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Spin-orbit-coupled Bose-Einstein condensates in a cavity:
Route to magnetic phases through cavity transmission

Bikash Padhi and Sankalpa Ghosh*

Department of Physics, IIT Delhi, New Delhi 110016, India
(Received 17 May 2014; published 20 August 2014)

We study the spin-orbit-coupled ultracold Bose-Einstein condensate placed in a single-mode Fabry-Pérot
cavity. The cavity introduces a quantum optical lattice potential which dynamically couples with the atomic
degrees of freedom and realizes a generalized modified Bose-Hubbard model whose zero-temperature phase
diagram can be controlled by tuning the cavity parameters. In the noninteracting limit, where the atom-atom
interaction is set to 0, the resulting atomic dispersion shows interesting features such as a bosonic analog of
Dirac points, a cavity-controlled Hofstadter spectrum which bears the hallmark of pseudospin-1/2 bosons in the
presence of Abelian and non-Abelian gauge fields (the latter due to spin-orbit coupling) in a cavity-induced optical
lattice potential. In the presence of atom-atom interaction, using a mapping to a generalized Bose-Hubbard model
of spin-orbit-coupled bosons in a classical optical lattice, we show that the system realizes a host of quantum
magnetic phases whose magnetic order can be detected from the cavity transmission. This provides an alternative
approach to detecting quantum magnetism in ultracold atoms. We discuss the effects of cavity-induced optical
bistability on these phases and their experimental consequences.
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I. INTRODUCTION

Quantum simulation of exotic condensed matter phases
[1–3] with ultracold atoms has witnessed tremendous progress
in recent times. A significant step in the direction of realization
of such exotic phases was taken through the experimental re-
alization of synthetic spin-orbit coupling for bosonic ultracold
systems [4,5] and, subsequently, for fermionic ultracold atoms
[6,7]. The development opened the possibility of simulating
analogs of topologically nontrivial condensed matter phases
[8], as well as quantum magnetic phases [9] in the domain of
ultracold atoms. All these developments led to a flurry of the-
oretical as well as experimental activity in this direction [10].

In this work we consider such spin-orbit-coupled (SOC)
ultracold Bose-Einstein condensate (BEC) inside a Fabry-
Pérot cavity (see Fig. 1) and study the consequences of atom-
photon interaction on the phase diagram of SOC bosons. The
motivation for studying SOC ultracold atoms in this unique
environment comes from the recent progress in studying
ultracold atomic systems in a high-finesse single-mode optical
cavity [11–17] and the resulting cavity optomechanics with
ultracold atoms. The presence of an atomic ensemble in the
form of a BEC in such an optical cavity allows a strong
optomechanical coupling between the collective mode of the
condensate and the photon field. Consequently the quantum
many-body state of the atom can be probed by analyzing
the cavity transmission. The coupled atom-photon dynamics,
resulting backaction, cavity-induced bistability—all these
together can lead to a number of interesting phenomena
including self-organization of the atomic many body states
[18–21] and bistability-induced quantum phase transition [22].

In this context, the deliberated quantum optics with an
SOC BEC in a high-finesse Fabry-Pérot cavity that forms
the subject matter of the current work is interesting on more
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than one account. First, the cavity-atom interaction provides
a dynamic optical lattice potential [23] for the SOC Bose
gas where the optical lattice potential is dynamically altered
through its interaction with the ultracold atomic condensate
inside. This allows one to realize certain variants of the
modified Bose-Hubbard model (mBHM). Thus far, following
the seminal work on the superfluid (SF)–Mott insulator (MI)
transition in ultracold atoms [24,25], the mBHM has been
studied mostly in the presence of the prototype classical optical
lattice potential. However, now the dynamical nature of the
photon field contributes additional features and profoundly
influences the resulting phase diagram.

It has been shown in the recent literature [26–29] that a
number of intriguing quantum magnetic phases can be realized
by such ultracold SOC Bose-Einstein systems in a classical
optical lattice potential. Our study of such SOC BECs inside a
cavity clearly analyzes such magnetic orders when the photon
field is treated dynamically and clearly demonstrates how such
magnetic phases can be detected by analyzing the transmission
of photons from the cavity. As we point out, this provides
an alternative way of detecting quantum magnetic phases of
ultracold atoms. The cavity spectrum can be used to detect
various other properties of cold atomic systems such as the
MI-SF transition [16], detection of Landau levels in fermionic
systems [30], phase diagram of a two-component Bose gas
[31], and many more [11]. It was also proposed to create a
synthetic spin-orbit interaction in a ring-cavity system [32].

The spin-orbit coupling also realizes a synthetic non-
Abelian gauge field for such an ultracold atomic system [4,33],
and consequently, a spin-1/2 Bose system is also realized
(we use “spin” and “pseudospin” interchangeably), which
is fundamentally prevented by the spin-statistics theorem
[10,34]. Our theoretical framework allows us to study the
single-atom spectrum of such an esoteric quantum system in
the environment of a dynamical optical lattice induced by the
cavity and brings out the intriguing properties of the resulting
band structure.
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The sequence of subsequent discussion is as follows. The
SOC Bose system we consider here was motivated by a recent
experiment by the NIST group [4]. In Sec. II we begin by
introducing the fully second-quantized Hamiltonian of such
systems inside a single-mode optical cavity in terms of the
annihilation and creation operators of photons and atoms.
The Hamiltonian and the resulting Heisenberg equation of
motion of the field operators clearly demonstrate the dynamical
nature of the optical lattice. Adiabatically eliminating the
exited states of the atomic condensate we obtain an effec-
tive Hamiltonian for pseudo-spin-1/2 Bose-Einstein systems
where the pseudospin degrees of freedom corresponds to
the two lowest hyperfine states of the original multiplet of
the ultracold atomic system considered. In the subsequent
discussion, using a tight-binding approximation we derive the
mBHM for the resulting system. We show that this can be
mapped suitably to the Bose-Hubbard model (BHM) of an
SOC Bose gas in a classical optical lattice created by standing
waves of counterpropagating laser beams [26]. But now the
lattice parameters are being controlled by the cavity parameters
as well as atom-photon interaction.

We arrive at our final Hamiltonian [Eq. (26)] in Sec. III A,
which is an mBHM. In the subsequent Sec. III B, we study
the energy spectrum of this mBHM in the limit where the
atom-atom interaction vanishes. In the presence of an optical
lattice and synthetic non-Abelian gauge field created by the
spin-orbit coupling, the system shows a highly intriguing band
structure that features the existence of Dirac points in such a
bosonic system like their fermionic counterpart, a property
which underscores the spin 1/2 of this bosonic system. Then
in Sec. III C we discuss the various magnetic phases stabilized
by the ground state of this Hamiltonian. We consider such
magnetic phases in a deep optical lattice regime where the
orbital part is always an MI state and the spinorial part can
realize various magnetic phases through its texturing.

In Sec. IV we study the probing method, i.e., how to detect
various magnetic phases in an MI type of ground state through
the cavity transmission spectrum. Our suggestion provides an
alternative way of detecting quantum magnetism in ultracold
atomic systems. The role of cavity-induced bistability in the
detection of such magnetic phases and the related phase tran-
sition are also discussed. We, finally, discuss the possibility of
experimental realization of our scheme and conclude in Sec. V.

II. THE MODEL

We consider a condensate of N0
87Rb atoms in two internal

states, |mF 〉 = |1〉,|0〉, available in the F = 1 manifold of
the 5S1/2 electronic levels (see Fig. 1). These two states are
coupled by a pair of suitably detuned Raman lasers, and a
combination of Rashba and Dresselhaus spin-orbit coupling
is realized [4]. This SOC BEC is now coherently driven into
a linear cavity by a strong far-off resonant pump laser, where
it interacts with a single mode of the cavity. We consider
a high-Q cavity (i.e., a cavity in which a photon takes a
large number of round trips before it leaks out) with a strong
atom-field coupling. Not only do these two considerations
enhance the atom-photon dipole interaction, but also the
backaction of the atoms on the light becomes significant
[12–14]. The resulting atom-cavity interaction thus generates

FIG. 1. (Color online) 87Rb BEC inside an optical cavity: SOC
is created by two counterpropagating Raman lasers with frequencies
ωL and ωL + �ωL that are applied along x̂. The Raman beams are
polarized along ẑ and ŷ (gravity is along −ẑ). A bias field B0 is
applied along ŷ to generate the Zeeman shift. Inset: Level diagram of
the 87Rb atom. Internal states are denoted |1〉,|2〉,|3〉. The coupling
of these states is shown schematically.

a two-dimensional (2D) square optical lattice potential which
is now dynamical [11,23].

A. The single-particle Hamiltonian

We derive the single-particle Hamiltonian for a two-
component BEC interacting with a strong, classical pump field
and a weak, quantized probe field. Assuming a dipole-like
interaction and using the rotating-wave approximation we can
describe a single atom of this system by the Jaynes-Cummings-
like Hamiltonian [35]

Ĥ = ĤA + ĤC + ĤI . (1)

Denoting the atomic transition frequencies ωij and the transi-
tion operator ξ̂ij = |i〉〈j |, we express the atomic (ĤA), cavity
(ĤC), and atom-cavity interaction (ĤI ) Hamiltonians as

ĤA = �̂
2

2m
+ �ω12ξ̂11 + �ω13ξ̂11, (2a)

ĤC = �ωcâ
†â − i�η(âeiωpt − â†e−iωpt ), (2b)

ĤI = −i�g(x)(ξ̂12â − ξ̂21â
† + ξ̂13â − ξ̂31â

†). (2c)

Here �̂
2
/2m = ( p + mA)2/2m is the covariant momentum

of the bosons. The synthetic vector potential A is taken to
be of the form AU (1) + ASU(2), where the Abelian field is
[36] AU (1) = (0,B0x,0) and the spin-orbit-coupling-induced
non-Abelian field is ASU(2) = (ασy,βσx,0) which is [4] a
combination of Rashba- and Dresselhouse [37]-type spin-orbit
coupling. When β = −α the spin-orbit coupling is purely
of the Rashba type. Here α and β actually denote the
dimensionless SOC strength in units of �K

πm
, where K is

the wave number corresponding to the cavity photon. σ̂x,y,z
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are 2×2 spin-1/2 representations of Pauli matrices. η is the
coupling between the pump and the cavity, ωp is the frequency
of the pump laser, which we set to be ωL + �ωL, ωc is the
frequency of the cavity photon, which is almost in resonance
with the pump beam, and �c = ωp − ωc = �ωL ≈ κ , with
2κ being the cavity decay line width. The operator â (â†)
annihilates (creates) one cavity photon.

g2(x) is the cavity mode function, which varies as the spatial
mode profile, and we take g2(x) = g0[cos2(Kx) + cos2(Ky)],
where g0 is the coupling strength of the atom and cavity field.
We also assume that the wave vectors along x and y directions
are the same, namely, Kx = Ky = K . For simplicity, we
assume that both transitions, |2〉 ↔ |1〉 and |3〉 ↔ |1〉, have
the same coupling with the cavity. Assuming the atoms to
be in the same motional quantum state, the coupling g0 is
assumed to be identical for all atoms. In order to remove
the time dependence of the above Hamiltonian we perform
a unitary transformation on the above Hamiltonian with
Û (t) = exp[iωpt(ξ̂11 + â†â)] [38]. The purpose of this unitary
transformation is to describe the system in terms of slowly
changing variables. In Appendix A 2 we explain in detail
the results derived from the transformed Hamiltonian below,
which will also remain valid in the laboratory frame, provided
that the time scale associated with atomic dynamics is much
faster in comparison with the time scale associated with the
pump laser frequency, ∼1/ωp.

Using Baker’s lemma the following Hamiltonians are
obtained (see Appendix A 1):

ĤA = �̂
2

2m
− ��a

12ξ̂11 − ��a
13ξ̂11, (3a)

ĤC = −��câ
†â − i�η(â − â†) + κâ†â, (3b)

ĤI = −i�g(x)(ξ̂12â − ξ̂21â
† + ξ̂13â − ξ̂31â

†). (3c)

The atom-pump detuning is denoted �a
ij = ωp − ωij . Hence-

forth we denote �a = �a
12 + �a

13. The extra term κâ†â

appearing in ĤC can be justified in the following way: in the
presence of external pumping of atoms the system becomes
an open quantum system and hence dissipation effects must
be incorporated. This is done using the master equation
approach for (atom-field) density matrices [16,39]. Thus the
effect of photon loss due to cavity decay line width (κ) gets
incorporated.

B. The many-body Hamiltonian

Following Refs. [16,22] and [38] we now derive the full
many-body Hamiltonian for this system. To do so we construct
a matrix of all the transition operators and project it onto a full
many-body space. This causes the transition operator ξ̂ij to
pick up the product of �̂

†
i and �̂j . So the final form of the

many-body Hamiltonian becomes

ĤA =
∫

dx
[
�̂

†
2(x)

(
�̂

2

2m

)
�̂2(x) + �̂

†
3(x)

(
�̂

2

2m

)
�̂3(x)

+ �̂
†
1(x)

(
�̂2

2m
− ��a

)
�̂1(x)

]
. (4)

Here �̂i(x) and �̂
†
i (x) are the annihilation and creation

operators for an atom at position x in spin state |i〉. They
obey the usual bosonic commutation relations:

[�̂i (x),�̂†
j (x′)] = δ3(x − x′)δij , (5a)

[�̂i(x),�̂j (x′)] = [�̂†
i (x),�̂†

j (x′)] = 0. (5b)

Since the cavity-field operators commute with the atomic
operators the Hamiltonian ĤC remains unchanged in the
second-quantized notation. In our analysis we assume that
the pump mode is chosen so that its interaction with the atoms
is solely along the ẑ axis, allowing us to exclude its dynamics
on the x-y plane. The two-body interaction between atoms in
the same and different spin states is modeled through [4]

ĤU = U

2

∫
dx[�̂†

2(x)�̂†
2(x)�̂2(x)�̂2(x)

+ �̂
†
3(x)�̂†

3(x)�̂3(x)�̂3(x)

+ λ�̂
†
2(x)�̂†

3(x)�̂2(x)�̂3(x)], (6)

where the intraspecies interaction strength is measured by
U = 4πa2

s �
2/m and the interspecies interaction is measured

by λU , where the parameter λ is decided by the laser
configuration. Here as is the s-wave scattering length. Next,
the many-body interaction between the atom and the cavity
can be modeled as

ĤI= − i�

∫
dx[�̂†

1(x)â�̂2(x)+�̂
†
1(x)â�̂3(x) + H.c.]g(x).

(7)

Now we calculate the Heisenberg equations of evolution for
various field operators (say Â), i�∂t Â = [Â,Ĥ], yielding

∂�̂1(x)

∂t
= −i

(
�̂

2

2�m
−�a

)
�̂1(x) − g(x)â[�̂2(x) + �̂3(x)],

(8a)

∂�̂2(x)

∂t
= −i

[
�̂

2

2�m
+ U

�
�̂

†
2(x)�̂2(x) + Uλ

�
�̂

†
3(x)�̂3(x)

]

× �̂2(x) + g(x)â†�̂1(x), (8b)

∂�̂3(x)

∂t
= −i

[
�̂

2

2�m
+ U

�
�̂

†
3(x)�̂3(x) + Uλ

�
�̂

†
2(x)�̂2(x)

]

× �̂3(x) + g(x)â†�̂1(x), (8c)

∂â(t)

∂t
= i�câ(t) + η +

∫
dx[�̂†

2(x)g(x)�̂1(x)

+ �̂
†
3(x)g(x)�̂1(x)]. (8d)

In the evolution of atomic operators the first term describes
the free evolution of the atomic states. In (8a) the second term
describes the absorption of a cavity photon by an atom, causing
an excitation from |2〉 or |3〉 to the excited state |1〉. Similarly
in (8b) or (8c) the second term describes the emission of a
cavity photon followed by the relaxation of an atom from state
|1〉 to state |2〉 or |3〉. The first term in (8d) is the free evolution
term and the last two terms are the two additional driving terms
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of the field, one by the pump and the other by the emission of
an atom due to relaxation from state |1〉 to state |2〉 or |3〉.

In order to preserve the BEC in its ground state we must
avoid heating, primarily caused by spontaneous emission from
the atoms. The excited state varies at a time scale of 1/γ

(atomic line width) and the ground state and cavity photons
evolve at a time scale of 1/�a . Hence by choosing a large
atom-pump detuning, �a

ij � γ , we can adiabatically eliminate
the excited states from the dynamics of our system [16,38]. By
setting ∂t �̂1(x) = 0 we obtain

�̂1(x) = − i

�a

g(x)â(t)[�̂2(x) + �̂3(x)]. (9)

Inserting this into (8) we get

∂�̂2(x)

∂t
= −i

[
�̂

2

2�m
+ U

�
�̂

†
2(x)�̂2(x) + Uλ

�
�̂

†
3(x)�̂3(x)

+ g2(x)

�a

â†â

]
�̂2(x) − i

g2(x)

�a

â†â�̂3(x), (10a)

∂�̂3(x)

∂t
= −i

[
�̂

2

2�m
+ U

�
�̂

†
2(x)�̂2(x) + Uλ

�
�̂

†
3(x)�̂3(x)

+ g2(x)

�a

â†â

]
�̂3(x) − i

g2(x)

�a

â†â�̂2(x), (10b)

∂a(t)

∂t
= i

[
�c − 1

�a

∫
dxg2(x)[�̂†

2(x)�̂2(x)

+ �̂
†
3(x)�̂3(x) + �̂

†
2(x)�̂3(x)

+ �̂
†
3(x)�̂2(x)]

]
â + η. (10c)

This set of equations is characteristic of a cavity optomechani-
cal system [40]. Here we have developed them specifically for
an SOC BEC system. Since we have adiabatically eliminated
the excited state |1〉 from the dynamics, henceforth we drop the
notation {2,3}, and use {↑ ,↓} instead, to use the language of
“pseudospins.” In other words, the two laser-dressed hyperfine
states |F = 1,mF = 0〉 and |F = 1,mF = 1〉 of the 87Rb
atoms are now mapped to a synthetic spin-1/2 system (hence
pseudospin), with states labeleds |↑〉 and |↓〉. It must be noted
that there exist no real spin-1/2 bosonic systems in nature due
to spin-statistics theorem, but with the help of lasers we could
realize such a system in an ultracold atomic condensate [4]. In
later sections we show how this strange property of the system
leads to some interesting results which are unconventional in
bosonic systems.

Now the dynamics of the atoms effectively comprises the
dynamics of two-species (denoted by their pseudospin label)
bosons coupled by a spin-orbit interaction. The effective
Hamiltonian Ĥeff , which captures the effective dynamics of
the system described in (10), i�∂t �̂↑,↓(x) = [�̂↑,↓(x),Ĥeff]
and i�∂t â = [â,Ĥeff],

Ĥ(1)
eff =

∫
dx�̂†(x)

(
�̂

2

2m
+ Ulat

)
�̂(x) + Ĥc

+ 1

2

∫
dx

∑
s,s ′

Us,s ′�̂†
s (x)�̂†

s ′(x)�̂s ′ (x)�̂s (x). (11)

Here s,s ′ ∈ {↑ ,↓}. For simplification of the notation we
have defined a column vector �̂ = (�̂↑,�̂↓)T . The atom-atom
interaction strength is denoted U↑,↑ = U↑,↑ = U and U↑,↓ =
U↓,↑ = λU . One can note that the atom-cavity coupling has
led to the formation of an optical lattice [38], which is Ulat =
V0[cos2(Kx) + cos2(Ky)]. Here V0 is the depth of the well,
V0 = �U0â

†â, and U0 = g2
0/�a is the effective atom-photon

coupling strength. Now since the lattice depth has become a
(photon number) operator, it is no longer a classical lattice,
but a quantum lattice. In our calculations we have taken an
Nd:Yag (green) laser source of λ = 1064 nm (hence the lattice
constant is a0 = λ/2 = 532 nm). The kinetic energy of an atom
carrying 1 unit of photon momentum, | p| = �K , describes
the characteristic frequency of the center-of-mass motion of
the cloud. Thus the relevant energy scale is Er = �

2K2/2m

(recoil energy), in the units in which we measure all other
energies involved in the problem. For our case the lattice recoil
frequency is ωr = Er/� = 12.26 kHz.

C. The modified Bose-Hubbard model

To investigate various interesting phases of this system
through the cavity spectrum, first we establish an equivalence
of the effective Hamiltonian obtained in (11) in a cavity-
induced quantum optical lattice with a prototype BHM in a
classical optical lattice. Using the tight-binding approximation
this is done as follows. By constructing maximally localized
eigenfunctions at each site on the lattice we expand each
component of the atomic field operator �̂s in the basis of
Wannier functions [41],

�̂s(r) =
∑

i

b̂siw(r − r i), (12)

where b̂
†
si is a bosonic operator that creates an atom in

pseudospin state |s〉 (s = {↑ ,↓}) at site i on the optical lattice.
However, in the presence of a gauge potential the Wannier
functions pick up a gauge-dependent phase and should be
modified as

w(r − r i) → W (r − r i) = e
−i m

�

∫ r
ri

A(r ′)·d l
w(r − r i). (13)

First, we show that under the nearest-neighbor approxi-
mation (i.e., hopping is permitted between two adjacent sites
only), the gauge-transformed Wannier function in (13) forms a
valid basis for the Hilbert space; then we expand the effective
Hamiltonian in (11) in this basis. We denote w(r − r i) as
wi(r). The norm of the gauge-transformed Wannier functions
becomes equal to unity since the gauge transformation only
introduces a phase factor. So we check for orthogonality only.
The inner product is∫

d rW ∗
i (r)Wj (r)

=
∫

d re−i[ασy (xj −xi )−ασx (yj −yi )+B0x(yj −yi )]w∗
i (r)wj (r)

= e−i[ασy (xj −xi )−ασx (yj −yi )]
∫

dxe−iB0x(yj −yi )w∗
i (x)wj (x)

×
∫

dyw∗
i (y)wj (y). (14)

For integration along the x axis, yj − yi = 0, the first
integral in (14) causes the entire expression to vanish to
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0, owing to the orthogonality of the Wannier functions
wi(x), i.e.,

∫
d rw∗

i (r)wj (r) = δij . For integration along the
y axis the second integral in (14) makes the total integral 0
because of the orthogonality of the Wannier functions wi(y).
Hence we establish orthonormality, under the nearest-neighbor
approximation: ∫

d rW ∗
i (r)Wj (r) = δij . (15)

The action of the covariant derivative on this modified Wannier
function can be shown to be (recall that �̂ = −i�∇ + mA)

�̂Wi(r) = e−i m
�

∫ rj
ri

�

i
A(r ′)·d l∇wi(r). (16)

Substituting Eq. (12) in the effective Hamiltonian in (11) and
using Eqs. (14) and (16), we obtain

ĤA =
∫

d2r�̂†(r)
�̂

2

2
�̂(r) = 1

2

∑
i,j

(
b̂
†
↑i b̂

†
↓i

)

×
∫

d2rW ∗
i (r)�2Wj (r)

(
b̂↑j

b̂↓j

)

=
∑

s

⎛
⎝∑

i

Eii b̂
†
si b̂si+

∑
〈i,j〉

b̂
†
siEij e

−iφij b̂sj

⎞
⎠ = E0N̂+ET̂ ,

(17)

ĤI =
∫

d2r
∑

s

�̂†
s (r)Ûlat�̂s(r) = U0â

†â
∑
i,j

(b†↑i b
†
↓i

)

×
∫

d2rW ∗
i (r)[cos2(Kx) + cos2(Ky)]Wj (r)

(
b̂↑j

b̂↓j

)

= U0â
†â

∑
s

⎛
⎝∑

i

Jii b̂
†
si b̂si +

∑
〈i,j〉

b̂
†
siJij e

−iφij b̂sj

⎞
⎠

= Û0â
†â(J0N̂ + J1T̂ ). (18)

Unlike the case of the BHM in a classical optical lattice [24],
for a lattice generated by quantum light we have treated the
matrix elements of the potential and kinetic energy separately.
This is because of the presence of the term â†â in the potential
term. So the modified Bose-Hubbard Hamiltonian becomes

Ĥ(2)
eff = E0N̂ + E1T̂ + �U0â

†â(J0N̂ + J1T̂ ) − ��câ
†â

− i�η(â − â†) + 1

2

∑
i,s,s ′

Us,s ′b
†
isb

†
is ′bis ′bis . (19)

Here E0 (E1) and J0 (J1) are the on-site (off-site) elements of
Eij and Jij , respectively, and these are

Eij = �
2

2m

∫
d2rw∗

i (r)∇2wj (r), (20a)

Jij =
∫

d2rw∗
i (r)[cos2(Kx) + cos2(Ky)]wj (r). (20b)

N̂ = ∑
s,i b̂

†
si b̂si is the total atom number operator and

T̂ = ∑
s

∑
〈i,j〉 b̂

†
sie

−iφij b̂sj is the nearest-neighbor hopping

operator; for the full form of T̂ see Appendix B. Here φij

is the phase acquired by an atom while hopping from lattice
site i to lattice site j :

φij = ασy(xj − xi) + βσx(yj − yi) + 1B0xi(yj − yi). (21)

Here 1 is a 2×2 unit matrix. Because of the dynamical nature of
the lattice (the coefficient term for the lattice potential involves
operators), Eij and Jij are treated separately; otherwise the
hopping amplitude would be identified with t = E1 + J1 and
the chemical potential with μ = E0 + J0.

III. ELIMINATION OF CAVITY DEGREES OF FREEDOM

A. The effective model

The interplay of energy scales associated with the spin-
orbit coupling, motion of atoms in a dynamical lattice, and
atom-atom interactions brings out a richer and more complex
dynamics compared to the usual BHM [16,24], which we
try to capture through the light coming out of the cavity. To
facilitate further discussion on dynamics governed by (19) we
do certain simplifications based on the typical experimental
systems. Following the typical experimental situation [12–14]
we work under a bad cavity limit, where we assume that the
cavity field reaches its stationary state much more quickly
than the time scale involved with atomic dynamics. Hence
it is reasonable (at least for t > 1/κ) to replace the light field
operators with their steady-state values and, thus, adiabatically
eliminate the cavity degrees of freedom from the Hamiltonian,
(19), so that it depends only on the atomic variables. It will
be useful to remember that this process is distinct from the
adiabatic elimination of excited state |1〉, reported in the
previous section. The evolution of light field operators can
be obtained from (19) as

∂t â = 1

i�

[
â,Ĥ

(2)
eff

] = −D̂â + η, (22)

where D̂ = κ + i[U0(J0N̂ + J1T̂ ) − �c] is a complex oper-
ator. Assuming the total number of atoms to be fixed, we
can replace the atom number operator by a fixed quantity,
N0 = 〈N̂ 〉, and due to the presence of atoms an effective
detuning is obtained as �′

c = �c − U0J0N0. Setting ∂t â = 0
we get the steady-state value â(s) = η/D̂ and then expand â

with respect to the hopping matrix T̂ :

â(s) ≈ η

κ − i�′
c

[
1 − iU0J1

κ − i�′
c

T̂ − U 2
0 J 2

1

(κ − i�′
c)2

T̂ 2 + · · ·
]
.

(23)

Substituting this in the Hamiltonian, (19), we obtain the
effective Hamiltonian, expressed in terms of atomic variables:

Ĥ(3)
eff = −J̃0T̂ + J̃1T̂ 2 + · · · + 1

2

∑
i,s,s ′

Us,s ′ b̂
†
is b̂

†
is ′ b̂is ′ b̂is , (24)

J̃0/J1 = U0η
2 κ2 − �′2

c(
κ2 + �′2

c

)2 − E/J1, (25a)

J̃1
/
J 2

1 = 3U 2
0 η2�′

c

3κ2 − �′2
c(

κ2 + �′2
c

)4 . (25b)
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FIG. 2. (Color online) Variation of the two coefficients used in
(24) with effective detuning. Experimental parameters are set to be
{η,κ,U0,J0} = {10,1,0.2,2}ωr .

The parameter J̃0 is the rescaled hopping amplitude, where
the scaling factor is introduced by the cavity parameters and
that of the atom-photon interaction strength. Its variation with
cavity detuning is shown in Fig. 2. Note that J̃0 can be made
to vanish by setting �′

c = κ , and similarly, J̃1 vanishes when
�′

c = √
3κ .

It is clear from (24) that cavity-atom coupling induces
higher order hoppings feasible through terms like T̂ (n). Also,
the amplitude of these terms are well controllable through
cavity parameters, allowing us to study higher order atom-atom
correlations in these systems. Through suitable choice of cavity
parameters, we suppress all higher order terms starting from
T̂ 2. This renders Ĥ(3)

eff to a tight-binding Hamiltonian [41],
which incorporates the effects of cavity, Abelian gauge field,
and non-Abelian gauge field altogether:

Ĥ(4)
eff = −J̃0T̂ + 1

2

∑
i,s,s ′

Us,s ′ b̂
†
is b̂

†
is ′ b̂is ′ b̂is . (26)

This is our effective Bose-Hubbard Hamiltonian, on which the
rest of the work is built. The hopping amplitude is J̃0. The
hopping operator T̂ now contains all the information about
spin-orbit coupling. However, it may be pointed out that, apart
from the modifying bare hopping amplitude J0 to the rescaled
J̃0, the cavity also triggers long-range correlations via higher
order terms in T̂ which we ignored. In fact in the presence of
a dynamical lattice both the atom and the photon operators
evolve, in accordance with their corresponding (coupled)
Heisenberg equations [38]. One can solve this pair of equations
simultaneously to study the full self-organization. However,
assuming that the atoms fall through the cavity light field
sufficiently faster (much before the atoms affect the cavity
photon), we ignore the backaction of the atoms on the cavity
light [40]. Self-organization of atoms in the lattice [19,20] can
in itself be a separate direction to pursue, facilitating study of
the self-organized checkerboard phase [42], supersolid phase
[43], or quantum spin-glass phase [44].

In the following subsection we analyze the complete
energy spectrum in the noninteracting limit of the effective
Hamiltonian in (26). For this subsection only, we switch off

the interatomic interaction, namely, Us,s ′ = 0, which can be
achieved by tuning the s-wave scattering length as to 0 using
the Feshbach resonance method [45]. For 85Rb this can be
achieved at a low magnetic field and for various scattering
channels [46]. However, in recent times there also has been a
lot of progress in tuning the scattering length of 87Rb, whose
hyperfine states we consider in our work. Feshbach resonances
in 87Rb were first identified via magnetic tuning in [47],
and later many alternative ways were also developed, such
as light-induced resonances [48] and via stimulated Raman
coupling [49].

B. The spectrum: Noninteracting limit

Rescaling of the hopping amplitude by the cavity param-
eters allows a number of physical properties to be controlled
through such parameters. We study the spectrum of this
tight-binding Hamiltonian obtained in (26). We reiterate that
the analysis in this section is in the absence of an atom-atom
interaction. We show that the resulting system yields two
interesting spectra, namely, the Hofstadter butterfly spectrum
[50] and the Dirac spectrum. The emergence of the Hofstadter
spectrum is natural, as the considered noninteracting bosonic
system mimics the motion of a Bloch particle (a quantum me-
chanical particle in a periodic lattice potential) in the presence
of a uniform U(1) gauge field. The energy levels of such a
particle is the Hofstadter spectrum: a butterfly-like structure
is revealed when the energy value of the Bloch particle is
plotted against the Abelian flux inserted. Such is the case in the
absence of spin-orbit coupling (α = 0), where the Hamiltonian
in (26) becomes identical to a Harper Hamiltonian, which
can be obtained through Peierl’s substitution in the usual
tight-binding Hamiltonian [50]. Recently, two groups, at MIT
and in Munich, have experimentally realized such a butterfly
spectrum in cold atomic systems [51]. However, compared
to those systems, in the present case one can control (through
suitable choice of J̃0) the energy scale of the butterfly structure
just by suitably tuning the cavity parameters. The effects of a
non-Abelian gauge field on such a butterfly structure have also
been studied [52].

Next we show how the Dirac spectrum emerges. For this
the Hamiltonian in (26) is diagonalized in Appendix B 1, and
the spectrum obtained is

E±/J̃0 = 2 cos α cos kx + 2 cos β cos(ky − 2mπ�)

±
√

sin2 α sin2 kx + sin2 β sin2(ky − 2mπ�), (27)

where (m,n) is a lattice point. The energy values are plotted
against the particle momentum and a Dirac-like spectrum is
obtained as shown in Fig. 3.

The band splitting in the spectrum becomes evident as soon
as the effects of SOC are incorporated, showing a band gap
(Eg) of Eg/J̃0 = 4 sin α

√
sin2 kx + sin2(ky − 2mπ�), where

the gap can be tuned by the cavity as well (through J̃0). Also,
in the first Brillouin zone the band gap is maximum when
(kx,ky) ∈ {(±π/2, ± π/2)} and Emax

g /J̃0 = 4
√

2 sin α ≡ W .
It is possible to carry out a band-gap measurement in such
systems via Bragg spectroscopy [53], through which one
can measure the non-Abelian flux inserted in the system.
However, the gap vanishes when both sin ky = sin kx = 0.
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FIG. 3. (Color online) Three-dimensional view of the energy spectrum plotted for a purely (� = 0 non-Abelian gauge field. The strength
of SOC is (a) α = π/2 = β and (b) α = π/2 + 0.25, β = π/2 − 0.25. The surface plot is an intensity map of the energy difference between
E+ and E−. The four green spots on the surface correspond to the four (bosonic) Dirac points (at the zone centers) where the energy gap
between the two bands vanishes. The red band and blue band correspond to E+ and E−, respectively. W is the maximum band gap, which
occurs at the zone boundaries. (c, d) Location of the Dirac points on the momentum space are shown for 2mπ� = 0.75 and 1.5, respectively.
With increasing � the Dirac points move along the positive ky axis.

In the first Brillouin zone (by setting � = 0) this can hap-
pen for (kx,ky) ∈ {(0,0),(±π,0),(0, ± π ),(±π, ± π )} ≡ kD .
In the vicinity of these points the effective low-energy behavior
can be described (see Appendix B 1 for details) by a Dirac-like
Hamiltonian:

Ĥeff = −
∑

p

�̂†
pĤD�̂ p, ĤD = cxγxpx + cyγypy. (28)

Here ĤD is a Dirac Hamiltonian, p = k − kD , but the field
operators �̂ p are bosonic annihilation operators. The γ matri-
ces γ0 = 1, γ1 = γx = σy , and γ2 = γy = σx are the (2 + 1)-
dimension representation of Clifford algebra, {γi,γj } = 2δij .
The speeds of light cx = 2 sin α and cy = 2 sin β are now
anisotropic. As shown in Fig. 3, through this anisotropy the

SOC strength can be used as a handle for controlling the shape
of the Dirac cones. We refer to the “Dirac-like” points kD in
our bosonic system also as Dirac points. Near kD the excitation
quasiparticles are massless bosons having a dispersion relation
linear in k, the slope of which is controlled by adjusting the
spin-orbit coupling strength.

It must be emphasized that such massless bosonic quasi-
particles which mimic massless dirac fermions in relevant
fermionic systems [53] arise in this system as a consequence of
the spin-1/2 nature of the bosons. Such spin-1/2 bosons have
no natural analog because of Pauli’s spin-statistics theorem.
However, this constraint can be lifted by synthetic symmetries
[54] and a synthetic bosonic (pseudo-) spin-1/2 system can
be realized [10]. Soon after the preliminary proposals on
simulation of Dirac fermions in cold-atom systems [55] they
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were realized experimentally [53], using density profile mea-
surement methods or Bragg spectroscopy. Similar techniques
may also be exploited to observe the bosonic quasiparticles
that follow the massless Dirac equation.

As is evident from Eq. (27), the effect of an Abelian field
would be to move these points in the momentum space [see
Figs. 3(c) and 3(d)]. With a finite Abelian field there also
emerges a Hofstadter spectrum as discussed previously. This
can be verified by plotting the energy as a function of the
Abelian (magnetic) flux [52]. For the same system in Figs. 3(c)
and 3(d) we plot the energy versus the Bloch momentum
for a given value of the Abelian flux to show the location
of the Dirac points. By Eq. (27) it is also suggested that,
with the use of a spatially modulated Abelian flux, one may
control the separation between the Dirac points. Motion and
merging of Dirac points are also very interesting, as they lead
to topological phase transitions [56]. One can also switch on
the interaction and study its effects on the spectrum [57].

C. Emerging magnetic orders

In this subsection we discuss the various magnetic orders
that arise in the ground state of the Hamiltonian, Eq. (26).
This can be done by mapping this Hamiltonian to an effective
spin Hamiltonian: one treats the interaction part of Eq. (26) as
the zeroth-order Hamiltonian and then the hopping part (J̃0T̂ )
is treated perturbatively to get the effective spin Hamiltonian
matrix elements. We do not discuss the full method here;
this can be found in [9] and [58–60]. Using such an analysis
the effective spin Hamiltonian of an SOC BEC in a classical
optical lattice was obtained in [26–29]. We realize that the
mathematical structure of our effective mBHM Hamiltonian,
Eq. (26), is the same as that considered in [26–29], provided we
switch off the Abelian-field part. Since we have considered a
cavity-induced quantum optical lattice, instead of the hopping
amplitude t in a classical optical lattice, which was the case
studied in those works, here we have a rescaled hopping
parameter J̃0, which essentially captures the information
on the quantum light. Thus in the parent Hamiltonian in
Refs. [26–29], if we substitute J̃0 in place of t , we arrive at
the same conclusion. In fact, since J̃0 can be controlled by
means of the cavity parameters, one can also maneuver the
entire phase diagram by suitably adjusting these parameters.

Thus we consider the spin Hamiltonian obtained in [28]
and directly substitute J̃0 in place of t to obtain

Ĥspin = ĤH + ĤA + ĤD,

ĤH = −
∑

i

H�Si · (�Si+δx
+ �Si+δy

),

ĤA = −
∑

i

A
(
Sx

i Sx
i+δx

+ S
y

i S
y

i+δy

)
,

ĤD = −
∑

i

D
(�Si×�Si+δx

· x̂ + �Si×�Si+δy
· ŷ

)
, (29)

Here �Si are the isospin operators at site i: �Si = 1
2

∑
s,s ′

b̂
†
si �σss ′ b̂s ′i . The components of the isospin operator are

Sx
i = (b̂†↑,i b̂↓,i + b̂

†
↓,i b̂↑,i)/2, S

y

i = (b̂†↑,i b̂↓,i−b̂
†
↓,i b̂↑,i)/2i, and

Sz
i =(b̂†↑,i b̂↑,i−b̂

†
↓,i b̂↓,i). And H= 4J̃ 2

0
U

cos(2α), A= 8J̃ 2
0

U
sin2 α,

and D = 4J̃ 2
0

U
sin(2α) are the spin interaction strengths.

The effective spin Hamiltonian Ĥspin is a combination of
2D Heisenberg exchange interactions (ĤH ), anisotropy
interactions (ĤA), and Dzyaloshinskii-Moriya interactions
(ĤD) [61]. These terms collectively stabilize the following
orders [28]: Ising ferromagnets (zFM), antiferromagnets
(zAFM), stripe phase, spiral phase (commensurate with
three-site or four-site periodicity, denoted, respectively,
3-spiral and 4-spiral), and vortex (VX) phase.

A detailed discussion of these phases can be found in [28].
We discuss them briefly. Schematics of the spin configurations
of these phases are given in the insets in Fig. 5. The zFM order
is a uniformly ordered phase where all the spins are aligned
along the z axis, however, in the zAFM phase the direction
of the spin vectors alternates between parallel and antiparallel
to the z axis. There is a subtle difference between the stripe
phase and the zAFM: in the stripe phase, along a given axis
on the xy plane all spins are up, but for the other axis they
alternate between up and down. In the zAFM phase the spins
alternate along both axes. Two types of spiral waves appear in
this system. In both cases, all the spins along one axis on the
xy plane are parallel, however, along the other axis, the spin
vectors make an angle with the z axis which changes (starting
from 0) as we move along the axis. However, there exists a
period in the number of lattice sites after which the angles are
repeated like waves. In 4-spirals, four sites make one period:
the angles progress with the site as π, π/2, 0, −π/2,π, . . . .
In 3-spirals, three sites make one period: the angles progress
with the site as π, π/3, −π/3, π, . . . . The VX phase is one
of the xy phases, in which all the spin vectors lie on the xy

plane. In Sec. IV we see how we can detect all these phases.

IV. THE CAVITY SPECTRUM FOR
THE MAGNETIC PHASES

In the preceding section, we discuss the spectrum of
noninteracting SOC bosons in a cavity-induced quantum
optical lattice potential. Now we switch on the atom-atom
interaction. As pointed out in Sec. III C this causes the
appearance of various magnetic orders in the many-body
quantum mechanical ground state. These orders have been
studied in cold atomic systems, in the presence [26–29] or
absence [58–60] of SOC. The many-body wave function has
an orbital part and a spinorial part, and the magnetic orders
are characterized by the spinorial part of the wave function.
Detection of various phases in the orbital part of the wave
function, through the cavity spectrum, was carried out in [16].
In our work we propose a method which enables us to probe
the spinorial part of the wave function (hence the magnetic
orders) with the help of the cavity spectrum.

We define the cavity spectrum as the steady-state outcoming
(leakage) photon number, which is obtained from (22) by
setting ∂t â = 0 as

nph = 〈â†(s)â(s)〉� = η2

κ2 + (�′
c − U0J1〈T̂ 〉�)2

. (30)

The corresponding expression in the laboratory frame and
its relation to this expression are discussed in Appendix A 2.
This equation is nonlinear [62] in terms of the photon density
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nph since the tunneling parameters J0 and J1 are dependent
on the depth of the optical lattice potential, V0 = U0nph.
Essentially, the cavity induces a feedback mechanism (of
cavity light) causing the cavity spectrum to nonlinearly depend
on nph through this modified Lorentzian [63]. In addition,
the spectrum is also dependent on the state |�〉 through
the expectation value of the hopping operator 〈T̂ 〉� . This
dependence is pronounced only when J1 is finite. In further
discussion we show how this dependence can be used to probe
the spinorial part of the quantum many-body ground-state
wave function.

The ground state of the BHM is controlled by the value of
t/U [26,64]. As the depth of the potential well increases, the
ground state changes from an SF to an MI state. To simplify our
discussion we assume that the orbital (optical lattice site) part
of the wave function corresponds to an MI state with one atom
per lattice site. In the absence of any (synthetic) gauge field, for
a 2D lattice, this phase boundary occurs at U = 4(3 + 2

√
2)t ,

which can be obtained from mean-field calculations [65]. The
presence of a (synthetic) Abelian gauge field further localizes
the atoms and the phase boundary gets shifted towards a larger
value of t/U or a more shallow lattice [66]. So we confine our
discussion to lattice depths larger than 20Er .

We further divide the MI regime into two regions separated
at a potential depth of 25Er [see Fig. 4(a)]. In one region of
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FIG. 4. (Color online) (a) Variation of overlap integral elements
with potential depth. We study the variation in two regions, separated
at V = 25Er : cavity spectrum for a deep lattice (region I) and for a
6×6 lattice, {U0,κ} = {12,1}ωr . (b) Variation with pump amplitude η

for �c = 5000ωr . (c) Variation with detuning �c for η = 6ωr . Dotted
(red) lines are unstable regions of the photon count.

the depth values J1 vanishes, hence it becomes impossible
to probe the spinorial part of the ground state through the
cavity spectrum. In the other region J1 is finite, enabling us
to probe the ground state. We term these regions as follows:
region I—the shallow MI regime (�25Er ), where J1 �= 0 and
hence Eq. (30) is highly nonlinear; and region II—the deep
MI regime (�25Er ), where J1 is approximated as 0 and the
nonlinearity in nph enters only through J0.

Let us first consider region II. As shown in Figure 4(a), in
this region J0 vs V0 can be approximated by a linear function
(J0 = aV0 + b) and J1 can be assumed to be 0. The variation
of nph with respect to the pump amplitude η2 is shown in
Fig. 4(b), and that with respect to the detuning �′

c is shown in
Fig. 4(c). There exists a bistable region in the spectrum, which
is shown by the dashed (red) line. In the strong MI regime the
atoms get tightly localized at their site, resulting in a negligible
hopping amplitude. The atoms can sense the presence of the
Abelian or non-Abelian field only through the hopping term,
and now since the hopping amplitude is almost negligible, the
cavity spectrum is insensitive to the Abelian or non-Abelian
gauge field.

As the pumping amplitude η decreases the photon number
decreases [see Fig. 4(b)], however, at a certain point (point D)
the photon number abruptly drops to a very small value (point
A), hence the lattice suddenly becomes very shallow. This
causes a phase transition from the MI to the SF phase. Simi-
larly, as η increases the photon number also increases, as does
the lattice depth. At point B it suddenly jumps to a large value
of nph (point C), hence a phase transition from SF to MI occurs.
This is an instance of a bistability-driven phase transition,
which was previously pointed out in [22] and [62], in different
contexts. Points B and D are often referred to as turning points
or critical points. When the photon number decreases one
might end up in the SF phase or one might stay in the shallow
MI region. So to determine the phase exactly one needs to
obtain the exact phase diagram and locate the appropriate
turning points. We do not extend this discussion further.

Now we turn to the case of the shallow MI regime (or
region I). We separate the following section, where we show
that in this region it is feasible to probe the ground state of
an SOC BEC through the cavity spectrum. When J1 �= 0, the
Lorentzian, (30), can sense the presence of the magnetic orders
through 〈T̂ 〉. In Sec. III C we have introduced and briefly
discussed the magnetic order that prevails in such a system.

Before getting to our results, it is worthwhile pointing out
that after the realization of spin-orbit coupling for bosonic
clouds [10] or condensates [4] by Spielman’s group, the
phase diagram of such a system was theoretically obtained by
various groups in [26–29]. Experimental verification of these
phases might not be very trivial; most importantly, detecting
all the emergent phases using a single experimental setup
is a formidable task. So far, the method of spin structure
factor measurement through Bragg spectroscopy [67] has
been commonly used. Other methods include measurement of
spatial noise correlations [68], polarization-dependent phase-
contrast imaging [69], and direct imaging of individual lattice
sites [70]. However, each of these techniques comes with its
own set of complications.

Extending the idea which was originally espoused for
BECs without spin degrees of freedom [16] here we propose a
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different scheme of experiments where such magnetic orders
can be ascertained without making a direct measurement on
the atomic system. The relation between this approach and
the “quantum nondemolition measurement” technique has
also been discussed [17,20,43]. The method facilitates the
detection of all possible phases arising in the Mott regime of
an SOC BEC, and this can also be extended to the SF regime.

With this purpose we work out the values of 〈T̂ 〉 and obtain
the cavity spectrum. Following [71] the wave function for
various orders can (in the Mott phase only) be written as

|�MI〉 =
∏

i∈A,j∈B

|ψA〉i |ψB〉j , (31)

with site indices i and j and |ψA,B〉 = cos θA,B

2 |↑〉 + eiφA,B

sin θA,B

2 |↓〉. The entire lattice is divided into two sublattices,
A and B, and we assume that alternating sites belong to
different sublattices. The parameters θ and φ are projection
angles in the internal spin space. We assume that there are
exactly equal numbers of lattice sites in sublattices A and B,
hence the total number of sites is K2 even; also, assuming unit
filling we set K2 = N0. Please note that K was used earlier to
denote the wave number of the cavity photon and here we use
the same notation for a different thing. In Appendix B 2 we
calculate the expectation value of the tunneling operator 〈T̂ 〉

TABLE I. Expectations for the hopping operator and the steady-
state photon number for different phases in the MI state.

Order T̂

zAFM 0
Stripe 2K(K − 1) cos β

VX K(K − 1)(cos α + cos β)
3-spiral 3K(K − 1)(cos α + 4 cos β)/8
4-spiral K(K − 1)(cos α + 3 cos β)/2
zFM 2K(K − 1)(cos α + cos β)

for various magnetic orders and summarize them in Table I.
This is the basis of further discussions. We can distinguish
between different magnetic orders because each order can
now be associated with a corresponding 〈T̂ 〉, hence a cavity
spectrum, provided there is a nonvanishing z-axis component
of the spin vector (the reason will become clear later). Thus
one cannot distinguish between any of the xy phases, such
as the VX phase and the anti-VX phase. However, the other
various magnetic orders which can arise in an SOC system
through experimental control of the free parameters (α,β) [28]
or (α,λ) [26,29] can be well distinguished.

The cavity spectra for each of these orders are shown in
Fig. 5. The spin-orbit coupling strength (α,β) for a particular
order is chosen such that that specific order gets stabilized

FIG. 5. (Color online) (a) Spin vectors in internal spin spaces of two neighboring sites. (b–d) Cavity spectrum for different phases in the
MI region for different non-Abelian flux insertions. The SOC strength for all phases is (α,β)/π = (0.01,0.01) zFM, (0.2, 0.2) 4-spiral, (0.3,0.3)
3-spiral, (0.5,0.5) stripe, and (0.34, 0.34) VX. Note that the turning points are highly dependent on the phases. The dotted parts of curves show
the unstable region of the spectrum. Red and blue legends correspond to the magnetic order, shown in insets.
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[28]. As we gradually increase the pump value the photon
number gets increased, but at the turning point (ηc) it suddenly
jumps to a higher value of photon number, since the photon
intermediate count corresponds to the unstable region. Clearly,
the behaviors of the spectra for different orders are different;
specifically, the value of ηc varies widely. The zAFM will not
show any such jump, and the stripe phase will have a very small
value of ηc. For the zFM phase ηc will always be the largest
and for the 4-spiral phase it would be quite comparable with
the ηc of the zFM phase. The xy and 3-spiral phases always
have ηc values between these two extremes.

The above discussion is supported by the following obser-
vation. In Fig. 5(a) the internal spin (by “spin” we actually
refer to “pseudospin”) spaces of two neighboring sites are
shown as red or blue ovals. The basis vectors of the spin
spaces are the eigenvectors of Ŝz. If a spin vector makes an
angle θ with the z axis in real space, then in the spin space
it makes an angle θ/2 with the ↓ axis. A particular magnetic

order is nothing but a specific spatial distribution of these θ and
φ values. The value of 〈T̂ 〉 is a measure of the probability of
spin-dependent hopping across neighboring sites, which hence
captures this variation of θ values over the configuration space.
We proceed in the following way (see Appendix B 2 for the
rigorous derivation): if a spin vector creates an angle θA with
the z axis and the spin vector at the site nearest to it makes
an angle θB , then in their internal spin spaces they make an
angle θA/2 and θB/2 with ↓. Hence the projections of the spin
vectors on the ↓ axis are cos θA,B/2 and those on the ↑ axis are
sin θA,B/2. The probability of hopping of ↑ to ↑ (or ↓ to ↓) is
the modulus-squared product of the projection lengths along
the ↑ (↓) axes. Hence hopping of ↑ to ↑ has a probability of
(sin θA

2 sin θB

2 )2, and for hopping of ↓ to ↓ it is (cos θA

2 cos θB

2 )2.
Since ↑ and ↓ are orthogonal vectors, hopping associated with
a spin flip is found to have vanishing 〈T̂ 〉.

To illustrate the implication of the above technique consider
the case of the zAFM phase. In this phase, at alternative sites
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FIG. 6. (Color online) (a) Variation of the grating function f (K,�) with the inserted Abelian flux. Legends indicate the size of the lattice.
In a large lattice limit the grating function does not sense the variation of �. (b, c) Cavity spectrum for different (b) Abelian fields (with a fixed
non-Abelian field, α = −β = π/2 − 0.15) and (c) non-Abelian fields (with a fixed Abelian field, � = 0.08�0). The negative-slope region is
the unstable [shaded (gray)] part of the spectrum.
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spin vectors are oriented parallel or antiparallel to the z axis,
i.e., θA = 0, θB = π . Hence any reordering of the spin vectors
(mediated by the cavity light) which does not alter the magnetic
order should consist of hopping from ↑ to ↓, or vice versa.
However, the matrix element 〈T̂ 〉 for such hopping is 0. Hence
〈T̂ 〉zAFM = 0 (see Table I). Similarly in the case of zFM all
spin vectors are aligned along the z axis, i.e., θA = π = θB .
Hence any hopping other than ↑ to ↑ will have a vanishing
contribution in 〈T̂ 〉zFM and 〈T̂ 〉zFM ∝ (sin π/2 sin π/2)2. It
must be noted that the value of 〈T̂ 〉 in turn controls the value
of ηc, hence the trend of variation in 〈T̂ 〉 with respect to the
phases gets mapped to that in the values of ηc. The cos α and
cos β are just scaling factors introduced because of spin-orbit
coupling. This is the central result of our work. Now we show
that, other than the phase information, the cavity spectrum can
also be used to extract the amount of Abelian or non-Abelian
flux inserted in the system.

In order to show how the cavity spectra can be used for
flux detection we consider the zFM phase, which is stabilized
in the presence of both an Abelian and a non-Abelian field
[66]. In the presence of an Abelian flux, the expectation
value for the tunneling operator for zFM order becomes
(see Appendix B 2) 〈T̂ 〉FM = 2 cos α(K − 1)[K + f (K,�)].
The presence of the Abelian flux gives additional phases
to the hopping, thus resulting in an overall phase factor of
f (K,�) = sin(Kπ�)

sin(π�) cos[π�(K − 1)]. This function is plotted
in Fig. 6(a). The similarity of the functional form of f (K,�)
with that of an N-slit grating function is just because in this
case the phases arising due to the presence of this field get
summed over to yield such a function. Evidently the optical
lattice acts as a quantum diffraction grating [16,72].

V. CONCLUSION

To summarize, in this paper we have derived an effective
model, i.e., Eq. (26), for an SOC BEC inside a cavity. The
subsequent analysis based on this effective model indicates
a number of very interesting features. We first studied its
spectrum in the noninteracting limit and showed that a Dirac-
like spectrum arises for such ultracold bosons because of the
effective spin-1/2 behavior of this system. We also point out
that in the presence of Abelian flux, one can generate a highly
controllable (through cavity parameters) Hofstadter butterfly
spectrum.

Then we discuss the magnetic phases that arise in the
MI-type ground state of this Hamiltonian after including
atom-atom interaction. Subsequently we discuss a technique
with which we can probe these magnetic orders through
the cavity spectrum. By setting up a lattice, generated by
the cavity, we first let the atoms stabilize in a particular
magnetic order. This can be done by adjusting the spin-orbit
coupling strengths α and β and the interatomic interaction
strengths Us,s ′ . Then we count the photons leaking out of
the cavity as we increase the pump-laser amplitude (η). We
observe at a certain point (the turning point) that the photon
count suddenly jumps to a very high value. The location
of this turning point is characteristic of a specific magnetic
order. Hence by locating the turning point we can detect the
magnetic phase of the system. Thus our method provides a
different way to detect exotic quantum magnetism in ultracold

condensates. We would also like to mention that we have
only considered the average photon number leaked from the
cavity as a method to detect the magnetic order inside the
cavity. The method can be easily extended by evaluating
quantities like the quadrature measurement, photon number
fluctuation, and noise spectra [73] and is capable of detecting
more information about the quantum phases of the SOC BEC
inside the cavity. We hope this work will be further extended in
this direction and will motivate experiments on cavity optome-
chanics and cavity quantum electrodynamics with SOC cold
gases.

However, an important issue related to the detection of all
these phases is the energy scale of the effective Hamiltonian
which gives rise to such phases, i.e., J 2/U . Hence the
temperature required to realize such orders becomes ∼J,
which is still not achieved with the current cooling techniques.
However, the development of new methods of cooling is in
progress [74] and the realization of such magnetic orders
in ultracold systems is expected. In that context our results
provide a very interesting and alternative method for detecting
such quantum magnetic phases.

APPENDIX A: FRAME TRANSFORMATION

1. The unitary transformation

We discuss briefly how to arrive from the time-dependent
equation (2), to a time-independent equation (3). For this
we enter into a rotating frame which induces a unitary
transformation Û (t) = exp[iωpt(ξ̂11 + â†â)] and then use the
Baker-Campbell-Hausdorff lemma to arrive at (3). The lemma
reads

eXYe−X = Y + [X,Y ] + 1

2!
[X,[X,Y ]]

+ 1

3!
[X,[X,[X,Y ]]] + · · · . (A1)

For our case X = iωpt(ξ̂11 + â†â) and Y = ĤA + ĤC + ĤI

as obtained in (2). We evaluate the following commutators
one by one:

[X,ĤA] = iωpt

[
ξ̂11 + â†â,

�̂
2

2m
+ �ω12ξ̂11 + �ω13ξ̂11

]

= iωpt�ω12[ξ̂11,ξ̂11] + iωpt�ω13[ξ̂11,ξ̂11]

= 0, (A2)

[X,ĤC] = iωpt
[
ξ̂11 + â†â,�ωcâ

†â − i�η
(
âeiωpt − â†e−iωpt

)]
= �ηωpt

(
[â†â,â]eiωpt − [â†â,â†]e−iωpt

)
= −�ηωpt

(
âeiωpt + â†e−iωpt

)
, (A3)

[X,ĤI ] = �g(x)ωpt[ξ̂11+â†â,(ξ̂12â − ξ̂21â
† + ξ̂13â − ξ̂31â

†)].

(A4)

We note the following commutators: [ξ̂11,ξ̂12] = [|1〉〈1|,
|1〉〈2|] = |1〉〈2| = ξ̂12. Similarly, [ξ̂11,ξ̂21] = −ξ̂21, [ξ̂11,ξ̂13] =
ξ̂13, [ξ̂11,ξ̂31] = −ξ̂31. Using these, the above equation gets
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simplified as

[X,ĤI ] = �g(x)ωpt(ξ̂12â + ξ̂21â
† + ξ̂13â + ξ̂31â

†

− ξ̂12â − ξ̂21â
† − ξ̂13â − ξ̂31â

†) = 0. (A5)

Hence the only nonvanishing commutator is [X,ĤC]. Its
higher order commutators can be evaluated similarly, e.g.,
[X,[X,ĤC]] = i�ηω2

pt2(âeiωpt − â†e−iωpt ), and so on. Plug-
ging all these commutator values into Baker’s lemma, we arrive
at Eq. (3).

2. Rederivation of the results without
the unitary transformation

The unitary transformation removes the slow time depen-
dence of the atom-photon Hamiltonian [Eq. (2)], and the
resulting Hamiltonian [Eq. (3)] is obtained in a rotating frame.
This makes the rest of the analysis simpler by making it time
independent. However, to compare the results in this rotating
frame and the laboratory frame, we rederive the important
results without performing this unitary transformation and
establish consistency between the results of both frames, in
the limit of large atom-photon detuning.

The many-body version of Eq. (2) without the transforma-
tion would be

ĤA =
∫

dx
[
�̂

†
2(x)

(
�̂

2

2m

)
�̂2(x) + �̂

†
3(x)

(
�̂

2

2m

)
�̂3(x)

+ �̂
†
1(x)

(
�̂2

2m
− �ωa

)
�̂1(x)

]
, (A6a)

ĤI = −i�

∫
dx[�̂†

1(x)â�̂2(x) + �̂
†
1(x)â�̂3(x) + H.c.]g(x),

(A6b)

ĤU = U

2

∫
dx[�̂†

2(x)�̂†
2(x)�̂2(x)�̂2(x)

+ �̂
†
3(x)�̂†

3(x)�̂3(x)�̂3(x)

+ λ�̂
†
2(x)�̂†

3(x)�̂2(x)�̂3(x)], (A6c)

where we define ωa = ωa
12 + ωa

13. Now we calculate the
Heisenberg equations of evolution for various field operators
(say Â), i�∂t Â = [Â,Ĥ]:

∂�̂1(x)

∂t
= −i

(
�̂

2

2�m
− ωa

)
�̂1(x) − g(x)â(�̂2(x) + �̂3(x)),

(A7a)

∂�̂2(x)

∂t
= −i

(
�̂

2

2�m
+ U

�
�̂

†
2(x)�̂2(x) + Uλ

�
�̂

†
3(x)�̂3(x)

)

× �̂2(x) + g(x)â†�̂1(x), (A7b)

∂�̂3(x)

∂t
= −i

(
�̂

2

2�m
+ U

�
�̂

†
3(x)�̂3(x) + Uλ

�
�̂

†
2(x)�̂2(x)

)

× �̂3(x) + g(x)â†�̂1(x), (A7c)

∂â(t)

∂t
= −iωcâ(t) + ηe−iωpt +

∫
dx[�̂†

2(x)g(x)�̂1(x)

+�̂
†
3(x)g(x)�̂1(x)]. (A7d)

It may be noted that all the terms that correspond to detuning
in Eq. (3) are frequencies now. Also, the pump-field ampli-
tude is modulated as ηe−iωpt . Eliminating the excited state
(by assuming adiabaticity), we get

�̂1(x) = − i

ωa

g(x)â(t)[�̂2(x) + �̂3(x)]. (A8)

Replacing this in the above set of equations we get the effective
time evolution of the atom and photon operators. The effective
Hamiltonian that gives this evolution is

Ĥ(1)
eff =

∫
dx�̂†(x)

(
�̂

2

2m
+ Ulat

)
�̂(x) + Ĥc

+ 1

2

∫
dx

∑
s,s ′

Us,s ′�̂†
s (x)�̂†

s ′ (x)�̂s ′ (x)�̂s (x), (A9)

where Ulat = V0[cos2(Kx) + cos2(Ky)]. Now we do the tight-
binding analysis in Sec. II C, and then to eliminate the
photon degrees of freedom, under the bad-cavity limit (see
Sec. III A), we get the photon evolution as ∂t â = 1

i�
[â,Ĥ

(2)
eff ] =

−D̂â + ηe−iωpt , where D̂ = κ + i[U0(J0N̂ + J1T̂ ) − ωc].
After eliminating the cavity freedom we get

Ĥ(3)
eff = −J̃0T̂ + J̃1T̂ 2 + · · · + 1

2

∑
i,s,s ′

Us,s ′ b̂
†
is b̂

†
is ′ b̂is ′ b̂is ,

(A10)

J̃0/J1 = U0η
2e−2iωpt κ2 − �′2

c(
κ2 + �′2

c

)2 − E/J1, (A11a)

J̃1
/
J 2

1 = 3U 2
0 η2e−2iωpt�′

c

3κ2 − �′2
c(

κ2 + �′2
c

)4 . (A11b)

Here �′
c = ωc − U0N0J0. Note that �c in the original case is

of the order of ωc, hence this redefined �′
c is also of the same

order as the previous �′
c. Applying a similar analysis we arrive

at

nph =〈â†(s)â(s)〉� = η2

κ2 + (�′
c − U0J1〈T̂ 〉� )2

e−iωpt . (A12)

Clearly, in the absence of the unitary transformation the
cavity transmission spectrum in the laboratory frame gets
an additional oscillatory time-dependent factor compared to
the expression given in (30). So by performing the unitary
transformation (i.e., by entering in a rotating frame) the above
time-dependent factor in Eq. (A12) is removed.

The equivalence between the results obtained with and
those without the unitary transformation can be established
under the assumption that ωp � ωa , i.e., the pump frequency
is much higher than the atomic transition frequency. This
assumption first enables one to adiabatically eliminate the
excited state and, thus, arrive at the effective Hamiltonian in
(11). And more importantly, because of this assumption, even
if one obtains the expressions in a rotating frame and performs
the experiment in the laboratory frame, one observes similar
features, provided the observations are done on a time scale
which is much shorter compared to this evolution (which can
be achieved through a suitable choice of laser detuning). Hence
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FIG. 7. (Color online) Schematic of an optical lattice. The phase
operator Ux determines the phase acquired by an atom when it
hops from site (m,n) to site (m + 1,n). Similarly, the operator Uy

determines the phase acquired by hopping along the positive y axis.
The operators U †

x and U †
y determine the phase acquired in hopping

along the negative x and y axes, respectively.

the the conclusion obtained from the magnetic phases from
Eqs. (30) and (A12) will be the same under this approximation.

APPENDIX B: THE HOPPING OPERATOR

In this Appendix we obtain the full form of the hopping
operator T̂ in terms of the atom creation (annihilation)
operators, b̂

†
(m,n) (b̂(m,n)). Then we diagonalize it to ob-

tain the spectrum of the tight-binding Hamiltonian, (26).
Finally, we show how to evaluate the expectation values
of this hopping operator with respect to various magnetic
orders.

The lattice sites are indexed as (m,n) and m,n ∈ {0,K − 1},
which makes the lattice a K×K one (see Fig. 7). We also
use i and j to shorten the notation for (m,n) and (m′,n′),
respectively. An operator of the form b̂

†
σ,j b̂σ ′,i creates an

atom of pseudospin σ at site j by annihilating an atom of
pseud-spin σ ′ at site i. In Fig. 7 we have shown the action
of all possible hopping operators with nontrivial actions. In
the presence of a gauge potential, as the particle moves in the
lattice potential its wave function acquires a geometric phase
as a result of the Aharonov-Bohm effect. The phase acquired
by an atom upon hopping from site r i to site rj , φij , is given
by

φij =
∫ rj

r i

A(r ′) · d l = ασy(xj − xi)

+βσx(yj − yi) + 1B0xi(yj − yi). (B1)

For hopping along the x axis, i.e., m → m ± 1, the phase
acquired is φx = ασy(xi+1 − xi) + 0 = ασy , and for hopping
along the y axis, i.e., n → n ± 1, it is φy = 0 + (βσx + B0xi)
(yi+1 − yi) = (−βσx + 1B0x).

An alternative way to discuss this is to define a set
of unitary operators along the x and y axes which, when
acting on the wave function, would produce nontrivial
phases. These gauge-potential-dependent phase operators

are

Ux = e−iφx , Uy = e−iφy . (B2)

With our particular choice of vector potential, i.e., A =
(ασy,βσx + 2π�m,0), one can calculate the phase operators
as

Ux =
(

cos α − sin α

sin α cos α

)
,

Uy = e−i2π�m

(
cos β −i sin β

i sin β cos β

)
. (B3)

Thus a generic form of the tunneling operator T̂ (for a 2D
lattice) can now be written as

T̂ =
∑
m,n

b̂
†
m+1Uxb̂m + b̂

†
n+1Uyb̂n + H.c. (B4)

Here we have denoted b̂
†
m for (b̂†m,↑ b̂

†
m,↓), and similarly, b̂†n for

(b̂†n,↑ b̂
†
n,↓). For our choice of gauge potential we can simplify

this equation to

T̂ =
∑
i=x,y

T̂ D
i + T̂ ND

i ,

T̂ D
y = cos β

∑
n

(b̂†n+1,↑b̂n,↑ + b̂
†
n+1,↓b̂n,↓)e−i2π�m + H.c.,

T̂ ND
y = −i sin β

∑
n

(b̂†n+1,↓b̂n,↑ + b̂
†
n+1,↑b̂n,↓)e−i2π�m + H.c.,

T̂ D
x = cos α

∑
m

b̂
†
m+1,↑b̂m,↑ + b̂

†
m+1,↓b̂m,↓ + H.c.,

T̂ ND
x = sin α

∑
m

b̂
†
m+1,↓b̂m,↑ − b̂

†
m+1,↑b̂m,↓ + H.c. (B5)

Here the operator is separated into diagonal (T̂ D
i ) and off-

diagonal (T̂ ND
i ) parts and then each of these parts is written for

both the x and the y axes, considering only nearest-neighbor
interactions. The off-diagonal terms in the tunneling operator
arise because of the spin-orbit coupling. We note that the
above tunneling matrix can be diagonalized or the spin-orbit
coupling can be eliminated just by a site-dependent rotation.
For instance, the following rotation around the x axis at site
i diagonalizes the x-axis tunneling operator by removing the
spin-orbit coupling:(

b̂i,↑
b̂i,↓

)
=

(
cos θi − sin θi

sin θi cos θi

)(
b̂′

i,↑
b̂′

i,↓

)
. (B6)

Here θi+1 − θi = α − π/2. So switching on spin-orbit cou-
pling is equivalent to rotating site i about the x axis by an
angle −θi , and along with that, the hopping amplitude is also
renormalized to J1 cos α.

1. Diagonalization

The Hamiltonian in the momentum space can be
written as Ĥ = ∑

k �̂
†
kĤk�̂k, where �̂k = (b̂↑k,b̂↓k)T is

the momentum-space representation of the two-component
spinor and the atomic operators are also written in the
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momentum-space representation:

b̂s(r) = 1√
N0

∑
k

eik·r b̂sk,b̂
†
s (r) = 1√

N0

∑
k

e−ik·r b̂†sk. (B7)

Writing the atomic operators in the momentum basis we can
diagonalize the Hamiltonian (without the interaction part)
obtained in (26):

Ĥ = −J̃0

∑
s

∑
〈m,n〉

1

N

∑
k,k′

b̂
†
sk(eikx e−iσyα

+ eiky e−i2π�meiσxα)b̂sk′ + H.c. (B8)

Now we invoke orthonormality of the plane-wave ba-
sis, 1

N

∑
r e−ir·(k−k′) = δ(k − k′), and Euler’s identity,

exp[iθ (n̂ · �σ )] = 1 cos θ + i(n̂ · �σ ) sin θ , and denoting εm =
ky − 2πm� we obtain

Ĥk = cos α(cos εm + cos kx)1 − sin α(sin εmσx − ı sin kxσy).

(B9)

Using the 2×2 representation of the Pauli matrices we obtain
a 2×2 Hamiltonian. Writing this Hamiltonian in its eigenbasis
we diagonalize it. Thus the spectrum is

E± = 2 cos α(cos εm + cos kx) ± 2 sin α
√

sin2 εm + sin2 kx.

(B10)

2. Expectation values

In this section we calculate 〈�MI|T̂ |�MI〉, which appears in
Eq. (30). The full form of T̂ is obtained in (B5). We assume
that there are exactly equal numbers of lattices in the A and B
sublattices, hence the total number of lattice sites is even, i.e.,
N0 = K2 is even. We demonstrate the calculation for a simple
2×2 site problem and then generalize it for multiple sites. In
this case the MI wave function becomes

|�MI〉 = |ψA〉00|ψB〉01|ψA〉11|ψB〉10. (B11)

The bottom-left site is used as the origin of the coordi-
nate system and (m,n) = (0,0) is shortened to 00; other
sites are indexed similarly. Here |ψA,B〉 = cos θA,B

2 |↑〉 +
eiφA,B sin θA,B

2 |↓〉. When the operator b̂
†
m+1,↑b̂m,↑ (fixing n = 1)

acts on the above wave, then (say, m = 1) it hops a ↑ spin from
site m (=1) to m + 1 (=0). Thus the resulting wave function
becomes

b̂
†
m+1,↑b̂m,↑|�MI〉

= |ψA〉00

(
cos

θB

2
|↑,↑〉+ eiφB sin

θB

2
|↓〉

)
01

×
(

cos
θA

2
|0〉 + eiφA sin

θA

2
|↓〉

)
11

|ψB〉10. (B12)

Here |0〉 denotes the spin vacuum. When 〈�MI| acts on the left
side of the above expression we obtain

〈�MI|b̂†m+1,↑b̂m,↑|�MI〉

= 〈ψA|ψA〉
(

0 + sin2 θB

2

)(
0 + sin2 θA

2

)
〈ψB |ψB〉

= sin2 θA

2
sin2 θB

2
. (B13)

The Hermitian conjugate of this operator hops ↑ from m + 1 to
m. Thus 〈�MI|(b̂†m+1,↑b̂m,↑ + H.c.)|�MI〉 = 2 sin2 θB

2 sin2 θA

2 .

In a similar way we can obtain

〈�MI|b̂†m+1,↓b̂m,↓|�MI〉 = cos2 θA

2
cos2 θB

2
. (B14)

The action of the hopping operator which involves spin flip
can be obtained as

b̂
†
m+1,↓b̂m,↑|�MI〉

= |ψA〉00

(
cos

θB

2
|↑〉+ eiφB sin

θB

2
|↓ ,↑〉

)
01

×
(

cos
θA

2
|0〉 + eiφA sin

θA

2
|↓〉

)
11

|ψB〉10 = 0. (B15)

So terms like b̂
†
m+1,↓b̂m,↑ and b̂

†
m+1,↑b̂m,↓ do not contribute

to the expectation. When we have a K×K lattice there
will be K − 1 hoppings possible along the x axis, yielding
a contribution of 2(K − 1) cos2 θA

2 cos2 θB

2 + sin2 θB

2 sin2 θA

2 .
There are K such x axes so total contribution becomes

〈T̂x〉= 2 cos αK(K − 1)

[
sin2 θA

2
sin2 θB

2
+ cos2 θA

2
cos2 θB

2

]
.

(B16)

Now we turn to hopping along the y axis. We switch on the
Abelian gauge field discussed in the text; see Eq. (B5) for the
full form of the Hopping operator. Hence now each hopping
along the y-axis is associated with a phase depending on the
x-axis coordinate of the site, i.e., e−2πi�m. For hopping along
negative y-axis, the associated phase factor is e+2πi�m. Using
a similar argument we arrive at the following result:

〈T̂y〉 = 2 cos β(K − 1)
K−1∑
m=0

cos(2πm�)

×
[

sin2 θA

2
sin2 θB

2
+ cos2 θA

2
cos2 θB

2

]
. (B17)

The latter expression can be simplified to f (K,�) =∑K−1
m=0 cos(2πm�) = sin(Kπ�)

sin(π�) cos[π�(K − 1)]. Thus the full
expectation becomes

〈T̂ 〉 = 2 cos α(K − 1)[cos αK + cos βf (K,�)]

×
[

sin2 θA

2
sin2 θB

2
+ cos2 θA

2
cos2 θB

2

]
. (B18)
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