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We consider the behavior of Fermi atoms on optical superlattices with two-well structure for each node.
Fermions on such lattices serve as an analog simulator of the Fermi-type Hamiltonian. We derive a mapping
between fermion quantum ordering in the optical superlattices and the spin-orbital physics developed for
degenerate d-electron compounds. The appropriate effective spin-orbital model appears to be a modification
of the Kugel-Khomskii Hamiltonian. We show how different ground states of this Hamiltonian correspond
to particular spin-pseudospin arrangement patterns of fermions on the lattice. The dependence of the fermion
arrangement on phases of complex hopping amplitudes is illustrated.
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I. INTRODUCTION

Experimental investigations of ultracold atoms in optical
lattices, apart from their own intrinsic value, have opened up
a unique flexibly tunable simulator for the study of quantum
many-body physics [1–4]. In this regard ultracold atoms form
a major part of the rapidly developing field of analog quantum
simulation (AQS), which includes also trapped ions, polar
molecules, quantum dots, and cavity arrays (see Ref. [5] for
a recent review). Analog quantum simulation allows one to
manipulate the parameters in a regime that had been hardly
possible or even impossible to achieve in the natural physics
of the initial problem [5–9].

For the case of an optical lattice the atom temperature can
be made extremely low. This allows one to experimentally
investigate in detail the ground-state structure and the low-
lying many-body states of atoms [10,11]. On the other hand, it
enables AQS for different solid-state (and not only solid state)
models [5].

One of the most interesting regimes corresponds to strong
atom-atom quantum correlations. Interactions between lattice
atoms have a different nature. Atoms can jump (tunnel) from
site to site on the optical lattice with the hopping energy t .
There is typically repulsion U between atoms within the site
and exchange interaction between the spins of neighboring
atoms. The lattice atoms’ quantum state also strongly depends
on the statistics: Atoms are either bosons or fermions [12]. In
what follows we shall focus on the fermion case.

Typically atoms on the lattice are well described by
modifications of the Hubbard model due to the short-range
character of the U interaction [7]. The problems of the ground
state and the low-lying many-body states of atoms on the lattice
have been successfully investigated within the mean-field
theory; see, e.g., Ref. [12]. Progress have also been made
beyond the mean field in particular with numerical simulations
of the Hubbard-type models.

For bosons on the lattice the parameter range at which one
could expect Bose condensation or Mott insulator behavior
has been thoroughly investigated [12,13]. For fermions on
the optical lattice experimental realization of a Mott insulator

regime [14] offered a unique possibility to simulate various
ground states and spin orderings of fermions, complying
with theoretical predictions for the repulsive Fermi-Hubbard
model.

Recently, optical lattices with complicated structure of
the node have attracted attention. In particular, these are
superlattices with two-well structure [15–18]. The mean-field
ground-state phase diagram of spinor bosons in a two-well
superlattice was derived from the Bose-Hubbard Hamiltonian
in Ref. [18]. It was shown that the system supports Mott
insulating and superfluid phases like in one-well latices;
however, the quadratic Zeeman effect lifts the degeneracy
between different polar superfluid phases leading to additional
metastable phases and first-order phase transitions.

Here we focus on spinor fermions on optical superlattices
with multiwell structure of each node. Specifically, we
consider two-well nodes in the strong correlation regime
(large U/t). We show how the ground-state many-body
atom can be understood from the well-known results of
the machinery developed long ago for degenerate d-electron
compounds [19,20]. We show that there is a mapping be-
tween fermion quantum ordering in the optical superlat-
tices and the spin-orbital physics of degenerate d-electron
compounds. This means that fermions on the two-well
optical superlattices afford AQS for spin-orbital compounds
where direct experimentation remains hard and debatable
[21].

We derive the effective spin-orbital model and show that
it appears to be the generalization of the Kugel-Khomskii
Hamiltonian [19]. Different ground states of this Hamiltonian
correspond to a particular nontrivial fermion arrangement on
the lattice.

The paper is organized as follows. In Sec. II A we write
the Hubbard-type Hamiltonian for fermions on a multiwell
lattice. Section II B enumerates more or less standard steps
to reduce the model to the effective spin-orbital Hamiltonian.
Cumbersome technical details of the reduction are put in the
Appendix. In Sec. III we give examples of the possible ground
states of the many-body atom on the lattice that can be obtained
from the mapping to spin-orbital physics.
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FIG. 1. (a) and (b) Sketch of possible optical lattices with two-
well structure where spin-orbital effects may appear. Here tαβ are
hopping amplitudes between wells on nearest nodes. Indices α,β =
1,2 numerate the two wells at a given lattice node (two quantum
pseudospin states). (c) Structure of the lattice node. Here �z is the
energy offset between the two wells.

II. MICROSCOPIC MODEL FOR FERMIONS IN THE
DOUBLE-WELL OPTICAL LATTICE

A. Tunnel Hamiltonian model

We consider the d-dimensional hypercubic optical lattice
where each node is a double well, as illustrated for the two-
dimensional lattice in Fig. 1. The Hamiltonian describing the
quantum states of fermions on the lattice can be written as

H = H� + HT + HU + HJ . (1)

The term H� describes the level structure of each node

H� =
∑

i,σ,α,β

1

2

(
�z

i σ
z
αβ + �x

i σ
x
αβ

)
c
†
iασ ciβσ , (2)

where the index i labels the nodes, α = 1,2 is the well number
at a given node, �z

i is the difference of the ground-state
energies between the two wells, �x

i takes into account possible
tunneling between the wells in a node, and σ z and σx are
Pauli matrices. The operator c

†
iασ (ciασ ) is the fermion creation

(annihilation) operator for the fermion atom residing at a node
i in a well α with spin projection σ .

Tunneling between the nodes specifies

HT = −
∑

i �=j,σ,α,β

t
αβ

ij c
†
iασ cjβσ , (3)

where t
αβ

ij is the tunnel matrix element. The structure of the
tunnel matrix elements is schematically depicted in Figs. 1(a)

and 1(b). The hopping amplitudes t
αβ

ij can be arranged into
complex-valued amplitude matrix in the well space:

t
αβ

ij = tαβ =
(

t11 t12

t21 t22

)
. (4)

We shall omit for brevity the lattice indices in hopping
amplitudes. Below the notation t† = t

†
ij will be used for the

Hermitian conjugation in the well subspace. Note that, in
general, t �= t†. Due to the Hermitian character of HT there is a
standard symmetry t

αβ

ij = (tβα

ji )∗. It follows that t† corresponds
to the hopping amplitude matrix with interchanged lattice
indices, i.e., (t†)αβ = (tβα

ij )∗ = t
αβ

ji .
Since each node has a fine structure related to the wells

it is convenient to split the interaction Hamiltonian into two
parts HU + HJ. The first term has a trivial structure in the well
index space and describes the Coulomb repulsion (Ui > 0) of
fermions at one node:

HU =
∑

i,σ,σ ′,α,α′
Uiniασ ni,α′,σ ′(1 − δαα′δσσ ′), (5)

where niασ = c
†
iασ ciασ . The second term describes the ferro-

magnetic Hund’s coupling [20] (JH
(i) > 0) between fermions

in wells α = 1 and 2 at a given lattice node

HJ = −
∑
i,σ,σ ′

JH
(i) c

†
i,1,σ ci,1,σ ′c

†
i,2,σ ′ci,2,σ . (6)

This term comes into effect if the average fermion density at a
node 〈ni〉 = ∑

σ (〈ni1σ 〉 + 〈ni2σ 〉) is equal to 〈ni〉 = 2.

B. The effective Hamiltonian for single-atom filling of the nodes

We shall focus on the case when Ui is the largest energy
scale, in particular when Ui is much larger than the hopping
amplitudes t

αβ

ij . Then each node, on average, is occupied by
one fermion and the Hamiltonian (1) can be simplified. To
proceed, we introduce a standard presentation [22] of the spin
S = 1

2 and the pseudospin τ = 1
2 operators through the fermion

creation and annihilation operators (see, e.g., Ref. [23]):

Sa
i = 1

2c
†
iασ σ a

σσ ′ciασ ′ , (7)

τ a
i = 1

2c
†
iασ σ a

αβciβσ . (8)

The index a = x,y,z or sometimes it is convenient to use
a = 1,2,3. Summation over recurring spin and pseudospin
indices is implied. We recall that the representation in (7) and
(8) is valid only at the single-atom filling of each node.

Below we focus on the case when the interactions U

and JH do not depend on the site index. Using (7) and (8)
we can present the term H� in the form H� = ∑

i(�
z
i τ

z
i +

�x
i τ

x
i ). The term HTUJ = HT + HU + HJ after the standard

perturbation procedure in hopping amplitudes [19,20,23–29]
can be transformed into the general form (the derivation details
are in the Appendix)

HTUJ =
∑
〈i,j〉

[
1

4
Aij + Aij Si · Sj + Bab

ij τ a
i τ b

j − 1

2
Ka

ij

(
τ a
i + τ a

j

)

+ 4Si · Sj

{
Dab

ij τ a
i τ b

j + 1

2
Ka

ij

(
τ a
i + τ a

j

)}]
, (9)
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where the summation runs over bonds 〈i,j 〉 between nearest
neighbors. The coefficients Aij Bab

ij , Ka
ij , and Dab

ij are quadratic

in the tunnel amplitudes t
αβ

ij and can be considered as
generalized exchange coupling constants of the resulting
spin-spin, spin-pseudospin, and pseudospin-pseudospin inter-
actions between fermions. The vectors Ka

ij introduce as well
an effective magnetic field into the pseudospin space, resulting
from nondiagonal structure of the hopping matrix tαβ .

For the particular case of real hopping amplitudes, t11 =
t22 = t , t12 = t21 = 0, and zero Hund’s coupling JH = 0, the
model (9) is equivalent to the Hamiltonian of the SU(4) model
[23]

HTUJ → 2t2

U

∑
〈i,j〉

(
1

2
+ 2Si · Sj

)(
1

2
+ 2τ i · τ j

)
. (10)

If we identify the space of well indices with the orbital space
then the Hamiltonian (9) for real t

αβ

ij becomes similar to the
Kugel-Homsky Hamiltonian [19] developed for degenerate
d-electron compounds [20,23–27].

Equation (9) has been derived assuming JH /U � 1. How-
ever, in d-electron compounds it is quite often that JH ∼ U . In
a similar way it may take place for atoms on the optical lattice.
The conjecture has been made in Ref. [20] that the form of
interaction terms in the Kugel-Khomskii Hamiltonian remains
the same for JH ∼ U and tensor coefficients A, K , B, and D

would preserve their symmetry structure in the orbital space.
For the case of a diagonal hopping amplitude matrix tαβ ∼ δαβ

this conjecture has been confirmed in Ref. [20] by direct
calculation of the Kugel-Khomskii Hamiltonian coefficients
in all orders in JH /U . The same conclusion applies for atoms
on the lattice described by the effective Hamiltonian (9).

III. DISCUSSION

A. Symmetrical Hamiltonian

Now we focus on the symmetrical case when the nearest-
neighbor hopping matrix tαβ is diagonal in the orbital space.
This case could be realized in the optical lattice sketched
in Fig. 1(b). Then Ka

ij is equal to zero while Bab
ij and Dab

ij

are diagonal matrices in the orbital space. For this case the
symmetrical model Hamiltonian follows from Eq. (9) (see the
Appendix),

HTUJ → Hsym =
∑
〈ij〉

{J1Si · Sj + J2τ i · τ j

+ 4J3(Si · Sj )(τ i · τ j )}, (11)

where we consider exchange constants J1, J2, and J3 as
independent input parameters.

Let us consider the most interesting case �x,z � J1,2,3;
we can neglect the term H� comparing with HTUJ. Then the
isolated minima of the double-well potential are the same. The
spin-pseudospin interaction resulting from virtual hoppings
between neighboring notches gives rise to the occupancy of
that subwell, which is preferable.

The properties of the Kugel-Khomskii symmetrical
Hamiltonian (11) have been well investigated (see, e.g.,
Refs. [19,20]). In Fig. 2 we present the result of the analysis
of the model (11) in the mean-field approximation for J3 > 0

J1/J3

J2/J3

1

1

(F, AF) (AF, AF)

(AF, F)

-1
-1

(F, F)

FIG. 2. (Color online) Mean-field phase diagram of the symmet-
rical model (11) for J3 > 0 (see, e.g., Refs. [30,31] for d-electron
compounds). Here F stands for ferromagnetic ordering and AF is for
antiferromagnetic ordering. The first and second abbreviations in the
designations of phases are for the spin and pseudospin subsystems,
respectively. The ordering patterns of atoms on the optical lattice are
shown in the insets. For ferromagnetic orbital arrangement atoms are
localized in one particular type of subwell (for example, in the upper
subwells). For antiferromagnetic orbital arrangement atoms alternate
between the lower and upper subwells. Red spheres show the lattice
site with the maximum probability of occupation by an atom, while
transparent spheres show nearly empty sites. Arrows indicate spin
directions.

(which would look like the figure for J3 < 0 [32]). The figure
shows possible phases of spin-pseudospin arrangements for
various values of exchange parameters. For example, the case
J1 > J3 > J2 > 0 corresponds to the ground state of Hsym,
which is antiferromagnetic in the spin space and ferromagnetic
in the pseudospin space [the (AF,F) phase in Fig. 2]. The
effective orbital exchange can be estimated as J eff

τ = J2 +
4J3〈Si · Sj 〉. Similarly, the effective spin exchange is approxi-
mately equal to J eff

s = J1 + 4J3〈τ i · τ j 〉. When spins are anti-
ferromagnetically ordered J eff

τ = J2 − J3 < 0 and one obtains
orbital ferromagnetism. If we turn on the external effective
magnetic field we can change the orbital ferromagnetism to
orbital antiferromagnetism when the field is sufficiently strong
that 〈Si · Sj 〉 > J2/4J3. Finite �x and �z play the role of the
built-in effective magnetic field in the pseudospin space. Large
enough �z would also drive the system into the ferromagnetic
orbital state (in such a case one of the two minima of the double
well is much lower than the other).

To illustrate the possible arrangement patterns of atoms in
real space let us consider the pseudospin (orbital) state in the
mean-field approximation. It can be presented as a product of
one-site orbital states |ψMF〉 = ∏

i |θiϕi〉. The orbital one-site
state |θiϕi〉 can be chosen as

|θiϕi〉 = cos
θi

2
|1〉 + eiϕi sin

θi

2
|2〉. (12)

The direction (in pseudospin space) of the averaged pseu-
dospin 〈τ i〉 is defined in terms of the polar and azimuth angles

〈θiϕi |τ i |θiϕi〉 = 1
2 (sin θi cos ϕi, sin θi sin ϕi, cos θi). (13)
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The orbital state

|π − θi,π + ϕi〉 = sin
θi

2
|1〉 − eiϕi cos

θi

2
|2〉 (14)

is orthogonal to |θiϕi〉 and sets 〈τ i〉 in the opposite direction.
The ferromagnetic orbital arrangement corresponds to
identical orbital states |θiϕi〉 = |θϕ〉 at different sites. The
antiferromagnetic orbital state corresponds to |θiϕi〉 = |θϕ〉
at sublattice i ∈ A and |θjϕj 〉 = |π − θ,π + ϕ〉 at sublattice
i ∈ B. The average pseudospin vectors alternate at the
sublattices A and B, 〈τ i〉 = −〈τ j 〉.

The simplest illustration of the orbital arrangement of atoms
can be given for the case of θ = 0 or θ = π . Then atoms
with probability equal to one occupy either well α = 1 or
well α = 2, respectively. The illustrative example of phase
diagrams for this case is sketched in Fig. 2, where we adapted
the results of Refs. [25,30–32] on the Kugel-Khomskii model
to our problem of atom arrangements on the optical lattice.
The sketch shows the ordering patterns of atoms on the optical
lattice of the type presented in Fig. 1(b). For the ferromagnetic
orbital arrangement atoms are localized in one of the subwells,
for example, in upper subwells. For the antiferromagnetic
arrangement atoms alternate between α = 1 and α = 2 wells
(upper and lower wells in the figure). If we consider the
antiferromagnetic orbital arrangement beyond the mean-field
approximation then atoms are spread between two subwells
with some probability due to quantum fluctuation. Red spheres
in Fig. 2 show lattice sites with the maximum probability of
occupation by an atom, while white spheres show nearly empty
sites. Arrows indicate spin directions. The phase boundaries in
Fig. 2 actually do not exactly match coordinate axes in (J1,J2)
space: The absolute value and sign of J3 specify the position
of the phase boundaries [25,30–32], as illustrated.

B. Complex hopping amplitudes

One of the unique properties of optical lattices is the
possibility to tune the complex tunnel amplitudes by manip-
ulating the laser field [33]. This includes also the possibility
to manipulate the Hamiltonian by changing the phases of the
hopping amplitudes tij and leaving their absolute values fixed
(i.e., no geometric distortion of the optical lattice).

Toy model. To illustrate the importance of the complex
phases of the hopping amplitudes tij we consider the following
toy model. We suppose that JH = 0 and we account for those
hoppings that go through different orbitals (wells):

t11 = 0, t22 = 0, t12 = t ′, t21 = t ′eiχ . (15)

The constant phase χ accounts for the phase difference
in the nondiagonal hopping amplitudes. Then the effective
Hamiltonian (9) can be written as (see the Appendix)

Hχ = J
∑
〈ij〉

(
1

2
+ 2Si · Sj

)(
1

2
+ 2 cos χ

(
τ x
i τ x

j − τ
y

i τ
y

j

)

+ 2 sin χ
(
τ x
i τ

y

j + τ
y

i τ x
j

) − 2τ z
i τ z

j

)
. (16)

The appearance of the phase-dependent ground state can
be illustrated as follows. For the ferromagnetic spin back-
ground the mean-field energy EMF = 〈ψMF|Hχ |ψMF〉 of the

pseudospin subsystem is

EMF = J

2

∑
〈i,j〉

{1 + cos[χ − (ϕi + ϕj )] sin θi sin θj

− cos θi cos θj }, (17)

where we used 1
2 + 2SiSj = 1. Consider now the energy of the

antiferromagnetic orbital state. For such a state the mean-field
energy per site is

EMF = 3
2J [1 − cos(χ − 2ϕ) sin2 θ + cos2 θ ]. (18)

The minimization of the energy EMF relative to θ and ϕ

gives the twofold-degenerate ground state Eg.s. = 0 with
θ = π/2 and ϕ = χ/2,χ/2 + π . The resulting direction of the
pseudospin 〈τ 〉 depends on the phase χ . In real space this state
describes the situation when the atoms with equal probability
are spread over the first and second wells in the notch, but
the phase relation between pseudospin states |1〉 and |2〉 is
tuned by the applied phase χ . The change of χ induces the
corresponding variation of the phase ϕ, which is equivalent to
rotation of the pseudospin vector 〈τ 〉 in the pseudospin space.

IV. CONCLUSION

Optical lattices are quantum simulators of many-particle
systems. We have shown that there is a mapping between
fermion quantum ordering in the optical superlattices and
the spin-orbital physics developed for degenerate d-electron
compounds. The effective spin-pseudospin model has been
derived. This model is the generalization of the Kugel-
Khomskii Hamiltonian for complex hopping amplitudes. We
have shown how different ground states of this Hamiltonian
correspond to particular nontrivial fermion arrangements on
the lattice.
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APPENDIX: PERTURBATIVE EXPANSION
IN HOPPING AMPLITUDES

In the subspace of functions |0〉 with occupancy equal to
one at each site the hopping term HT creates intermediate states
with double occupancy. There are six different intermediate
states with double occupancy at a given site i, which differ in
the well α and spin σ indices

|ψ1〉 =
(

↑↓
)

, |ψ2〉 =
( ↑↓ )

, (A1)

|ψ3〉 =
( ↑

↑
)

, |ψ4〉 =
( ↓

↓
)

, (A2)

|ψ5〉 =
( ↓

↑
)

, |ψ6〉 =
( ↑

↓
)

. (A3)

Here the lower (upper) level is for the pseudospin state α = 1
(2). All of them are eigenstates of the HU with the same energy
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U and the first four are also eigenstates of HJ. Although the
term HJ mixes the states |ψ5〉 and |ψ6〉, it mixes them into
eigenstate of HU.

In second-order perturbation theory for the hopping term
HT the effective Hamiltonian has the form [24]

HTUJ = − HT
1

HU + HJ
HT . (A4)

Assuming that JH � U , the above expression to first order of
JH /U can be simplified as

HTUJ = − HT

[
1

HU
− 1

HU
HJ

1

HU

]
HT . (A5)

As we mentioned above, all the intermediate states (A1)–(A3),
after mixing them by HJ, remain eigenstates of HU. This
enables us to reduce the above expression for HTUJ to the
form

HTUJ = − 1

U

(
H2

T − 1

U
HT HJ HT

)
. (A6)

Presentation of Fermi operators through the spin and pseu-
dospin operators, which is originally due to Kugel and
Khomskii [19], can be given as

c
†
iαγ ciβγ ′ = (

1
2δαβ + τ a

i σ a
βα

)(
1
2δγ γ ′ + Sb

i σ
b
γ ′γ

)
. (A7)

In the subspace of functions |0〉 the first and the second
term of H2

T is reduced to

H2
T =

∑
〈ij〉

{
Sp(t†t) + Sp(t†σat)τ a

i + Sp(tσ at†)τ a
j

−
(

1

2
+ 2Si · Sj

)[
1

2
Sp(t†t) + Sp(t†σat)τ a

i

+ Sp(tσ at†)τ a
j + 2Sp(t†σatσ bt)τ a

i τ b
j

]}
, (A8)

1

U
HT HJ HT

=
(

−JH

U

) ∑
〈ij〉

{
−1

2
Sp(t†σa′

t)τ a′
i

− 1

2
Sp(tσ a′

t†)τ a′
j − Sp(t†σa′

σbt)τ a′
i τ b

j

− Sp(t†σbtσ a′
)τ b

i τ a′
j +

(
1

2
+ 2Si · Sj

)

×
[

1

2
Sp(t†t) + 1

2
Sp(t†σa′

t)τ a′
i + 1

2
Sp(tσ a′

t†)τ a′
j

− Sp(t†σ ztσ a)τ z
i τ a

j − Sp(t†σatσ z)τ a
i τ z

j

]}
. (A9)

The summation over repeated indices a,b = 1,2,3 is implied;
indices with a prime mean that the summation does not include
the third component, i.e., a′,b′ = 1,2. In terms proportional to
τ a
j we used the property of the Hermitian conjugate hopping

matrix t
αβ

ji = (t†)αβ

ij .
In what follows we omit the constant term Sp(t†t) in H2

T.
Taking both terms together, we obtain after regrouping the

effective Hamiltonian

HTUJ =
∑
〈ij〉

[
1

4
Aij + Aij Si · Sj + Bab

ij τ a
i τ b

j

− 1

2

(
Ka

ij τ
a
i + Ka

jiτ
a
j

) + 4Si · Sj

×
{
Dab

ij τ a
i τ b

j + 1

2

(
Ka

ij τ
a
i + Ka

jiτ
a
j

)}]
, (A10)

where

Aij = 1

U
Sp(t t†)

(
1 − JH

U

)
; (A11)

Bab
ij = 1

U
Sp(t†σatσ b)

⎧⎪⎪⎨
⎪⎪⎩

1 + 2 JH
U

, a,b = 1,2

1 + 3 JH
2U

,
a = 1,2,b = 3

a = 3,b = 1,2
1 + JH

U
, a,b = 3;

(A12)

Dab
ij = 1

U
Sp(t†σatσ b)

⎧⎪⎪⎨
⎪⎪⎩

1, a,b = 1,2

1 + JH
2U

,
a = 1,2,b = 3

a = 3,b = 1,2
1 + JH

U
, a,b = 3;

(A13)

Ka
ij = 1

U
Sp(t†σat)

{
1 − JH

2U
, a = 1,2

1, a = 3.
(A14)

The vectors Ka
ji , which enter in Eq. (A10), are proportional to

Sp(t†jiσ
atji). They can be given in terms of tij using the equality

Sp(t†jiσ
atji) = Sp(tij σ at

†
ij ). Note also that for zero Hund’s cou-

pling JH = 0, the second-rank tensors are similar Bab
ij = Dab

ij .
The presentation in the form (A10) can be viewed as

a generalization of the corresponding Kugel-Khomskii [19]
Hamiltonian for complex hopping amplitudes. Below we
write the explicit form of all the traces that contribute to the
coefficients of the Hamiltonian:

Sp(t†t) = |t11|2 + |t22|2 + |t12|2 + |t21|2,
Sp(t†σ zt) = |t11|2 − |t22|2 + |t12|2 − |t21|2,
Sp(tσ zt†) = |t11|2 − |t22|2 + |t21|2 − |t12|2,

Sp(t†σ ztσ z) = |t11|2 + |t22|2 − |t12|2 − |t21|2,
Sp(t†σxt) = 2 Re[t11(t21)∗ + t22(t12)∗],

Sp(tσ xt†) = 2 Re[t11(t12)∗ + t22(t21)∗],

Sp(t†σyt) = 2 Im[−t11(t21)∗ + t22(t12)∗],

Sp(tσ yt†) = 2 Im[t11(t12)∗ − t22(t21)∗],

Sp(t†σxtσ x) = 2 Re[t11(t22)∗ + t12(t21)∗],

Sp(t†σytσ y) = 2 Re[t11(t22)∗ − t12(t21)∗],

Sp(t†σxtσ y) = 2 Im[t11(t22)∗ − t12(t21)∗],

Sp(t†σytσ x) = 2 Im[−t11(t22)∗ − t12(t21)∗],

Sp(t†σxtσ z) = 2 Re[t11(t21)∗ − t22(t12)∗],

Sp(t†σ ztσ x) = 2 Re[t11(t12)∗ − t22(t21)∗],

Sp(t†σ ztσ y) = 2 Im[t11(t12)∗ + t22(t21)∗],

Sp(t†σytσ z) = 2 Im[−t11(t21)∗ − t22(t12)∗].
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For specific choices of tαβ , in particular for those
considered in the paper, Ka

ji = Ka
ij and the general

form (A10) is reduced to Eq. (9) of the main text.

For the case of real site-independent hopping amplitudes
t11 = t1, t22 = t2, and t12 = t21 = t12 the Hamiltonian (A10)
is reduced to the original Kugel-Khomskii Hamiltonian

HKK = 1

U

∑
〈ij〉

[
− (

t2
1 − t2

2

)(
τ z
i + τ z

j

) −
(

1 − JH

2U

)
2t12(t1 + t2)

(
τ x
i + τ x

j

) + JH

U
4
(
t1t2 + t2

12

)
τ x
i τ x

j

+ JH

U
4
(
t1t2 − t2

12

)
τ

y

i τ
y

j + JH

U
2t12(t1 − t2)

(
τ z
i τ x

j + τ x
i τ z

j

) +
(

1

2
+ 2Si · Sj

){ (
1 − JH

U

)
1

2

(
t2
1 + t2

2 + 2t2
12

)

+ (
t2
1 − t2

2

)(
τ z
i + τ z

j

) +
(

1 − JH

2U

)
2t12(t1 + t2)

(
τ x
i + τ x

j

) + 4
(
t1t2 + t2

12

)
τ x
i τ x

j

+ 4
(
t1t2 − t2

12

)
τ

y

i τ
y

j +
(

1 + JH

U

)
2
(
t2
1 + t2

2 − 2t2
12

)
τ z
i τ z

j +
(

1 + JH

2U

)
4t12(t1 − t2)

(
τ z
i τ x

j + τ x
i τ z

j

)}]
. (A15)

For the diagonal hopping matrix t12 = 0, t1 = t2 = t , and the
Hamiltonian (A15) is simplified to

HKK = 1
4J1 + J1Si · Sj + J2τ i · τ j + 4J3(Si · Sj )(τ i · τ j )

− J3(1 − 4Si · Sj )
JH

U
τz
i τ z

j , (A16)

where

J1 = 2t2

U

(
1 − JH

U

)
, (A17)

J2 = 2t2

U

(
1 + 2

JH

U

)
, (A18)

J3 = 2t2

U
. (A19)

The Hamiltonian serves as a starting form for the symmetrical
Hamiltonian (11) with independent J1, J2, and J3, if one

neglects the anisotropy term (∝ JH/Uτz
i τ z

j ) in pseudospin
space.

Toy model. To illustrate the meaning of complex phases we
have considered herein the case when the hopping process can
be described by the toy model

t11 = 0, t22 = 0, t12 = t ′, t21 = t ′eiχ . (A20)

For such amplitudes the only nonzero traces are

Sp(t t†) = 2|t ′|2, Sp(σ ztσ zt†) = −2|t ′|2, (A21)

Sp(σxtσ xt†) = −Sp(σytσ yt†) = 2|t ′|2 cos χ, (A22)

Sp(σxtσ yt†) = Sp(σytσ xt†) = 2|t ′|2 sin χ. (A23)

The Hamiltonian HTUJ can be rewritten as

Hχ = J
∑
〈ij〉

(
1

2
+ 2Si · Sj

)(
1

2
+ 2Babτ a

i τ b
j

)
, (A24)

where the effective exchange is J = 2|t ′|2/U and B12 =
B21 = sin χ , B11 = −B22 = cos χ , and B33 = −1. Equation
(A24) can be rewritten in the form (16).
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