
PHYSICAL REVIEW A 90, 023629 (2014)

Matter-wave scattering from interacting bosons in an optical lattice
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We study the scattering of matter waves from interacting bosons in a one-dimensional optical lattice, described
by the Bose-Hubbard Hamiltonian. We derive analytically a formula for the inelastic cross section as a function
of the atomic interaction in the lattice, employing Bogoliubov’s formalism for small condensate depletion. A
linear decay of the inelastic cross section for weak interaction, independent of the number of particles, condensate
depletion, and system size, is found.
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I. INTRODUCTION

Scattering experiments have a long-standing tradition in
most physical disciplines. After the probe has interacted with
the target, it carries information on the latter unraveling, e.g.,
the structure of the atom in Rutherford’s experiments [1], or the
makeup of nuclei in modern particle accelerators. Condensed-
matter physics in particular has benefited from x-ray, electron,
and neutron scattering, which are well established techniques
to shed light on typical solid-state structures like crystals or
amorphous materials.

The realization of Bose-Einstein condensation (BEC) [2,3]
and the subsequent development of optical traps [4] has
led to the implementation of Hubbard-like systems with
an unprecedented experimental control, which made the
investigation of many-body and strongly correlated physics
feasible [5–7]. Outstanding examples are the realization of
the Mott insulator to superfluid quantum phase transition of
bosons [8], or the study of the interplay of disorder and
interactions [9–14]. Since the high degree of experimental
control provides access to the many-particle dynamics, beyond
a mere effective single-particle picture, the necessity arises to
develop detection methods to obtain the relevant information.
Considering the kinship of such experiments with solid-state
systems, scattering techniques appear as a natural candidate
[15].

Elastic and inelastic scattering of photons has been ex-
ploited for the analysis of ultracold gases, both theoretically
[16–23] and experimentally [24–29]. Most recently, inelastic
scattering of matter waves has been shown to allow a clear
distinction of the Mott and superfluid states of bosons in an
optical lattice [30]. Experimentally, a cloud of Bose-condensed
atoms has been used for Bragg-scattering off a second cloud
trapped in an optical lattice, presenting matter-wave scattering
as a suitable method for the characterization of strongly
correlated phases of quantum gases [31]. Additionally, the
scattering of atoms can monitor the system in a nondestructive
manner, and the influence of probe-induced excitations in the
target on subsequent scattering events can be controlled [32].

Here, we study the inelastic scattering of a matter wave from
a system of interacting bosons in a one-dimensional optical
lattice. In particular, we present a thorough analytical and
numerical analysis of the decay of the inelastic cross section as
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the interaction among the target bosons is increased. In Sec. II
we spell out the set problem and introduce the many-body cross
section, as well as its limits for noninteracting and strongly
interacting bosons [30]. In Sec. III, we expand on Bogoliubov’s
approximation for a weakly depleted BEC [33], which we
employ in Sec. IV to derive analytically the inelastic cross
section as a function of the interaction between two bosons.
The analysis, discussion, and comparison to numerical results
are given in Sec. V. Some technical details of the calculations
are collected in the Appendix at the end.

II. MANY-BODY SCATTERING CROSS SECTION

We study scattering of neutral atoms from a target com-
prised of interacting bosons suspended in a one-dimensional
optical lattice potential. The target is commonly described by
the discrete version of the Bose-Hubbard Hamiltonian [5,34],
taking into account only the first band of the lattice

HBH = −J
∑
〈j,j ′〉

ĉ
†
j ĉj ′ +

L∑
j=1

{
U

2
ĉ
†
j ĉ

†
j ĉj ĉj − μĉ

†
j ĉj

}
, (1)

in terms of bosonic creation and annihilation operators ĉ
†
j ,ĉj ,

on lattice site j ,

[ĉj ,ĉ
†
j ′ ] = δjj ′ , (2)

and where J > 0 is the nearest-neighbor tunneling strength
and we limit our considerations to U > 0, with U the energy of
the repulsive binary on-site interaction. The tunneling strength
J depends on the depth of the optical lattice, while the
interaction U is controlled by scattering lengths, which can
be modified using Feshbach resonances [35]. The hopping
term in HBH includes all pairs 〈j,j ′〉 of neighboring lattice
sites in a system with L sites. We work in the grand-canonical
ensemble, where the mean number of atoms N is determined
by the chemical potential μ. The basic unit of length in the
system is given by the lattice constant d = π/kL, where kL

is the wave number of the laser providing the lattice potential
of depth V0. Our reference energy will be the recoil energy
Er = �

2k2
L/2M , where M is the mass of the atoms in the

lattice.
We assume that the optical lattice is transparent to the

scattering atom (probe), of mass m, and whose energy is not
large enough to induce interband excitations in the target. For
this low-energy probe the interaction with each atomic target
will be dominated by s-wave scattering, and can be described
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FIG. 1. (Color online) Scattering setup: A particle of mass m

initially in a plane-wave state with momentum k0 is scattered into the
angle θ from a target of atoms (all of which have mass M) submerged
in a one-dimensional optical lattice with depth V0 and lattice constant
d = π/kL, where kL is the laser wave number. The asymptotic final
state of the probe has momentum k.

by the pseudopotential [36,37]

V (r) = 2π�
2

m
as

N∑
β=1

δ(r − r (β)), (3)

with scattering length as , and where r and {r (β)}β=1,...,N give
the positions of the probe atom and the atoms in the lattice,
respectively. The initial state of the probe is assumed to be a
plane wave of momentum k0 (|k0| = k0), which gets scattered
into an asymptotic final state with momentum k (cf. Fig. 1). If
the target is prepared in its ground state |g〉 with corresponding
energy Eg , the many-body scattering cross section dσ/d� in
the Born approximation, for a probe of initial energy E0 =
�

2k2
0/2m, reads [30,38]

1

a2
s

dσ

d�
=

∣∣∣∣
∫

d r eiκ · r 〈g| n̂(r) |g〉
∣∣∣∣
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+
∑

e
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1 − Ee −Eg
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∣∣∣∣
∫

d r eiκ · r 〈e| n̂(r) |g〉
∣∣∣∣
2

,

(4)

where Ee denotes the excitation spectrum of HBH, with
corresponding eigenstates |e〉, and

κ ≡ k0 − k (5)

is the transferred momentum, whose component in the direc-
tion ux of the lattice,

κ ≡ κ · ux, (6)

obeys

κd = −π sin θ

√
m

M

E0

Er

√
1 − Ee − Eg

E0
, (7)

as follows from energy conservation. The first term in Eq. (4)
corresponds to the elastic part of the cross section, whereas
the sum in the second term runs over all excited states |e〉
that are energetically allowed (i.e., for which Ee − Eg < E0),
whose contributions represent inelastic scattering. The density
operator

n̂(r) = 	̂†(r)	̂(r), (8)

is defined by the bosonic field operators 	̂(r), which can be
expanded in the lattice basis

	̂(r) =
L∑

j=1

ĉjw(r − rj ), (9)

in terms of the Wannier functions w(r − rj ) [39], describing
a particle localized at lattice site j , which in our one-
dimensional system corresponds to rj = xj ux = jdux . The
density operator can then be split into two contributions:
diagonal and off-diagonal in the Wannier basis.

Expression (4) is valid in the far field to first order in the
scattering potential. The elastic part of the scattering cross
section contains the single-particle Bragg-scattering signal
[represented by the Fourier transform of the atomic density in
the first term of Eq. (4)] resulting from the plane-wave initial
state of the probe, and it is independent of the interaction U . In
contrast, the inelastic cross section bears a clear signature of the
interactions among the target atoms. In the limits of vanishing

TABLE I. Analytical expressions for the elastic and inelastic parts of the cross section a−2
s dσ/d� in the limits U/J → 0 (superfluid) and

U/J → ∞ (Mott insulator). Different columns list the diagonal and off-diagonal terms with respect to the Wannier basis [see Eqs. (10) and
(11)]. The weighting factors read Csf (q) = √

1 − [ε(q) − ε(0)]/E0 and Cmi = √
1 − U/E0, where ε(q) is the single-particle Bloch dispersion

relation; in the one-dimensional case ε(q) = 4J sin2 (qd/2) where q = 2πs/(Ld) for s = 0,1, . . . ,L − 1. The x component of the transferred
momentum in the elastic case κel ≡ κel · ux obeys κeld = −π sin θ

√
E0m/ErM , while in the inelastic case it fulfills κ sf

q = κelCsf (q) and
κmi

q = κelCmi, for the superfluid and Mott-insulating limits, respectively.

Diagonal Off-diagonal
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N 2

L2
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∣∣∣∣
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∣∣Wjl

(
κmi

q

)∣∣2
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and infinite U/J , analytical expressions for the cross section
can be obtained [30,38]. These are summarized in Table I,
where the terms are grouped in contributions that are either
diagonal or off-diagonal in the Wannier basis. The diagonal
contributions are proportional to the form factor of a unit cell
of the lattice

W (κ) =
∫

eiκ ·r |w(r)|2d r. (10)

On the other hand, off-diagonal terms are proportional to the
overlap of two Wannier functions centered at different sites

Wjl(κ) =
∫

eiκ ·rw∗(r − rj )w(r − r l)d r. (11)

Within the validity of the approximations made in the
derivation of the Bose-Hubbard Hamiltonian, one has that
|Wj,j±1(κ)|/|W (κ)| ∼ 10−4, and the off-diagonal terms can
be safely neglected for deep lattices. Throughout this paper,
we consider a lattice depth of V0 = 15Er , which gives rise to
a tunneling strength J = 6.5 × 10−3Er, with an energy gap to
the second band of approximately 6Er [40].

In the limit U/J → 0, all atoms condense in the same
delocalized Bloch single-particle ground state of the optical
lattice, and the system is found in a gapless superfluid (SF)
phase. In the strongly interacting limit U/J → ∞, and for
integer filling factor n = N/L, the atoms localize on individual
sites of the lattice (for J = 0 the many-body ground state is
given by a tensor product of Fock states), and the system is
found in a gapped and incompressible Mott insulator (MI)
phase [5,41,42]. These two regimes give rise to markedly
different inelastic scattering signals (Fig. 2) [30]. In the SF
limit, the delocalized nature of the ground state results in
a nonzero diagonal inelastic cross section, that scales with
the number of atoms N , and is determined by the single
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FIG. 2. (Color online) Full scattering cross section normalized
by N 2 in the SF and MI limits, from the expressions given in Table I
using the harmonic approximation for the Wannier functions [see Eq.
(45)], for N = 9 particles in a lattice of length L = 9. The scattering
signal is symmetric around θ = 0. The incoming energy is E0 = 2Er ,
the hopping energy is set to J = 0.0065Er , and the masses of the
probe and target atoms are taken to be equal. The elastic part of
the cross section is the same in both regimes. The shaded region
highlights the inelastic scattering component. The inset shows the
inelastic cross section normalized by N , obtained from Eq. (4) and
the numerically calculated spectrum of the system, for different values
of the interaction U .

particle Bloch dispersion relation of the lattice. On the other
hand, in the MI limit the ground state becomes an eigenstate
of the diagonal part of the density operator, and thus the
diagonal contribution to the inelastic cross section is strictly
zero (see Table I). Due to the small overlap integral Wjl(κ),
the off-diagonal excitations (i.e., moving atoms from one site
to another) are strongly suppressed, which leads to a vanishing
inelastic scattering when approaching the MI limit, even when
the probe energy is above the energy gap U . The elastic cross
section scales as N2 and, after neglecting the off-diagonal
terms, is identical in both the SF and the MI limits.

The transition between the SF and MI limits is then
characterized by the decay of the inelastic cross section as
a function of U/J (Fig. 2) [30]. Here, we want to understand
the way in which the interactions among the target atoms
determine the emergence of this decay. To this end, we perform
a Bogoliubov approximation of HBH for small condensate
depletion and determine the dependence on U of the many-
body cross section, Eq. (4).

III. BOGOLIUBOV APPROXIMATION FOR WEAK
INTERACTION

In the zero-temperature, ideal (i.e., noninteracting) Bose
gas, all N bosons occupy the single-particle ground state
of the Hamiltonian, thus called the condensate. The main
idea underlying the Bogoliubov approach [33,43] is that, for
weak interaction, most particles still remain in this very state.
Assuming that the ground-state occupation N0 is macroscopic
N0 � 1 the noncommutativity of the creation and annihilation
operators of a boson in the ground state b̂

†
0 and b̂0, respectively,

is neglected

〈b̂†0b̂0〉 = N0 ≈ N0 + 1 = 〈b̂0b̂
†
0〉 (12)

⇒ [b̂0,b̂
†
0] ≈ 0, (13)

where the expectation values are to be taken with respect to
the ground state. This implies that, physically, the state of
the system is not noticeably changed by removing (adding) a
particle from (to) the condensate, and thus the replacement of
both b̂

†
0 and b̂0 with the value

√
N0 is justified. This approach is

termed nonnumber-conserving and constitutes a breaking of a
U(1) symmetry since it assigns a fixed phase to the condensate

〈b̂0〉 = 〈b̂†0〉 =
√

N0. (14)

The effect of interactions among the bosons is to populate
higher-energy single-particle states, which will be treated
as small fluctuations. In (discrete) position space, the field
operator at position x, ĉx , is then written as

ĉx = φx + δĉx, (15)

where the c number φx contains the ground-state contribution,
and δĉx the fluctuation-operator contributions, respectively.
The formal replacement of Eq. (15) in the Hamiltonian HBH

allows for the grouping of the different terms arising by their
order in the fluctuation operators δĉx as follows:

HBH = H0 + H1 + H2 + H3 + H4. (16)
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The actual approximation consists in neglecting terms of third
and higher order, i.e., H3 and H4. The validity of this truncation
will be determined a posteriori from the depletion of the
condensate. The equation of motion for the condensate wave
function can be derived from the principle of least action by
considering independent variations of its real and imaginary
parts [44,45]. The time-independent description ensues by
requiring that H0 be stationary against small variations of φ∗

x ,
so that the functional derivative of H0 with respect to φ∗

x yields
the discrete nonlinear Schrödinger equation for φx [46]

μφx = −J
∑
〈x,x ′〉

φx ′ + U |φx |2φx, (17)

equivalently termed the Gross-Pitaevskii equation for the
condensate mean field [47]. The chemical potential μ can
also be interpreted as a Lagrange multiplier fixing the mean
number of particles in a variational derivation of Eq. (17) [48].
In a pure, one-dimensional periodic system, the single-particle
eigenstates of the Hamiltonian (1) are given by Bloch waves
characterized by corresponding quasimomenta q, the ground
state being the q = 0 state. The value of φx can be read off by
expanding ĉx in momentum space

ĉx = 1√
L

∑
q∈BZ

eiqx b̂q =
√

N0

L
+ 1√

L

∑
q ∈ BZ
q 	= 0

eiqx b̂q

≡ √
n0 + δĉx, (18)

where n0 = N0/L denotes the (dimensionless) condensate
density (or condensate filling factor), and BZ the first Brillouin
zone of the lattice. For a lattice of length L, assuming
periodic boundary conditions, the allowed values for the
quasimomentum are q = 2πs/(Ld) for s = 0,1, . . . ,L − 1.
Equation (18) shows that the fluctuations are given by the
occupation of higher momentum states and φx ≡ √

n0, for
which Eq. (17) yields the mean-field value of the chemical
potential

μ = Un0 − 2J, (19)

which is easily understood: adding one boson to the system
requires the mean interaction energy with the present density of
atoms and the (negative) tunneling energy to the two nearest
neighbors. We emphasize that in Eq. (16), the order in the
fluctuations is complementary to the leading order in which the
amplitudes φx appear, i.e., H0 is proportional to φ4

x , H1 to φ3
x ,

and so on. Since the condensate amplitude is proportional to√
N0, the truncation of the Hamiltonian amounts to neglecting

terms of order
√

N0 or lower in the number of condensed
particles. Therefore, quantities derived from the approximated
Hamiltonian should only be given to that order of accuracy, as
well.

In one dimension, true Bose-Einstein condensation is
forbidden, both at T = 0 [49], and for finite temperatures
by the Mermin-Wagner-Hohenberg (MWH) theorem [50,51],
because the system displays no long-range off-diagonal order,
i.e., correlations in the single-particle-density matrix decay
over a finite distance [44]. Instead, one has to work with the
concept of a quasicondensate [52], with a finite, but macro-
scopic correlation length. Keeping this in mind, throughout this

work, we will still refer to the quasicondensate as condensate.
In Ref. [53], it has been shown that the Bogoliubov treatment
of the one-dimensional problem requires a careful definition
of the density and phase operators choosing a discretization of
space, which in our case is given naturally by the spacing d

of the optical lattice. The validity of the treatment requires a
large filling factor

N

L
= n � 1, (20)

and the lattice spacing to be smaller than both, the thermal de
Broglie wavelength λdB =

√
2π�2/(MkBT ), and the healing

length ζ =
√

�2/(M|μ|). Throughout this work we assume
the zero-temperature limit, thus d < λdB is safely fulfilled.
The remaining requirement,

d < ζ, (21)

restricts the values of the interaction and tunneling energies.
From Eq. (19), the second condition translates into

2

(
1 − Er

π2J

)
<

Un0

J
< 2

(
1 + Er

π2J

)
, (22)

which for the tunneling strength J = 6.5 × 10−3Er, used in our
calculations, yields the following restriction on the repulsive
interaction energy

0 <
Un0

J
< 33. (23)

In the allowed regime, the procedure found in Ref. [53] leads
to the same results as the usual Bogoliubov theory in density-
phase representation [54], which we discuss in the following.

The many-body cross section (4) involves matrix elements
of the density operator n̂(r). Within the Bogoliubov frame-
work, this is treated most intuitively in the density-phase
representation of the field operators [53,54]

ĉx = eiδϕ̂x

√
nx + δn̂x, (24)

where nx denotes the mean density at site x, and δϕ̂x , δn̂x ,
are Hermitian operators describing fluctuations of phase and
density, respectively. A comparison of the first-order expansion
in the fluctuations of Eq. (24) with Eq. (15) yields the
identifications

δĉx = 1

2

δn̂x√
n0

+ iδϕ̂x

√
n0, (25)

δn̂x = √
n0(δĉ†x + δĉx), (26)

δϕ̂x = i

2
√

n0
(δĉ†x − δĉx), (27)

with nx ≡ n0. From Eq. (18), the density and phase fluctuation
operators (26) and (27) can be cast as

δn̂x = 1√
L

∑
q 	=0

eiqxδn̂q, (28)

δϕ̂x = 1√
L

∑
q 	=0

eiqxδϕ̂q, (29)
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where the hermiticity of δn̂x (δϕ̂x) requires δn̂q = δn̂
†
−q (δϕ̂q =

δϕ̂
†
−q). Since the condensate amplitude φx = √

n0 minimizes
H0 via Eq. (19), the Hamiltonian linear in the fluctuations H1

vanishes, and the first nonvanishing correction to the mean
field is given by the quadratic fluctuation Hamiltonian H2 [54]

H2 =
∑
q 	=0

{
1

4n0
(εq + 2Un0)δn̂†

qδn̂q + n0εqδϕ̂
†
qδϕ̂q

}
, (30)

with the dispersion of the lattice

εq = 4J sin2 (qd/2). (31)

Note that in Eq. (30) we have dropped constant terms (which
can be accounted for by a redefinition of the energy origin)
since we will only be interested in energy differences. The
quadratic Hamiltonian is diagonalized by a Bogoliubov trans-
formation to a quasiparticle basis {γ̂ †

q ,γ̂q}q 	=0. It represents a
canonical transformation, i.e., the quasiparticle operators also
obey bosonic commutation relations, Eq. (2). This restriction,
together with the diagonalization requirement, leads to the
explicit form of the transformation(

γ̂q

γ̂
†
−q

)
= Aq

(
i
√

n0 δϕ̂q

1
2
√

n0
δn̂q

)
, Aq =

(
aq a−1

q

−aq a−1
q

)
, (32)

where aq = √
εq/ωq and ωq is the Bogoliubov dispersion

ωq = √
εq(εq + 2Un0). (33)

From Eq. (32) the Hamiltonian H2 reduces to a collection
of noninteracting quasiparticles with quasimomentum q and
energies ωq ,

H2 =
∑
q 	=0

ωqγ̂
†
q γ̂q (34)

(again neglecting constants), whose ground state is the vacuum
of quasiparticles, γ̂q |g〉 = 0, corresponding to the condensate.
The eigenstates of this Hamiltonian are number states of
the quasiparticle operators and represent fluctuations of the
condensate’s density and phase. We note that this is also
true in a number-conserving approach [55], which provides
the same excitation spectrum. Since such approaches are
somewhat more cumbersome, in this work we rely on the
nonnumber-conserving formalism.

Due to interaction-induced quantum fluctuations, even at
zero temperature a nonzero depletion of the condensate is
present, given by the density of particles with q 	= 0 in the
ground state

n = 1

L

∑
x

〈ĉ†x ĉx〉 = n0 + 1

L

∑
x

〈δĉ†xδĉx〉

= n0 + 1

L

∑
q 	=0

{
εq + Un0

2ωq

− 1

2

}
, (35)

where the expectation values (which are to be taken with
respect to the quasiparticle vacuum) of the fluctuations
vanish 〈δĉx〉 ≡ 0, and the sum represents the depleted density
δn = n − n0. Since the chemical potential μ ensures a fixed
mean density n, Eq. (35) can be numerically solved to obtain
the relative depletion δn/n. It is this parameter that controls the

0 10 20 30 40
Un/J
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0.15

δn
/n

0 0.2 0.4
0

0.002

FIG. 3. (Color online) Relative condensate depletion δn/n as
a function of the interaction parameter U = Un/J , for N = 20
particles on L = 5 sites. The inset shows the behavior of δn/n for
smallU (black solid line) and the quadratic approximation (red dashed
line), Eq. (37).

validity of the truncation of the Hamiltonian (16): δn/n � 1
implies that the number of bosons N0 in the condensate is
large, provided that the total number of bosons N is large.
In a one-dimensional lattice, for fixed U and density n, the
relative depletion goes to 1 as the system size increases, and
consequently the Bogoliubov approximation breaks down (in
agreement with the absence of BEC in the thermodynamic
limit in one dimension, according to MWH). On the other hand,
for fixed U and system size L, the relative depletion vanishes
as N−1/2 with the number of atoms for N � 1. Thus, in one
dimension the quality of the Bogoliubov treatment always
improves by increasing the number of bosons.

We introduce the dimensionless interaction parameter

U ≡ Un

J
, (36)

which gives essentially the ratio of the interaction and the
kinetic energies in the system. For a fixed system size L and
density n, the relative depletion grows monotonically with U ,
as shown in Fig. 3. For integer filling factor, the condensate
density has to vanish at the SF-MI phase transition, i.e., for a
finite value of U . However, δn/n, as obtained from Eq. (35),
approaches 1 only for U → ∞, irrespective of n being an
integer. Therefore, the SF-MI phase transition is not captured
in the Bogoliubov formalism [56].

In the regime U � 1, we can expand Eq. (35) and obtain a
quadratic dependence for the relative depletion (cf. Fig. 3)

δn

n
= α U2, (37)

with α = (L4 + 10L2 − 11)/(2880N ). The range of validity
of this quadratic behavior decreases with the system size
roughly as L−2. Nevertheless, Eq. (37) entails that as U → 0
the relative depletion goes to zero with a vanishing slope for
any finite L. We will see below that this feature determines the
decay of the inelastic cross section for weak interaction.

IV. EXPRESSION FOR THE CROSS SECTION IN
BOGOLIUBOV APPROXIMATION

The inelastic part of the many-particle scattering cross
section Eq. (4) is comprised of a sum over all energetically
allowed excited states |e〉 with a nonvanishing matrix element
〈e| n̂(r) |g〉 of the density operator n̂(r). As described in
Sec. II, the spatial representation of the density operator is
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conveniently obtained from the lowest-band Wannier basis of
the lattice w(x − xj ) [see Eqs. (8) and (9)], where xj = jd is
the center of the j th lattice site. Furthermore, only the diagonal
elements of the density operator in this basis are considered. In
the Bogoliubov framework, we expand the diagonal elements
in the fluctuations, using Eqs. (15) and (25), and the inelastic
cross section reads

1

a2
s

dσ

d�

∣∣∣∣
inel

=
∑

e

√
1 − Ee − Eg

E0
|W (κe)|2

×
∣∣∣∣∣∣

L∑
j=1

eiκexj 〈e| δn̂j + 1

4n0
δn̂2

j + n0δϕ̂
2
j |g〉

∣∣∣∣∣∣
2

,

(38)

where for simplicity we denote δn̂xj
≡ δn̂j , δϕ̂xj

≡ δϕ̂j , and
the x component of the transferred momentum is labeled as κe

to emphasize its dependence on the excited state. Let us recall
that the transferred momentum is given by Eq. (7), and the
form factor of the lattice unit cell W (κ) is defined in Eq. (10).

To linear order, the fluctuations in Eq. (38) are density
fluctuations, and phase fluctuations only appear to second
order. By virtue of Eqs. (28), (29), and (32) the fluctuations
are transformed into the quasiparticle basis, yielding

1

a2
s

dσ

d�

∣∣∣∣
inel

=
∑

e

√
1 − Ee − Eg

E0
|W (κe)|2

∣∣∣∣∣∣
L∑

j=1

eiκexj

×
{

1√
L

∑
q 	=0

eiqxj
√

n0aq 〈e| (γ̂q + γ̂
†
−q) |g〉

+ 1

4L

∑
q,q ′ 	=0

ei(q+q ′)xj
[
aqaq ′ 〈e| (γ̂q + γ̂

†
−q)

× (γ̂q ′ + γ̂
†
−q ′ ) |g〉 − a−1

q a−1
q ′ 〈e| (γ̂q − γ̂

†
−q)

× (γ̂q ′ − γ̂
†
−q ′ ) |g〉]}

∣∣∣∣∣∣
2

. (39)

Since the excited states are number states in the quasiparticle
basis, the sum over |e〉 in Eq. (39) becomes a sum over
quasiparticle modes and can be split into two contributions:
one corresponding to the excitation of one quasiparticle, and
a second one, corresponding to the simultaneous excitation of
two quasiparticles

1

a2
s

dσ

d�

∣∣∣∣
inel

= N0

L2

∑
q 	=0

√
1 − ωq

E0

εq

ωq

|�(κq − q)W (κq)|2

+ 1

2L2

∑
q,q ′ 	=0

√
1 − ωq + ωq ′

E0
f (q,q ′)

× |�[κq+q ′ − (q + q ′)]W (κq+q ′ )|2, (40)

where

�(κq − q) =
L∑

j=1

ei(κq−q)xj , (41)

|�(κq − q)|2 = sin2[(κq − q)dL/2]

sin2[(κq − q)d/2]
, (42)

and

f (q,q ′) = εqεq ′ + Un0(εq + εq ′ ) + 2(Un0)2 − ωqωq ′

(1 + δq,q ′ ) ωqωq ′
. (43)

The x component of the transferred momenta κq and κq+q ′

are now characterized by the quasimomenta of the excitations,
and are evaluated via Eq. (7), replacing the excitation energy
Ee − Eg by ωq and ωq + ωq ′ , corresponding to the creation
of one quasiparticle in mode q, and two quasiparticles in
modes q and q ′, respectively. In Eq. (40), we have stated
the two-quasiparticle contribution for completeness. It should,
however, be dropped: while the single-quasiparticle contribu-
tion scales like N0, the two-quasiparticle contribution is of
order one. Terms of this order have already been neglected
in the truncation of Hamiltonian (16); they are therefore
not complete and must be neglected here as well. Thus,
the inelastic many-particle cross section in the Bogoliubov
approximation is given by the first term of Eq. (40). To compare
different configurations, we normalize the cross section to the
total number of bosons N , which is the scale of the superfluid
cross section (cf. Table I), and obtain finally

1

Na2
s

dσ

d�

∣∣∣∣
Bog

inel

= 1

L2

∑
q 	=0

√
1 − ωq

E0

n0 εq

nωq

|�(κq − q)W (κq)|2.

(44)

This last expression corresponds to the term linear in the
fluctuations in Eq. (38), which shows that to this level of
the approximation the inelastic cross section stems from the
excitation of density fluctuations only [43]. In fact, the quantity
εq/ωq corresponds to the dynamic structure factor in the
Bogoliubov approximation, which characterizes the system’s
response to a density perturbation [23,57].

The result (44) allows for the analysis of the dependence of
the inelastic cross section on the system parameters, in partic-
ular on the interaction strength U . For this task, the Wannier
function will be approximated by a Gaussian, corresponding
to the ground state of the harmonic approximation of each
potential well of the lattice

w(x) ≈ 1√
d

(π
√

V0/Er )1/4e− π2

2

√
V0/Er (x/d)2

, (45)

a valid approximation for a lattice depth of V0 = 15Er

considered throughout this work [38]. The form factor that
follows from Eq. (45) is also Gaussian,

W (κ) = e
− (κd)2

4π2
√

V0/Er . (46)

V. ANALYSIS OF THE INELASTIC CROSS SECTION

In the following, we present a detailed study of the
many-particle cross section in the Bogoliubov approximation,
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FIG. 4. (Color online) Inelastic cross section as a function of the
scattering angle θ for N = 25 particles in L = 5 sites, normalized
by N , for different interaction strength U . The incoming energy
is E0 = 2Er , the hopping energy is set to J = 0.0065Er , and
we use m = M . Symbols correspond to the exact cross section
obtained from the diagonalization of HBH. Red lines show the
Bogoliubov approximated cross section [Eq. (44)]. The quality of
the approximation is independent of the angle.

Eq. (44). The condensate density is calculated for each value of
U from Eq. (35), and the Bogoliubov energies ωq and the cross
section are obtained accordingly. The analytical approximation
is compared against the exact result of Eq. (4) from the
numerical diagonalization of HBH [Eq. (1)]. We emphasize
that the exact calculation of the cross section requires the full
spectrum of the system, which is a challenging numerical task
due to the exponential growth of the underlying Hilbert space
with N and L. Thus, we restrict ourselves to small systems
with a moderate number of bosons.

A. Angular dependence of the cross section

The angular dependence of the cross section stems from
the interference of terms with different phases in �(κq − q)
(Bragg-Scattering [58]), i.e., through the dependence on
the transferred momentum κq . For vanishing interaction,
the inelastic cross section is the difference between the
purely elastic Bragg signal of the MI (Fig. 2) and the full
signal of the superfluid, leading to the structured angular
dependence shown in Fig. 4. As the interaction increases,
the inelastic background decays and the interference features
are progressively washed out. The expression for the inelastic
cross section in Bogoliubov approximation [Eq. (44)] provides
a remarkable agreement with the exact calculations even for
noticeably large values of U , as can be seen in Fig. 4. We
will later discuss that, in fact, the quality of the approximation
depends nonmonotonically on the interaction.

Figure 5 shows the dependence of the cross section on both
the scattering angle and the incoming energy of the probe.
For an intermediate fixed θ , scanning through different values
of E0 is similar to probing the system’s spatial structure by
varying the detected scattering angle. For low E0 the angular
dependence of the cross section exhibits a rich oscillating
pattern which changes strongly with the system size. To
analyze the most prominent features of the effect of U on
the cross section, we will consider the regime where the
probe energy is high as compared to the excitation spectrum,

0 1 2 3 4 5
0

Π 8

Π 4

3Π 8

Π 2

Θ

E0 Er

0 0.25 0.5 0.75 1
dΣ d ine l

Bo g
as

2 N

FIG. 5. (Color online) Dependence of the inelastic Bogoliubov
cross section on the incoming energy E0 and the scattering angle
θ for N = 100 particles on L = 100 sites at fixed interaction
strength U = 0.02J , for which δn/n = 0.012. We set J = 0.0065Er

and m = M .

and all excited states contribute equally to the scattering
signal. This requires E0 � 4J

√
1 + U/2 ≥ ωq , which with

our typical choice of parameters is fulfilled for E0 � Er . Let us
recall that to avoid interband excitations the incoming energy
must be smaller than the band gap of the spectrum of the
lattice E0 < 6Er . In the chosen regime for E0, a considerable
simplification of Eq. (44) is obtained by assuming L � 1
(Appendix A)

1

Na2
s

dσ

d�

∣∣∣∣
Bog

inel

= n0

n

εκel√
εκel (εκel + 2Un0)

|W (κel)|2, (47)

where

κeld = −π sin θ

√
E0

Er

m

M
(48)

is the x component of the transferred momentum for elastic
scattering, and the condensate density n0 must still be obtained
from Eq. (35). In Fig. 6, the Bogoliubov cross section [Eq.
(44)] is compared to the large-L simplification for different
parameters. Expression (47) describes remarkably well the
behavior of the cross section even for small system sizes, up to
interference-induced oscillations which are more prominent
the smaller the size and die out as L increases. Note that,
whenever the transferred momentum equals a reciprocal lattice
vector, i.e., κeld = 2πj for j ∈ Z(in particular for θ = 0),
destructive interference makes the inelastic cross section
vanish for all values of U .

B. Dependence on the interaction

In Fig. 7, the inelastic cross section is shown as a function
of U for a system of L = 5 sites for different numbers of
particles (N = 10, 25). For a fixed system size and particle
density n, and high incoming energy, the inelastic cross
section decays monotonically with the interaction strength

023629-7



MAYER, RODRIGUEZ, AND BUCHLEITNER PHYSICAL REVIEW A 90, 023629 (2014)

0 π/8 π/4 3π/8 π/2
θ

0

0.2

0.4

0.6

0.8

1

(d
σ/

dΩ
) in

el
B

og
/a

s2 N

Finite L
Large-L formula

(c)

(b)

(a)

FIG. 6. (Color online) Comparison of the large-L formula of the
Bogoliubov cross section [Eq. (47), black lines] vs expression (44)
(orange thick lines) for (a) L = 10, n = 10, E0 = 2Er , U = 2J

(δn/n = 0.080); (b) L = 100, n = 5, E0 = 3Er , U = 0.5J (δn/n =
0.098); and (c) L = 1000, n = 1, E0 = 5Er , U = 0.01J (δn/n =
0.027). In all cases J = 0.0065Er and m = M .

U . Even for low density (n = 2), expression (44) describes
the cross section correctly over a wide range of values for
the interaction, and eventually deviates increasingly from
the exact result as U becomes larger. Since the Bogoliubov
treatment requires a high number of bosons, the approximation
performs considerably better for n = 5, for which we find
a remarkable agreement with the exact result even for large
values of U . For the integer densities considered, a careful
observation reveals that as U increases, one finds a regime
where Eq. (44) underestimates slightly the cross section,
until both the exact and the approximated results cross, and
eventually, for sufficiently large U , the Bogoliubov expression
decreases slower than the exact result. The latter large-U
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0.8

(d
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dΩ
) in

el
 /

a s2 N
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Un/J

0
0.1
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/n N = 25
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0 0.1 0.2 0.3
Un/J
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0.8

Exact N = 25
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Bog. N = 25
Bog. N = 10
linear approx.

FIG. 7. (Color online) Main panel: Inelastic cross section into
the angle θ = π/4 as a function of U = Un/J for N = 10 (red
diamonds) and N = 25 (black circles) bosons in a lattice of length
L = 5. The incoming energy is E0 = 2Er , the hopping energy is set
to J = 0.0065Er , and we use m = M . Solid lines correspond to the
analytical formula (44), while symbols are exact results. The inset
shows the behavior for small values of U . For U � 1, the normalized
inelastic cross section becomes independent of the density n, and
can be approximated by a linear function (blue dashed line) given
by Eq. (52). Lower panel: Relative condensate depletion for N = 10
(red dashed line) and N = 25 (black solid line) particles.
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FIG. 8. (Color online) Average relative deviation �CS of the
Bogoliubov inelastic cross section with respect to the exact result,
as a function of the interaction U/J and the density n for a system
of L = 5 sites (note the inverted x axis). Relevant parameters are the
same as in Fig. 7. Contour lines corresponding to 3% (gray dashed
line), 10% (white dashed line), and 30% (black solid line) deviation
are marked. The inset shows the relative condensate depletion δn/n.

behavior can be understood qualitatively in the following way.
For integer n, the condensate density n0 will vanish at the
SF-MI phase transition, for a finite U . Since in the Bogoliubov
approximation n0 only vanishes for U → ∞, a slower decay
of the condensate fraction, and thus of Eq. (44) should be
expected. Although the phase transition does not take place in a
finite system, qualitatively, it manifests itself in the faster decay
of the exact cross section for large interactions, as compared
to the analytical approximation.

The above reasoning is supported by the behavior of the
average relative deviation of Eq. (44) with respect to the exact
result

�CS =
〈∣∣ dσ

d�

∣∣Bog
inel − dσ

d�

∣∣Exact
inel

∣∣
dσ
d�

∣∣Exact
inel

〉
[0,π/2]

, (49)

where 〈·〉 indicates the average over the scattering angle θ .
Figure 8 shows �CS as a function of the density n and the
interaction U . A nonmonotonic dependence of �CS on U is
observed, which corresponds to the aforementioned crossing
of the analytical approximation and the exact result. At integer
values of the density, the deviation (49) increases after the
crossing (minimum of �CS) as U grows and the system
approaches the Mott insulating limit. However, for noninteger
n, the approximation performs always better for large U , as
should be expected since in this case the system remains in
an SF state. We emphasize that this distinct behavior already
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manifests itself for small systems, and even for L = 5 the
analysis of �CS in Fig. 8 shows qualitatively the structure
of the ground-state phase diagram of HBH. Note that, in
contrast, the relative depletion (Fig. 8, inset) derived within
the framework of the Bogoliubov approximation reveals no
information on the SF-MI transition. Overall, �CS decreases
with the density, showing the improving quality of the Bo-
goliubov approximation, reflected in the decrease of δn/n for
increasing n.

C. Decay for weak interaction

The Bogoliubov approximation, and thus Eq. (44), is valid
for small condensate depletion, which does not necessarily
imply that the interaction parameter U is small, as demon-
strated in Fig. 7. Since for each value of the interaction,
the condensate density n0 must be obtained numerically [see
Eq. (35)], there is no closed expression of Eq. (44) as a function
of U . Nevertheless, a U expansion of the cross section keeping
the full dependence of the depletion reveals that

1

Na2
s

dσ

d�

∣∣∣∣
Bog

inel

=
(

1 − δn

n

){
�sf(L,E0,θ )

−�(L,E0,θ )

(
1 − δn

n

)
U

+O

[
U2

(
1 − δn

n

)2]}
, (50)

where �sf(L,E0,θ ) is the normalized superfluid inelastic cross
section [cf. Table I and Eq. (A4)], and

�(L,E0,θ ) = J

2L2E0

∑
q 	=0

⎡
⎣ 2E0 − εq

εq

√
1 − εq

E0

+ κel

∂

∂κsf
q

⎤
⎦

× ∣∣�(
κsf

q − q
)
W

(
κsf

q

)∣∣2
, (51)

with κsf
q = κel

√
1 − εq/E0 and κel given in Eq. (48).

In the regime U � 1, we know that the depletion exhibits a
quadratic dependence on U [Eq. (37)], and therefore for weak
interaction the inelastic cross section behaves as

1

Na2
s

dσ

d�

∣∣∣∣
Bog

inel

= �sf(L,E0,θ ) − �(L,E0,θ )U , U � 1.

(52)

We thus find that the normalized inelastic cross section decays
linearly with U . Moreover, the decay is independent of the
density n. We emphasize that, in fact, for any dependence
δn/n ∝ Uμ with μ > 1, the first order of the cross section
for nonvanishing interaction is linear and independent of the
depletion, and due solely to the interaction-induced change
of the Bogoliubov spectrum ωq . The linear behavior in the
emergence of the decay of the inelastic cross section, and
its independence on the density for a fixed L, can be clearly
observed in the inset of Figs. 7 and 10, where the validity of
expression (52) is also confirmed.

As presented in Sec. V A and Appendix A, a considerable
simplification of the formalism can be achieved by assuming
L � 1, and in the regime of high-incoming energy (E0 �

0 π/8 3π/8π/4 π/2
θ
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FIG. 9. (Color online) Slope �(L,E0,θ ) of the decay of the
inelastic Bogoliubov cross section at incoming energy E0 = 5Er ,
J = 0.0065Er , and m = M , for L = 10 (blue line), L = 100 (orange
line), and the large-L approximation (dashed line) from Eq. (53).
White circles highlight the angles at which the large-L approximation
is exact for L = 10, given in Eq. (A13). The lower panel shows
the inelastic cross section for L = 100 and n = 5 at U = 0 and
U = 0.01J (δn/n = 5 × 10−3).

4J
√

1 + U/2 � ωq). In this case, using Eq. (47), the linear
decay is simply given by

1

Na2
s

dσ

d�

∣∣∣∣
Bog

inel

= |W (κel)|2
(

1 − U
4 sin2(κeld/2)

)
, U � 1,

(53)

for κeld 	= 2πj , j ∈ Z. In Fig. 9, we compare the slope of the
decay �(L,E0,θ ) to the one given in the second equation. The
large-L formula provides a very good approximation (up to
finite-size-induced oscillations) even for small systems, and
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FIG. 10. (Color online) Decay of the inelastic cross section vs U ,
for E0 = 5Er , different scattering angles, system sizes, and densities,
as indicated in the plot. Solid lines are obtained from the Bogoliubov
formula (44) and black dashed lines depict the linear approximation
given in Eq. (53). At U = 1, we have δn/n = 0.011 for L = 1000
and n = 50, and δn/n = 0.054 for L = 100 and n = 5. The inset
shows exact numerical results (symbols) obtained for E0 = 3Er , and
blue dashed lines correspond to the linear decay given by Eq. (52).
In all cases J = 0.0065Er and m = M .
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for a given L it is exact for certain values of the scattering
angle, as discussed in the Appendix A. The expression above
also reveals that it is in the vicinity of the points corresponding
to κeld = 2πj where the decay occurs fastest (see lower panel
of Fig. 9).

For sufficiently small U the inelastic cross section must
decrease linearly for any system size. One may, however, ask,
since the U range of the validity of the quadratic dependence
of the depletion decreases with L, whether the linear decay
plays a relevant role for large system sizes. Indeed, as we
demonstrate in Fig. 10, if the atomic density is high enough,
the linear approximation given in Eq. (53) describes correctly
the behavior of the decay as U → 0, even for large system
sizes. Furthermore, we emphasize that in this case the decay
is not only independent of the density, but also of the system
size, and determined uniquely by the incoming energy and the
scattering angle.

VI. CONCLUSION

In this work we have studied the inelastic cross section of
a coherent matter wave scattered from interacting ultracold
bosons in an optical lattice, focusing on the dependence on
the interaction among the trapped bosons. For this purpose,
we have used Bogoliubov’s formalism to obtain analytically
the inelastic cross section in the regime of small condensate
depletion. We have compared the analytical results against
exact numerical calculations, and we have analyzed the cross
section with respect to the scattering angle, incoming energy,
density, system size, and interaction energy U . We found
a linear decay of the normalized cross section for weak
interaction. For a given incoming energy and scattering angle,
the decay with the interaction strength U is independent of
the number of particles in the system, of the condensate
depletion, and (above a certain number of sites) becomes also
independent of the system size.

Here we considered mainly the regime of high incoming
probe energy, where all the excitation spectrum of the system
contributes comparably to the scattering signal. The analysis
for low incoming energy, as well as the energy-resolved
scattering, would additionally provide access to the spectral
information of the target [59].

While in the Mott insulating limit (U → ∞) the inelastic
cross section vanishes [30], whether it can be used to
characterize the SF-MI transition remains to be demonstrated.
For instance, it is not known if the vanishing of the inelastic
cross section extends to the whole Mott lobes, or if on the
contrary the transition might be signalled by a change in
the dependence of the decay on U as the phase boundary
is crossed. Since the transition cannot be reached within the
Bogoliubov prescription, different techniques will have to be
used to answer this question.
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APPENDIX: CROSS SECTION FOR LARGE SYSTEM SIZE

In the noninteracting case (U = 0), i.e., in the SF limit, the
elastic and inelastic cross sections converge to well-defined
expressions as L → ∞. As given in Table I, the elastic cross
section (neglecting off-diagonal overlapping of the Wannier
functions) reads

�el ≡ 1

N2a2
s

dσ

d�

∣∣∣∣
el

= 1

L2
|�(κel)|2|W (κel)|2, (A1)

in terms of �(κ) and κel defined in Eqs. (41) and (48),
respectively. In the large-L limit we observe that

1

L2
|�(κel)|2 −→

L→∞
δκel,Q, (A2)

for all reciprocal lattice vectors Q = 2πj/d, j ∈ Z. Thus,

�el = |W (κel)|2δκel,Q, L � 1. (A3)

On the other hand, the normalized inelastic cross section is
given by

�sf
inel ≡ 1

Na2
s

dσ

d�

∣∣∣∣
inel

= 1

L2

∑
q 	=0

√
1 − εq

E0

∣∣�(
κsf

q − q
)
W

(
κsf

q

)∣∣2
, (A4)

where κsf
q = κel

√
1 − εq/E0, and εq is the one-dimensional

Bloch dispersion relation [Eq. (31)]. For large L one has

1

L

∣∣�(
κsf

q − q
)∣∣2 −→

L→∞
2π

d
δ
(
κsf

q − q − Q
)
, (A5)

1

L

∑
q 	=0

−→
L→∞

d

2π

∫
dq, (A6)

where the q sum in the first Brillouin zone is replaced by an
integral over the interval (0,2π/d) excluding the borders. One
can then write

�sf
inel =

∫
dq δ

(
κsf

q − q
)√

1 − εq

E0

∣∣W (
κsf

q

)∣∣2
, (A7)

after making the change q + Q → q. The integration interval
now runs over all space excluding the points q = Q. The latter
expression evaluates to

�sf
inel =

√
1 − εq ′

E0

|W (q ′)|2∣∣1 + κeld
J sin(q ′d)

E0

√
1−εq′ /E0

∣∣ , (A8)

where q ′ 	= Q is the solution of κsf
q ′ − q ′ = 0 (for our choice

of J = 0.0065Er one can see that there is only one possible
q ′). If q ′ = Q then �sf

inel = 0. In the case of high incoming
probe energy, E0 � 4J , the expression above can be further
simplified and the cross section converges to

�sf
inel = |W (κel)|2(1 − δκel,Q), L � 1, E0 � 4J. (A9)

Figure 11 shows �el and �sf
inel for a lattice with L = 50 sites

and how they compare with the large-L limit.
Similarly, a simpler expression of the inelastic cross section

in Bogoliubov approximation [Eq. (44)] can be obtained
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FIG. 11. (Color online) Elastic cross section [Eq. (A1), red line]
and inelastic cross section in the SF limit [Eq. (A4), black line] for
a lattice of size L = 50 with E0 = 5Er , V0 = 15Er , J = 0.0065Er ,
and m = M . The thick orange line shows the form factor |W (κel)|2,
which determines both cross sections for large L according to
Eqs. (A3) and (A9). Note the different normalization factors: In a
system with N bosons, the elastic cross section in units of a2

s is N 2�el

and the inelastic N�sf
inel. Vertical dashed lines mark the intervals given

in Eq. (A12).

after the assumption L � 1. From Eqs. (A5) and (A6), and
following the same procedure as for �sf

inel, we obtain

1

Na2
s

dσ

d�

∣∣∣∣
Bog

inel

= n0

n

√
1 − ωq̃

E0

εq̃

ωq̃

|W (q̃)|2∣∣1 + κeld
J sin(q̃d)(εq̃+Un0)

E0ωq̃

√
1−ωq̃/E0

∣∣ ,
(A10)

where q̃ is the solution of κq̃ − q̃ = 0 (for our typical choice
of U and J = 0.0065Er there is only one possible q̃), and

let us recall that κq = κel
√

1 − ωq/E0. In the regime of
high incoming probe energy, E0 � 4J

√
1 + U/2 � ωq , the

expression above is well approximated by

1

Na2
s

dσ

d�

∣∣∣∣
Bog

inel

= n0

n

εκel

ωκel

|W (κel)|2, (A11)

which corresponds to Eq. (47). Note that an L dependence
still exists through the value of the condensate fraction n0,
which is given by Eq. (35). This large-L expression describes
also remarkably well the qualitative behavior of the cross
section for systems as small as a ten-site lattice, as shown
in Fig. 6. Since Eq. (A11) relies on the identification q = κel,
the limitation of the applicability of the approximation for a
finite L stems from the discretized nature of the contribut-
ing quasimomentum q ∈ [2π/Ld,2π (L − 1)/Ld] + Q with
�q = 2π/Ld. This leads to a range for the scattering angle
within which Eq. (A11), and equivalently Eqs. (A3) and (A9)
can be expected to perform well for finite systems (cf. Fig. 11),
namely [

θ
(j )
1 ,θ

(j )
L−1

]
, j ∈ Z, (A12)

where

θ (j )
s = arcsin

(
2

√
Er

E0

M

m

[
j + s

L

])
, s = 1, . . . ,L − 1.

(A13)

In fact, one can see that in the regime of high incoming probe
energy, for a finite system of size L, the large-L expressions
are exact at the scattering angles θ

(j )
s .
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