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Occupation numbers in strongly polarized Fermi gases and the Luttinger theorem
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We study a two-component Fermi gas that is so strongly polarized that it remains normal fluid at zero
temperature. We calculate the occupation numbers within the particle-particle random-phase approximation,
which is similar to the Nozières-Schmitt-Rink approach. We show that the Luttinger theorem is fulfilled in this
approach. We also study the change of the chemical potentials which allows us to extract, in the limit of extreme
polarization, the polaron energy.
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I. NOZIÈRES-SCHMITT-RINK APPROACH AND
THE PARTICLE-PARTICLE RANDOM-PHASE

APPROXIMATION

Many years ago, the possibility of a crossover from Cooper
pairs in the Bardeen-Cooper-Schrieffer (BCS) state to a
Bose-Einstein condensate (BEC) of molecules was discussed
theoretically [1,2]. Later, Nozières and Schmitt-Rink (NSR)
developed a theory that correctly interpolates between the
critical temperatures in the two limits [3]. In this theory, only
equal densities of the two species forming the pairs (which
we will denote by spin indices σ = ↑,↓) were considered.
Nowadays, the crossover can be realized in experiments with
ultracold trapped atoms whose scattering length a can be
tuned with the help of a Feshbach resonance [4]. In these
experiments, it is also possible to study systems with different
densities of the two species, n↑ �= n↓ [5]. In this way, one
tries to discover, e.g., phases with exotic pairing, such as the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase [6,7]. Also,
the extremely polarized case, where only a single particle of
spin ↓ is put into a Fermi sea of spin ↑, bears interesting
physics: when passing though the Feshbach resonance from
the attractive (a < 0) to the repulsive (a > 0) side, one expects
that the ground state transforms from a Fermi sea plus a
fermionic quasiparticle, the so-called polaron, into a Fermi
sea plus a bosonic molecule [8]. To our knowledge, there is
no unique many-body theory that can describe the imbalanced
Fermi gas in the crossover and that reproduces in the limit of
extreme polarization the polaronic and the molecular ground
state, depending on the value of the scattering length a.

As mentioned before, the original NSR theory was for-
mulated in order to describe the BEC-BCS crossover in a
two-component (σ = ↑,↓) Fermi gas with equal populations.
Within this approach, the critical temperature Tc as a function
of the chemical potential μ is obtained from the Thouless
criterion, i.e., it is the temperature where the in-medium T
matrix develops a pole,

�−1(ω = 0,k = 0) = 0, (1)

where ω and k are, respectively, the total energy (measured
from 2μ) and momentum of the pair, and � is obtained by
summing ladder diagrams; see Fig. 1. As a function of μ,
the critical temperature obtained in this way is exactly the
same as within BCS theory. The difference between BCS and

NSR comes from the inclusion of pair correlations into the
relationship n(μ) between the number density and the chemical
potential. This is done by including diagrams of the type shown
in Fig. 2(a) into the thermodynamic potential �(μ,T ) and then
computing the density from n = −∂�/∂μ. This is equivalent
to calculating the density from [9]

n = 2T

∫
d3p

(2π )3

∑
n odd

eiωnηG(iωn,p), (2)

where ωn = nπT is a fermionic (n-odd) Matsubara frequency
and G is the single-particle (s.p.) Green’s function with, at
most, one self-energy insertion,

G = G0 + G2
0	 , (3)

as displayed in Fig. 2(b). Notice that in the literature, one can
also find variants of the NSR scheme where the Dyson series
for G is summed to all orders, e.g., Ref. [10].

Before turning to the imbalanced case, we want to discuss
in some detail the relation between the NSR scheme and
the random-phase approximation (RPA), here in the so-called
particle-particle (pp) channel (pp-RPA) [11] in contrast to the
more familiar particle-hole (ph) channel (ph-RPA). While
the latter consists of the resummation of “bubble diagrams,” the
pp-RPA consists of a resummation of ladder diagrams, as
shown in Fig. 1. In both ph- and pp-RPA, the lines correspond
to the propagators obtained at the Hartree-Fock (HF) level.
At T = 0, which is the case we consider in the present work,
the propagators are chronological ones and belong to a fixed
Fermi momentum kF and not to a fixed chemical potential μ.
The RPA correlation energy (i.e., correction to the HF energy)
can be obtained from the usual coupling-constant integration
[9], where one integrates, however, only over the coupling
constant appearing explicitly in the bubble or ladder diagrams,
respectively, keeping the HF field fixed. The formula (3) for
the Green’s function to be used, e.g., in the calculation of the
correlation energy, has to be slightly modified: now G0 denotes
the HF Green’s function and 	 is the self-energy without the
HF field.

In practice, the subtleties about whether one has to use HF
or free propagators are not relevant for us, since in the case
of a renormalized zero-range interaction, as it is generally
used in ultracold atom systems, the HF shift vanishes anyway
[10]. However, the fact that we work with zero-temperature
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FIG. 1. Feynman diagrams for the T matrix in ladder
approximation.

propagators corresponding to a fixed density and not to a fixed
chemical potential is very important. Among other things,
it ensures that the pp-RPA formalism satisfies the Luttinger
theorem [12].

It is straightforward to extend the NSR theory to the imbal-
anced case by introducing two different chemical potentials
μσ (σ = ↑,↓). Unfortunately, as it was already observed by
several authors [13–15], this scheme that works nicely in the
balanced case fails in the imbalanced case. To be specific, the
problem is that near the unitary limit (i.e., for large scattering
length, |a| → ∞), one finds in some regions of the phase
diagram ρ↑ < ρ↓ in spite of μ↑ > μ↓.

We suspect that this problem is related to the fact that
within the NSR scheme, the undressed s.p. Green’s functions
used to build the ladder diagrams are computed with the same
chemical potentials as the corrected Green’s functions. In the
T → 0 limit, this implies that the ladders are calculated in
a system whose Fermi momenta are different from the final
ones. As shown in Ref. [16], a finite-temperature formalism
that includes the shift of the s.p. energies self-consistently does
not present the pathological behavior of the NSR scheme and
reduces to the pp-RPA in the T → 0 limit. The aim of the
present paper is to see what happens at T = 0 within pp-RPA
in the strongly imbalanced case.

II. PARTICLE-PARTICLE RPA FOR THE STRONGLY
IMBALANCED CASE AT ZERO TEMPERATURE

We consider now a polarized Fermi gas in which the density
of ↑ particles is higher than that of ↓ particles, n↑ > n↓. At
very strong polarization P = (n↑ − n↓)/(n↑ + n↓), the system
remains normal fluid even at zero temperature. It is this case
that we want to discuss now. This case includes, in particular,
the polaron, i.e., a single ↓ particle in a Fermi sea of ↑
particles, which has recently attracted a lot of attention from
the theoretical and experimental side [17].

At zero temperature, it is not necessary to use the Matsubara
formalism. Instead, one can start from the usual time-ordered

(b)(a)

Γ

FIG. 2. (a) Typical diagram for the thermodynamic potential in
the NSR approach. (b) Self-energy included to first order in the
calculation of the correlated density.

s.p. Green’s function [9],

Gσ
0 (ω,p) = θ

(
kσ
F − p

)
ω − εp − iη

+ θ
(
p − kσ

F

)
ω − εp + iη

, (4)

where kσ
F denotes the Fermi momentum of the atoms in spin

state σ . In contrast to the finite-temperature case discussed be-
fore, the s.p. energies are in this formalism not measured from
the respective Fermi surfaces, i.e., εp = p2/(2m) (throughout
the article, we use units with � = 1, where � is the reduced
Planck constant).

We mention that this formalism is not equivalent to the zero-
temperature limit of the Matsubara formalism: on the one hand,
within the Matsubara formalism, the Green’s function G is
expressed in terms of free Green’s functions G0 corresponding
to the same chemical potentials. On the other hand, in the
zero-temperature formalism, G is expressed in terms of G0

corresponding to the same densities. The importance of this
subtlety in the case of nonperturbative resummations (such as
ladder diagrams) will become clearer below.

A. In-medium T matrix

Let us start by calculating the in-medium T matrix shown in
Fig. 1 within the zero-temperature formalism. As interaction,
we consider a contact interaction with coupling constant g < 0.
Then the T matrix can be written as

�(ω,k) = 1
1
g

− J (ω,k)
, (5)

with J (ω,k) = Jhh(ω,k) + Jpp(ω,k) and

Jhh(ω,k) = −
∫  d3p

(2π )3

θ (k↑
F − p)θ (k↓

F − |k − p|)
ω − εp − εk−p − iη

, (6)

Jpp(ω,k) =
∫  d3p

(2π )3

θ (p − k
↑
F )θ (|k − p| − k

↓
F )

ω − εp − εk−p + iη
. (7)

The subscripts hh and pp denote the contributions of hole-hole
and particle-particle propagation, respectively. The cutoff 

has been introduced because the momentum integral in Jpp

diverges. To be precise, the integration region is defined by
|p − k/2| < , and the upper integration limit in Eqs. (6) and
(7) should only be interpreted as a shorthand notation. The
usual procedure to deal with the divergence consists of making
the coupling constant g dependent on  and then taking
the limit  → ∞, keeping the scattering length a constant
(which implies g → 0) [10]. The result of this renormalization
procedure can be written as follows:

�̃(ω,k) = 1
1
g̃

− J̃ (ω,k)
, (8)

where g̃ = 4πa/m, J̃ = J̃hh + J̃pp, J̃hh = lim→∞ Jhh, and

J̃pp(ω,k) =
∫

d3p

(2π )3

[
θ (p − k

↑
F )θ (|k − p| − k

↓
F )

ω − εp − εk−p + iη
+ m

p2

]
.

(9)

The integrals J̃hh and J̃pp can be evaluated analytically.
Note that within the RPA scheme, we should, in principle,

have started from the HF Green’s function instead of the
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FIG. 3. (Color online) Regions corresponding to different cases
in the calculation of the function J̃ (ω,k) in terms of the momentum in
the center-of-mass frame, q = √

mω − k2/4, and the total momentum
of the pair, k. The circle corresponds to ω = �F = ε

↑
F + ε

↓
F and

separates the hh continuum (regions 1–3) from the pp continuum
(regions 4–8). The solid lines in the triangle between regions 2 and 7
schematically show the positions of the poles �1,2 of �̃.

noninteracting one [11]. Consequently, the s.p. energies εp
in Eqs. (6)–(9) should be replaced by HF energies εσ

p =
p2/(2m) + gnσ̄ , where σ̄ denotes the spin opposite to σ .
However, as mentioned before, since g → 0 in the limit  →
∞, we shall not bother with this unnecessary complication.

It is useful to analyze in more detail the properties of J̃

and �̃. We define the variable q corresponding to the on-
shell momentum of each atom in the center-of-mass (c.m.)
frame of the pair, via ω = q2/m + k2/(4m). In Fig. 3, we
show schematically the regions where the imaginary part of
�̃ is nonzero. The circle corresponds to ω = �F = ε

↑
F + ε

↓
F ,

where εσ
F = kσ2

F /(2m). This circle separates the regions (1) to
(3) (hatched in blue), where the imaginary part comes from
J̃hh, from the regions (4) to (8) (hatched in red), where the
imaginary part comes from J̃pp. On the dashed lines separating
the different regions, J̃ has cusps. We see that for k < k

↑
F − k

↓
F ,

the hh and pp continua are separated by a region around ω =
�F where the imaginary part vanishes. This is also visible in
Fig. 4, where we display the real and imaginary parts of −J̃ for
the case k

↓
F = k

↑
F /2 and k = 0. The sharp edges of the hh and

pp continua lead to logarithmic singularities in the real part
of J̃ . Similarly to the original Cooper problem [18], a small
attractive interaction (a < 0) leads therefore to the existence of
two poles in �̃ (at the energies where −J̃ crosses −1/g̃): one
slightly below the edge of the pp continuum, corresponding
to a bound pair of two particles, and the other slightly above
the edge of the hh continuum, corresponding to a bound pair
of two holes. These states are shown schematically as the red
and blue lines in Fig. 3. With increasing total momentum k,
the sharp edges are washed out [regions (2) and (7) in Fig. 3]
and the poles disappear.

As the interaction strength increases, the upper (pp) pole is
shifted to lower and lower energy until it reaches ω = �F . As
in the NSR case, this indicates the onset of a pairing instability.
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FIG. 4. (Color online) Real (solid line) and imaginary (dashed
line) parts of −J̃ (ω,k = 0) as function of ω for k

↓
F = k

↑
F /2 (corre-

sponding to a polarization of P ≈ 0.78).

If one further increases the interaction strength, the pp pole
first enters into the energy range ω < �F of hh excitations,
and then, once 1/g̃ drops below the minimum of −J̃ , the pole
leaves the real ω axis and becomes complex.

As noticed in Ref. [13] in the NSR framework, in the
imbalanced case, it is not sufficient to consider only k = 0
in the Thouless criterion (1), but the critical temperature is the
highest temperature where the T matrix has a pole at ω = �F

for any value of k, related to a transition towards a FFLO-like
phase with oscillating order parameter. In the present case, we
are not interested in the critical temperature (since we are at
T = 0), but in the critical polarization. If we start with a fully
polarized system (P = 1) and decrease the polarization, the
critical polarization Pc is reached when the T matrix has, for
the first time, a pole at ω = �F for any value of k. Actually it
is enough to check that

J̃ (�F ,k) >
1

g̃
(10)

is fulfilled for all k.
Experiments in the unitary limit [5], however, show that

the transition from the unpaired to the paired phase at low
temperature is not of second order, but of first order, leading
to phase separation between unpaired and paired phases.
Our theory does not allow us to check whether a first-order
transition appears already at higher polarization than our Pc,
since this requires a calculation of the energy of the system in
the paired phase.

B. Self-energy and occupation numbers

Let us start by writing down the expression for the self-
energy diagram shown in Fig. 2(b),

	σ (ω,p) = −i

∫  d3p′

(2π )3

∫
dω′

2π
Gσ̄

0 (ω′,p′)

×�(ω + ω′,p + p′). (11)

For formal derivations, it will sometimes be convenient to
keep the cutoff finite (here, the integration region is defined by
|p − p′|/2 < ), but in all practical calculations, we will use
the renormalization procedure, i.e., replace � by �̃ and let the
cutoff  go to infinity.
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FIG. 5. Diagrammatic illustration of forward and backward going
parts: free pp and hh propagators Jpp and Jhh (top), and typical
contributions to the forward and backward going parts of the T matrix,
�pp and �hh (bottom).

To evaluate Eq. (11), it is helpful to split � into the
bare interaction g (which vanishes in the limit  → ∞) and
forward and backward going parts,

� = g + �pp + �hh. (12)

Note that in �, the pp and hh channels are summed up together,
so that �pp also contains contributions from hh propagation,
and vice versa, as illustrated in Fig. 5. The separation into
forward and backward going parts can be achieved with the
help of dispersion relations:

�pp(ω,k) = −
∫ ∞

�F

dω′

π

Im �(ω′,k)

ω − ω′ + iη
, (13)

�hh(ω,k) =
∫ �F

−∞

dω′

π

Im �(ω′,k)

ω − ω′ − iη
. (14)

The imaginary parts in the numerators are meant to also include
the contribution of possible poles of � at ω = �i , i.e.,

Im �(ω,k) = Im J∣∣ 1
g

− J
∣∣2 − π

∑
i

Si(k)δ(ω − �i(k)), (15)

where the strengths of the poles are given by Si =
1/(dJ/dω)�i

sgn(�F − �i). The self-energy can now also
be written as a sum of the energy-independent HF term and
forward and backward going parts,

	σ = gnσ̄ + 	σ
pp + 	σ

hh, (16)

with

	σ
pp(ω,p) =

∫  d3p′

(2π )3
θ
(
kσ̄
F − p′)�pp(ω + εp′ ,p + p′),

(17)

	σ
hh(ω,p) = −

∫  d3p′

(2π )3
θ
(
p′ − kσ̄

F

)
�hh(ω + εp′ ,p + p′).

(18)

In the RPA scheme, the HF term gnσ̄ must be removed from
	 since it is already contained in the HF s.p. energies εσ

p , but
in the limit  → ∞ it vanishes anyway.

The aim of this section is the calculation of the occupation
numbers nσ

p . In terms of the zero-temperature Green’s function,

they can be obtained from [9]

nσ
p = −i

∫
dω

2π
eiωηGσ (ω,p). (19)

If one keeps, as in Eq. (3), only the first-order term of the
Dyson equation, one readily obtains

nσ
p = θ

(
kσ
F − p

) [
1 − i

∫
dω

2π

	σ (ω,p)

(ω − εp − iη)2

]

− i θ
(
p − kσ

F

) ∫
dω

2π

	σ (ω,p)

(ω − εp + iη)2
. (20)

With the help of the residue theorem, this can be written as

nσ
p = θ

(
kσ
F − p

) [
1 + d

dω
	σ

pp(ω,p)

∣∣∣∣
ω=εp

]

− θ
(
p − kσ

F

) d

dω
	σ

hh(ω,p)

∣∣∣∣
ω=εp

. (21)

One sees that in the case p > kσ
F , only backward going ladders

contribute to the occupation numbers [however, remember
the remark after Eq. (12)]. Likewise, in the case p < kσ

F ,
only forward going ladders contribute. For the numerical
evaluation, it is convenient to transform the expressions for
the occupation numbers with the help of Eqs. (13)–(18). For
p > kσ

F , one gets

nσ
p = −

∫  d3k

(2π )3

∫ �F

−∞

dω

π

θ
(|k − p| − kσ̄

F

)
(ω − εp − εk−p)2

Im �(ω,k).

(22)

Note that the denominator in Eq. (22) cannot become zero
because of the upper limit of the ω integral, the θ function, and
the condition p > kσ

F . Analogously, one obtains, for p < kσ
F ,

nσ
p = 1 +

∫
d3k

(2π )3

∫ ∞

�F

dω

π

θ
(
kσ̄
F − |k − p|)

(ω − εp − εk−p)2
Im �(ω,k).

(23)

In this integral, the cutoff can be omitted since the relative
momentum of the two particles is limited anyway to |k/2 −
p| � (k↑

F + k
↓
F )/2 because of the condition p < kσ

F and the θ

function.
In practice, as mentioned before, we replace � by �̃ and let

the cutoff  go to infinity. The angular integrals in Eqs. (22)
and (23) can be evaluated analytically. The integrals over ω are
split into pole and continuum contributions. The contributions
of the δ functions in Im � [see Eq. (15)] are, of course,
included analytically, while the continuum contributions are
computed numerically. The remaining integrals over k are done
numerically, too.

As an example, we show in Fig. 6 the occupation numbers
for k

↓
F = k

↑
F /2 for two different interaction strengths. We

see that the correlations reduce nσ
p below kσ

F and generate
nonvanishing nσ

p above kσ
F . This effect is much stronger for

the minority (↓) particles than for the majority (↑) particles.
For 1/(k↑

F a) = −0.4, the occupation numbers look reasonable,
but in the more strongly interacting case 1/(k↑

F a) = −0.2, the
jump in the ↓ occupation numbers has the wrong sign. If we
increase the interaction further, the ↓ occupation numbers even

023632-4



OCCUPATION NUMBERS IN STRONGLY POLARIZED . . . PHYSICAL REVIEW A 90, 023632 (2014)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

nσ p

p / k↑
F

↑↓

1/(k↑
Fa)

−0.4
−0.2

FIG. 6. (Color online) Occupation numbers of majority (↑, upper
curves) and minority (↓, lower curves) particles as a function of
momentum, for k

↓
F = k

↑
F /2 and two different interaction strengths

1/(k↑
F a) = −0.4 (solid lines) and −0.2 (dashed lines).

become negative below the Fermi surface. This pathological
behavior is a consequence of Eq. (3), where the correlations
are treated perturbatively by truncating the Dyson equation at
first order.

Actually, from Eq. (21), one sees that the jump of nσ
p is

given by

nσ
|p|→kσ−

F

− nσ
|p|→kσ+

F

= 1 + d

dω
	σ

(
ω,kσ

F

)∣∣∣
ω=εσ

F

. (24)

This has to be compared with the exact result

nσ
|p|→kσ−

F

− nσ
|p|→kσ+

F

= Zσ
kσ
F
, (25)

where Zσ
p = 1/[1 − d	σ (ω,p)/dω|ω=εσ∗

p
] is the quasiparticle

residue of the s.p. Green’s function, with the quasiparticle
energy εσ∗

p = εσ
p + 	σ (εσ∗

p ,p) [19]. Equations (24) and (25)
agree to leading order in 	σ and the change of sign in Eq. (24)
for d	σ/dω < −1 is just a consequence of the breakdown of
the expansion 1/(1 − d	σ/dω) ≈ 1 + d	σ/dω + · · · .

C. Luttinger theorem

The Luttinger theorem [12] states that the correlated
occupation numbers nσ

p have their discontinuity still at kσ
F =

(6π2nσ )1/3. In other words, if we define

δnσ
h =

∫
d3p

(2π )3
θ
(
kσ
F − p

)(
nσ

p − 1
)
, (26)

δnσ
p =

∫
d3p

(2π )3
θ
(
p − kσ

F

)
nσ

p , (27)

the occupation numbers have to satisfy δnσ
h + δnσ

p = 0.
Using the equations of the preceding sections and the

analytic properties of the different functions in the complex
plane, one can show after some transformations that

δnσ
h =

∫
d3k

(2π )3

∫
dω

2π
Im

[
�(ω,k)

d

dω
Jhh(ω,k)

]
, (28)

δnσ
p =

∫
d3k

(2π )3

∫
dω

2π
Im

[
�(ω,k)

d

dω
Jpp(ω,k)

]
. (29)

In the derivation of Eq. (29), we made use of the cutoff
regularization, which ensures that Jpp falls off like 1/ω

for ω → ∞. Interestingly, we see that δnσ
h and δnσ

p are
independent of σ .

In order to show that the Luttinger theorem is satisfied, we
add Eqs. (28) and (29):

δnσ
h + δnσ

p =
∫

d3k

(2π )3

∫
dω

2π
Im

(
�

dJ

dω

)

= −
∫

d3k

(2π )3

∫
dω

2π

d

dω
Im ln(1 − gJ )

= 0. (30)

Again we have used the cutoff regularization which ensures
that J → 0 for ω → ∞.

The proof can also be carried out with the renormalized
functions J̃ and �̃, but it is more cumbersome in that case.
If we numerically integrate our occupation numbers, which
are obtained with the renormalized functions, the Luttinger
theorem is satisfied to a precision of ∼10−4.

In nuclear physics, the fact that pp-RPA does not modify the
sum of particle and hole occupation numbers in finite nuclei
(having discrete particle and hole levels) has been known for
many years; see Ref. [20]. Recently, the pp-RPA formalism
has also been applied to the case of Bose-Fermi mixtures, and
there it was also found that it respects the Luttinger theorem
for the Fermion occupation numbers [21].

D. Energy density and chemical potentials

While in the standard NSR approach the corrections to
the densities nσ are calculated for fixed chemical potentials
μσ , we have just seen that in the zero-temperature formalism,
there are no corrections to the densities due to correlations.
However, there are corrections to the chemical potentials, so
that in the end the relationships between μσ and nσ are changed
in the zero-temperature formalism too. If one did a strictly
perturbative expansion, i.e., without resummation of ladder
diagrams, the difference between the relationships nσ (μ↑,μ↓)
or, vice versa, μσ (n↑,n↓) obtained in the two formalisms
should be of higher order than the expansion [19].

Here we will calculate the chemical potentials from the
energy density E :

μσ = ∂E
∂nσ

. (31)

The correlation energy density, δE = E − E0, where E0 =
(k↑5

F + k
↓5
F )/(20π2m) + gn↑n↓ is the HF energy density of

the uncorrelated system, can be derived from the following
general formula [9]:

δE = − i

2

∫ 1

0

dλ

λ

∫
d3p

(2π )3

∫
dω

2π
eiωη(ω − εp)(G↑

λ + G
↓
λ).

(32)

In Eq. (32), Gσ
λ denotes the Green’s function calculated with

coupling constant λg instead of g. More precisely, since RPA
theory is built on top of the HF ground state (this is why
E0 is not the noninteracting but the HF energy density), the
coupling constant entering the HF field must not be multiplied
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by λ. Anyway, this detail is not important since the HF field
vanishes in the limit  → ∞.

By inserting Eqs. (3) and (16) (without the HF term gnσ̄ )
into Eq. (32), one readily obtains

δE = 1

2

∫ 1

0

dλ

λ

∫
d3p

(2π )3

∑
σ

[−θ
(
p − kσ

F

)
	λ hh(εp,p)

+ θ
(
kσ
F − p

)
	σ

λ pp(εp,p)
]
. (33)

Using the expressions given in Secs. II A and II B and
exploiting the analytical properties of the functions in the
complex plane, one can show that this expression is equal
to

δE = −
∫ 1

0

dλ

λ

∫
d3k

(2π )3

∫ �F

−∞

dω

π
Im[(�λ − λg)J ]. (34)

Let us now look at the integral over λ:∫ 1

0

dλ

λ
�λ =

∫ 1

0
dλ

1
1
g

− λJ
= − 1

J
ln(1 − gJ ). (35)

Some care has to be taken in the presence of poles in �,
since in this case the argument of the logarithm can become
negative. In Fig. 4, this corresponds to the region between the
hh continuum and the blue line, and between the red line and
the pp continuum. In these regions, we have Im ln(1 − gJ ) =
−π . Now Eq. (34) becomes

δE =
∫

d3k

(2π )3

∫ �F

−∞

dω

π
Im[ln(1 − gJ ) + gJ ]. (36)

Although we have assumed in our derivation that J is
regularized with a cutoff , we can now take the limit  → ∞.
In this limit, the contribution of the last term of Eq. (36)
vanishes, and we are left with the following compact formula
for the correlation energy:

δE =
∫

d3k

(2π )3

∫ �F

−∞

dω

π
Im ln

(
J̃ − 1

g̃

)
. (37)

In our calculation of the energy density, the integrals over
k and ω are done numerically (except for the ω integral
of the pole contribution). We have not attempted to derive
formulas for the chemical potentials and we compute them by
numerically differentiating the energy density.

In Fig. 7, we show the chemical potentials μ↑ and μ↓
as functions of the polarization P for fixed n↑ for different
interaction strengths. For each interaction strength, the polar-
ization is varied over the range in which the condition (10)
is fulfilled, i.e., P > Pc. As one would expect, the chemical
potential of the minority species, μ↓, is much more strongly
lowered by interactions than that of the majority species, μ↑.
Actually, already within the “Hartree approximation” (μσ =
εσ
F + g̃nσ̄ ), it is like that.1 At the two strongest interactions

1As discussed before, the true HF shift gnσ̄ vanishes for the
regularized contact interaction in the limit  → ∞. However, in
the weak-coupling limit, �̃ can be approximated by g̃ and this leads
to a constant shift g̃nσ , which is usually referred to as Hartree shift
(there is no exchange term because the interaction acts only between
particles of opposite spin).

-1

-0.5
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 0.5

 1

 0  0.2  0.4  0.6  0.8  1

μ σ
 / 

ε↑ F

P

↑

↓
1/(k↑

Fa)
−2.0
−1.0
−0.5
−0.2
−0.1

FIG. 7. (Color online) Chemical potentials of the majority (↑,
upper curves) and minority (↓, lower curves) particles as functions of
the polarization for different interaction strengths from 1/(k↑

F a) = −2
(dash-dotted lines) to −0.1 (solid lines).

1/(k↑
F a) = −0.2 and −0.1, one observes that μ↓ increases

with decreasing n↓ at polarizations P < 0.73 and P < 0.85,
respectively.

One could be tempted to say that ∂μ↓/∂n↓ < 0 indicates
an instability towards phase separation into a more and a
less polarized phase (first-order phase transition). This would
be nice because experimentally it is found that the system
separates into a polarized and an unpolarized phase below
some critical polarization [5]. However, the agreement would
be purely qualitative since the critical polarization observed in
the experiment is much lower than ours (e.g., in the unitary
limit, it is about 0.4 [5]). Furthermore, one should remember
that at the polarizations where we find ∂μ↓/∂n↓ < 0, the
truncation of the Dyson equation to first order in 	 gives
the wrong sign of the jump in the occupation numbers n

↓
p ; cf.

Fig. 6. If one discards those cases where the jump of n
↓
p has

the wrong sign, one should only consider polarizations P >

0.81 for 1/(k↑
F a) = −0.2 and P > 0.94 for 1/(k↑

F a) = −0.1,
respectively.

Finally, let us discuss the limit P → 1 (i.e., n↓ → 0),
corresponding to the polaron. In Fig. 8, we display our results

-1

-0.8

-0.6

-0.4

-0.2

 0

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5

μ ↓ /
 ε

↑ F

1/(k↑
Fa)

pp-RPA
Hartree

Combescot et al.

FIG. 8. (Color online) Polaron chemical potential obtained
within pp-RPA (solid line) compared with the Hartree approximation
(cf. footnote) g̃n↑ (long dashes) and with the results of Ref. [22]
(short dashes).
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(pp-RPA) for the polaron energy, which is equal to μ↓ in
the limit of n↓ → 0, as a function of the interaction strength.
These results can be compared with the Hartree approximation
μ↓ = g̃n↑ and the results of a calculation by Combescot et al.
[22], which are in very good agreement with quantum Monte
Carlo (QMC) results [23,24]. The calculation of Ref. [22] is
actually also based on the T matrix, but the polaron energy
is defined in a completely different way as the pole of G↓ in
which the self-energy is summed to all orders. We see that our
results represent a considerable improvement over the Hartree
approximation and stay very close to the results of Ref. [22]
up to 1/(k↑

F a) ∼ −1.

III. DISCUSSION, CONCLUSION, AND OUTLOOK

In this work, we considered the pairing aspects of strongly
polarized Fermi gases. We worked at zero temperature
within the RPA theory in the particle-particle (pp) channel
(summation of ladders) and discussed in detail similarities
and differences with the NSR scheme. The latter gave in the
recent past some pathological results when applied to polarized
Fermi gases near the unitary limit [13–15]. These might be
related to the fact that within the NSR scheme, the undressed
Green’s functions building the ladder diagrams are calculated
with the same chemical potential as the final one. This is the
main difference from the zero-temperature pp-RPA formalism,
where the Green’s functions depend on kF and not on μ.

Using the pp-RPA, we have calculated the correction to
the occupation numbers. In particular, we have shown that the
occupation numbers satisfy the Luttinger theorem. Actually
we had already shown this in a similar scenario for interacting
bosons and fermions in a mixture [21]. But we have also seen
that the approach breaks down when the correlations become
too strong (i.e., when the attraction becomes too strong or
the polarization becomes too small). This problem stems from
the fact that for consistency with the RPA formalism, the self-
energy in the Dyson equation can only be treated perturbatively
to first order (by the way, this truncation is also made in the
original NSR scheme). It seems very unlikely that the nice
properties of the pp-RPA, such as the fact that it satisfies the
Luttinger theorem exactly, remain valid if the Dyson series

is summed up (of course, the error may be quantitatively
small).

We have also computed the corrections to the chemical
potentials. Of particular interest is the limit of extreme
asymmetry, corresponding to the polaron, i.e., a single ↓
particle in a Fermi sea of ↑ particles. In this limit, we found
good agreement with the results by Combescot et al. [22] up
to a certain strong attraction below the unitary limit; see Fig. 8.
Again, this is a limitation due to the truncation of the Dyson
equation at first order.

The calculations presented here were all based on the zero-
temperature formalism. It is therefore not obvious how one can
generalize them to finite temperature. As shown in Ref. [16],
it is possible to recover the results of the present work in
the T → 0 limit of the finite-temperature formalism if one
includes the shift of the quasiparticle energies self-consistently
into the Green’s functions G0 that build the ladder diagrams
and the self-energy.

On a quantitative level, the critical polarization we obtain
with our approach is (at least in the unitary limit) much
larger than the one found experimentally [5] and in QMC
calculations [23,24]. This calls for an improvement of the
RPA approach. Several lines are open. One obvious drawback
of the RPA is that it calculates ground-state correlations but
the ingredients to RPA, e.g., the occupation numbers, are given
by the noncorrelated ones; cf. the step functions in Eqs. (6)
and (7). Since we have calculated the correlated occupation
numbers, a natural idea would be to insert those in an improved
RPA and iterate to self-consistency. This would probably wash
out the discontinuities in J (cf. Fig. 4) and thereby reduce
the critical polarization. Such a procedure is often applied in
nuclear physics and called the “renormalized RPA” [25,26]. A
still farther reaching (but numerically difficult) improvement
of RPA is the so-called self-consistent RPA, in which not only
are occupation numbers included self-consistently, but also
vertex corrections [26–28].

Also important would be the inclusion of screening of
the interaction, which is known to reduce the gap in the
balanced case (Gor’kov-Melik-Barkhudarov correction [29])
and which therefore could also reduce the critical polarization.
However, it is not clear how to include these particle-hole
effects consistently into the particle-particle ladders.
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