form

U = 1

2

4π�
2aeff

s

M

∫
dx |W0(x − Rjν)|4 , (A6)

where aeff
s is the effective s-wave scattering length for the

1D system, therefore also containing the contribution of the
harmonic confinement in the two orthogonal spatial directions.

One can understand the reason why the Hubbard parameter
U does not carry a sublattice index by considering the
harmonic approximation. Since the two wells have the same
curvature, the corresponding harmonic oscillator states (i.e.,
the Wannier functions) have the same form in the two wells,
and the integral in Eq. (A6) will be independent of which well
is referred to.

On the other hand, the hopping parameters are determined
by an overlap integral, and since the wells have a relative
distance that alternates in magnitude, the hopping will differ
and will alternate in magnitude accordingly.

APPENDIX B: PARAMETERS FOR THE SINE-GORDON
EXACT SOLUTION

The exact solution of the sine-Gordon Hamiltonian given
in the main text contains the parameters C(Kα) and B(Kα),
which are given by

C(Kα) =
2�

(
Kα

8−2Kα

)
√

π�
(

2
4−Kα

)[
�(1 − Kα/4)

2�(Kα/4)

] 2
4−Kα

(B1)

and

B(Kα) = [�(1/2 + ξ/2)�(1 − ξ/2)](Kα/2)−2

×
[

2 sin(πξ/2)

4
√

π

]Kα/2[ (1 + ξ )π2�(1 − Kα/4)

sin(πξ )�(Kα/4)

]
,

(B2)

where ξ = Kα/(4 − Kα) and �(x) is Euler’s gamma function.
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