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Using a variational approach, we present the full solutions of the simplified one-dimensional two-fluid
hydrodynamic equations for a unitary Fermi gas trapped in a highly elongated harmonic potential, which
was recently derived by G. Bertaina and coworkers [Phys. Rev. Lett. 105, 150402 (2010)]. We calculate the
discretized mode frequencies of first and second sound along the weak axial trapping potential, as a function
of the temperature and the form of superfluid density. We show that the density fluctuations in second-sound
modes, due to their coupling to first-sound modes, are large enough to be measured in current experimental setups
such as that exploited by M. K. Tey et al. at the University of Innsbruck [Phys. Rev. Lett. 110, 055303 (2013)].
Owing to the sensitivity of second sounds on the form of superfluid density, the high precision of the measured
second-sound frequencies may provide us a promising way to accurately determine the superfluid density of a
unitary Fermi gas, which so far has remained elusive.
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I. INTRODUCTION

Over the past few years, first and second sounds of a unitary
atomic Fermi gas at a broad Feshbach resonance have received
increasing attention [1–13]. Being in-phase density oscilla-
tions (first sound) and out-of-phase temperature oscillations
(second sound) [14,15], these sound modes provide a useful
probe of the equation of state [9,10,16–19] and superfluid
density [3–7,11,13] of the unitary Fermi gas. The latter
quantity of superfluid density is of particular interest, as it is
notoriously difficult to calculate in theory. In practice, it could
be measured through second-sound wave propagation [5].
Indeed, in superfluid helium 4He, the accurate knowledge of its
superfluid density, slightly below the λ transition, is obtained
by measurement of temperature waves [20].

A strongly interacting unitary Fermi gas bears a lot of
similarity to superfluid helium [4,6]. Due to strong correlation,
the first and second sounds in both systems are nearly
decoupled. Yet the weak coupling between sounds still leads to
a sizable hybridization effect and hence a measurable density
fluctuation for second sounds. This gives rise to a promising
way of exciting and detecting second sounds through density
measurements in a unitary Fermi gas [5,6]. For an isotropically
trapped unitary Fermi gas, such a hybridization effect has been
analyzed by Taylor et al., using the standard dissipationless
Landau two-fluid hydrodynamic approach [4]. Experimen-
tally, however, it is more feasible to confine a unitary Fermi
gas in highly elongated traps. For this configuration, the
viscosity and thermal conductivity terms in the two-fluid
hydrodynamic equations become important and enable a
simplified one-dimensional (1D) hydrodynamic description,
as suggested by Bertaina, Pitaevskii, and Stringari [8]. In
a recent milestone experiment, a second sound wave has
been excited in a highly elongated unitary Fermi gas, and its
propagation along the weakly confined axial axis has been
measured [11]. The simplified 1D hydrodynamic equation
has been used to extract the superfluid density from the
resulting second-sound velocity data. Unfortunately, at present
the experimental accuracy of the sound velocity is not
enough to give a satisfactory determination of the superfluid
density [11].

In this paper, we propose that the measurement of dis-
cretized mode frequencies of low-lying second sounds along
the weakly confined axial direction may provide an accurate
means of determining the superfluid density. Indeed, the latest
measurement of discretized first-sound mode frequencies [9]
indicates a very small relative error (∼0.5% ), which is at least
an order smaller in magnitude than the relative error in sound
velocity data [11].

For this purpose, we fully solve the coupled 1D hydro-
dynamic equations in the presence of a weak axial harmonic
potential and obtain the density fluctuations of discretized low-
lying second-sound modes, which arise from to their coupling
to first-sound modes. We find that these density fluctuations are
significant, thereby making second-sound modes observable in
current experiments, by modulating, for example, the weakly
confined axial trapping potential. Our full solutions of the
simplified 1D hydrodynamic equations complement the earlier
results obtained by Hou, Pitaevskii, and Stringari [12], where
the decoupled first- and second-sound mode frequencies are
calculated with a simple variational ansatz for displacement
fields. In this work, we emphasize the correction to discretized
mode frequencies, due to the weak coupling between first and
second sound.

The rest of the paper is organized as follows. In the next
section, we briefly outline the reduced 1D thermodynamics, as
an input for the simplified 1D hydrodynamic description. In
Sec. III, we show how to solve the coupled 1D hydrodynamic
equations using a variational approach. In Sec. IV, we first
provide results for the decoupled first- and second-sound
solutions and then present the density fluctuations of some
low-lying second-sound modes. Finally, in Sec. V we draw our
conclusions and briefly describe how to obtain the superfluid
density of a unitary Fermi gas from the measured low-lying
second-sound mode frequencies.

II. ONE-DIMENSIONAL REDUCED THERMODYNAMICS

We consider a unitary Fermi gas trapped in a highly
anisotropic harmonic potential,

Vext(r⊥,z) = 1
2mω2

⊥r2
⊥ + 1

2mω2
zz

2, (1)
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with atomic mass m and trapping frequency ωz � ω⊥. We
assume that the number of atoms in the Fermi cloud, typically
N ∼ 105 in current experiments, is large enough so that we
can safely use the local density approximation and treat the
atoms in the position (r⊥,z) as uniform matter with a local
chemical potential μ(r⊥,z) = μ − Vext(r⊥,z), where μ is the
chemical potential at the trap center. In this way, we may write
the local pressure and number density in the form

P (r⊥,z) = kBT

λ3
T

f 3D
p

[
μ(r⊥,z)

kBT

]
, (2)

n (r⊥,z) = 1

λ3
T

f 3D
n

[
μ(r⊥,z)

kBT

]
, (3)

where λT ≡
√

2π�2/(mkBT ) is the thermal wavelength at
temperature T , and f 3D

p (t) and f 3D
n (t) = df 3D

p (t) /dt are two
universal functions satisfied by a unitary Fermi gas due to its
universal thermodynamics [21–28].

It was shown by Bertaina, Pitaevskii, and Stringari [8] that,
with tight radial confinement, the standard Landau two-fluid
hydrodynamic equations defined in three dimensions can be
greatly simplified. The key observation is that, as a direct
consequence of the dissipation terms (i.e., nonzero viscosity
and thermal conductivity), the local fluctuations in temperature
and chemical potential become essentially independent of the
radial coordinates, if we are interested in the low-energy exci-
tations at frequency ωz � ω⊥. Therefore, we could integrate
out the radial degree of freedom in thermodynamic variables
and derive 1D reduced thermodynamics [12]. In particular, we
may obtain a reduced Gibbs-Duhem relation,

δP1 = s1δT + n1δμ, (4)

where the variables P1, s1, and n1 are the radial integrals
of their 3D counterparts, namely the local pressure, entropy
density and number density. For example, we have [12],

P1(z) ≡
∫

dr⊥2πr⊥P (r⊥,z) = 2π (kBT )2

mω2
⊥λ3

T

fp (x) , (5)

where

x ≡ (
μ − 1

2mω2
zz

2
)
/kBT (6)

and we have introduced the universal scaling function,

fp (x) ≡
∫ ∞

0
dtf 3D

p (x − t) . (7)

All the 1D thermodynamic variables can then be derived from
the reduced Gibbs-Duhem relation, such as [12]

n1(z) =
(

∂P1

∂μ

)
T

= 2πkBT

mω2
⊥λ3

T

fn (x) , (8)

s1(z) =
(

∂P1

∂T

)
μ

= 2πkBT

mω2
⊥λ3

T

[
7

2
fp (x) − xfn (x)

]
, (9)

where fn(x) ≡ dfp(x)/dx = f 3D
p (x) according to Eq. (7).

Furthermore, it is straightforward to obtain the specific heats

per particle at a constant linear density and pressure [12],

c̄v1(z) = T

(
∂s̄1

∂T

)
n1

= 35

4

fp (x)

fn (x)
− 25

4

fn (x)

f
′
n (x)

, (10)

c̄p1(z) = T

(
∂s̄1

∂T

)
P1

= c̄v1
7

5

fp (x) f
′
n (x)

f 2
n (x)

, (11)

where s̄1 ≡ s1/(n1kB) is the entropy per particle and f
′
n(x) ≡

dfn(x)/dx = f 3D
n (x). It is also easy to check the universal

relations,

n1

(
∂P1

∂n1

)
s̄1

= 7

5
P1, (12)

(
∂P1

∂s1

)
n1

= 2

5
T . (13)

For the local superfluid density, similarly we express it by a
universal function, f 3D

s :

ns (r⊥,z) = 1

λ3
T

f 3D
s

[
μ(r⊥,z)

kBT

]
. (14)

By integrating out the radial coordinate, we find the expression

ns1(z) =
∫

dr⊥2πr⊥ns (r⊥,z) = 2πkBT

mω2
⊥λ3

T

fs (x) , (15)

where the universal scaling function fs(x) is defined by

fs (x) =
∫ ∞

0
dtf 3D

s (x − t) . (16)

The universal function f 3D
p (t) or f 3D

n (t) of a homogeneous
unitary Fermi gas, where t ≡ μ/kBT , has been measured by
the MIT team with a high precision [28], both below and
above the critical temperature for superfluid phase transition.
In Fig. 1, we show the 1D universal scaling functions calculated
using the experimental MIT data for f 3D

n (t), which have
been smoothly extrapolated to both low- and high-temperature
regimes where the behavior of f 3D

n (t) is known [6,12,29,30].
Hereafter, without any confusion, we drop the subscript “1” in
all the 1D thermodynamic variables.

In contrast, the universal function for superfluid den-
sity f 3D

s (t) remains elusive [3,7,31]. In this work, we use
a phenomenological ansatz for the 3D superfluid fraction
(ns/n)3D = f (T/Tc), following the strategy used in Ref. [12].
Thus, recalling that T/Tc = [f 3D

n (t)/f 3D
n (tc � 2.49)]−2/3, the

universal function f 3D
s (t) is given by

f 3D
s (t) = f 3D

n (t) f

{[
f 3D

n (t)

f 3D
n (tc � 2.49)

]−2/3
}

. (17)

In the following, we use the phenomenological superfluid
fraction [12]

f

(
T

Tc

)
= 1 −

(
T

Tc

)4

, (18)

unless otherwise stated.
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FIG. 1. (Color online) (a) One-dimensional universal scaling
functions fp(x), fn(x), and dfn(x)/dx as a function of the di-
mensionless variable x = μ/(kBT ). (b) One-dimensional entropy
s̄ = s/(nkB ) and specific heat per particle c̄v = cv/(nkB ) as a function
of x = μ/(kBT ). Vertical gray lines indicate the critical threshold for
superfluidity, xc � 2.49 [28].

III. ONE-DIMENSIONAL SIMPLIFIED TWO-FLUID
HYDRODYNAMIC EQUATIONS

Using 1D thermodynamic variables in the standard Landau
two-fluid hydrodynamic description [15], it is straightforward
to write down the simplified 1D two-fluid hydrodynamic
equations. As discussed in the previous work [1,3,4,12], the
solutions of these equations with frequency ω at temperature
T can be derived by minimizing a variational action, which,
in terms of displacement fields us(z) and un(z), is given by

S(2) = 1

2

∫
dz

[
mω2

(
nsu

2
s + nnu

2
n

) −
(

∂μ

∂n

)
s

(δn)2

− 2

(
∂T

∂n

)
s

δnδs −
(

∂T

∂s

)
n

(δs)2

]
. (19)

Here, ns(z) and nn(z) = n(z) − ns(z) are the reduced 1D
superfluid and normal-fluid densities. δn(z) ≡ −∂(nsus +
nnun)/∂z and δs(z) ≡ −∂(sun)/∂z are the density and entropy
fluctuations, respectively. The effect of the weak axial trapping
potential Vext(z) = mω2

zz
2/2 enters Eq. (19) via the position

dependence of the equilibrium thermodynamic variables,
within the local density approximation.

In superfluid helium, the solutions of the hydrodynamic
action, Eq. (19), can be well classified as density and tempera-
ture waves, which are the pure in-phase mode with us = un and
the pure out-of-phase mode with nsus + nnun = 0, referred to
as first and second sounds, respectively [15]. We may use a
similar characterization for a unitary Fermi gas. To this end,
it is useful to rewrite the action, Eq. (19), in terms of the
displacement fields ua = (nsus + nnun)/n and ue = us − un,
since the density and temperature fluctuations can be expressed

by δn= −∂(nua)/∂z and δT = (∂T /∂s)n∂(snsue/n)/∂z, re-
spectively. Making use of standard thermodynamic identities,
we find that

S(2) = 1

2

∫
dz[S (a) + S (e) + S (ae)], (20)

where

S (a) = m
(
ω2 − ω2

z

)
nu2

a − n

(
∂P

∂n

)
s̄

(
∂ua

∂z

)2

, (21)

S (e) = mω2 nsnn

n
u2

e −
(

∂T

∂s

)
n

[
∂

∂z

( sns

n
ue

)]2

, (22)

S (ae) = 2

(
∂P

∂s

)
n

∂ua

∂z

∂

∂z

( sns

n
ue

)
. (23)

In the absence of the coupling termS (ae), it is clear that the first-
sound mode, described by S (a), is the exact solution for pure
density oscillations (i.e., ue = 0 or δT = 0), while the second-
sound mode given by S (e) corresponds to pure temperature
oscillations with ua = 0 or δn = 0. For a uniform superfluid
(Vext = 0), the solutions of S (a) and S (e) are plane waves of
wave vector q with dispersion ω1 = c1q and ω2 = c2q, where
mc2

1 = (∂P/∂n)s̄ and

mc2
2 = kBT

s̄2

c̄v

ns

nn

. (24)

These first- and second-sound velocities are the standard
results used to describe superfluid helium [15].

In general, the coupling term S (ae) is nonzero. Actually, in
our case, as (∂P/∂s)n = 2T/5, the first and second sounds
are necessarily coupled at any finite temperature. This cou-
pling can be conveniently characterized by the dimensionless
Landau-Placzek (LP) parameter εLP ≡ γ − 1 [6], where γ ≡
c̄p/c̄v is the ratio between the specific heats per particle
at constant pressure and density. Indeed, with the coupling
term, the second-sound velocity c2 may be well approximated
by [6,12]

mc2
2 = kBT

s̄2

c̄p

ns

nn

, (25)

which differs from Eq. (24) by a factor of γ = c̄p/c̄v . Thus, the
LP ratio is a useful parameter to estimate the coupling between
first and second sounds.

In superfluid helium, c̄p � c̄v or εLP � 0, indicating that
the first and second sounds are well decoupled. For a unitary
Fermi gas in highly elongated traps, we have calculated the LP
ratio using the 1D thermodynamic data. As shown in Fig. 2, the
ratio is less than 1/4 in the whole superfluid phase. Therefore,
similarly to superfluid liquid helium, the solutions of two-
fluid hydrodynamic equations for a highly elongated unitary
Fermi gas are well approximated as weakly coupled first- and
second-sound modes.

We note that, in the presence of axial harmonic traps (Vext 	=
0), the actions S (a) and S (e) have been solved analytically
by Hou, Pitaevskii, and Stringari using a simple variational
ansatz [12]. The coupling between first and second sounds
due to S (ae) has also been briefly commented on. In this
work, by presenting the full variational calculations, we show
how the low-lying second-sound modes are affected by the
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FIG. 2. (Color online) Landau-Placzek parameter εLP as a func-
tion of x = μ/(kBT ) in a highly elongated unitary Fermi gas.

coupling. In particular, we focus on the density fluctuations
of second-sound modes, which are the key observable in real
experiments [9].

A. Variational approach

We assume the following polynomial ansatz for the dis-
placement fields:

ua(z) =
Np−1∑
i=0

Aiz̃
i , (26)

ue(z) =
Np−1∑
i=0

Biz̃
i , (27)

where the number of variational parameters {Ai,Bi} is 2Np,
and z̃ ≡ z/ZF is the dimensionless coordinate, with ZF being
the Thomas-Fermi radius along the weakly confined axial
direction. Inserting this ansatz into the action, Eq. (20), the
mode frequencies are obtained by minimizing the resulting
expression with respect to the 2Np parameters. The precision
of our variational calculations can be improved by increasing
the value of Np.

In greater detail, it is easy to see that the action is given by

S(2) = 1
2	†S (ω) 	, (28)

where 	 ≡ [A0,B0, . . . ,Ai,Bi, . . . ,ANp−1,BNp−1]T and S(ω)
is a 2Np × 2Np matrix with block elements,

[S(ω)]ij ≡
[
M

(a)
ij ω2 − K

(a)
ij −K

(ae)
ij

−K
(ae)
ji M

(e)
ij ω2 − K

(e)
ij

]
. (29)

Here, we have introduced the weighted mass moments,

M
(a)
ij = m

∫
dzz̃i+j n(z), (30)

M
(e)
ij = m

∫
dzz̃i+j

[
nsnn

n

]
(z), (31)

and the spring constants,

K
(a)
ij = 7

5
ij

∫
dzz̃i+jP (z)/z2 + ω2

zM
(a)
ij , (32)

K
(ae)
ij = 2T

5
i (i − 1)

∫
dzz̃i+j z−2

[ sns

n

]
(z), (33)

K
(e)
ij =

∫
dz

(
∂T

∂s

)
n

∂

∂z

(
sns z̃

i

n

)
∂

∂z

(
sns z̃

j

n

)
. (34)

In deriving K
(a)
ij and K

(ae)
ij , we have used the universal

relations satisfied by the highly elongated unitary Fermi
gas: n(∂P/∂n)s̄ = 7P/5 and (∂P/∂s)n = 2T/5. For a given
value of μ/kBT (or T/TF ; see below), the weighted mass
moments and spring constants can be calculated by using local
thermodynamic variables in Eqs. (5), (8), (9), (10), and (15).
We note that the universal scaling function for superfluid
density is given by Eqs. (16), (17), and (18).

In practice, the minimization of the action S(2) is equivalent
to solving

S (ω) 	 = 0. (35)

Once a solution (i.e., the kth mode frequency ωk and the
coefficient eigenvector 	k) is found, we calculate the density
fluctuation of the mode, by using

δnk(z) = −
Np−1∑
i=0

A
(k)
i

∂

∂z
[n(z)z̃i]. (36)

IV. RESULTS AND DISCUSSION

We have performed numerical calculations for a number of
variational parameters Np up to 24, for any given temperature
T/TF or chemical potential μ/kBT . By recalling that the
Fermi temperature TF of a 3D trapped Fermi gas is given
by

kBTF = �(3Nω2
⊥ωz)

1/3, (37)

and the number of atoms by N = ∫
dzn(z), these two

parameters are related by

T

TF

=
[

3√
π

∫ ∞

0
dt

1√
t
fn

(
μ

kBT
− t

)]−1/3

. (38)

In the following, we first discuss the decoupled first and
second sounds, in connection with the previous results of Hou,
Pitaevskii, and Stringari [12]. Then we focus on the effect of
the mode coupling.

A. Decoupled first sound

In Ref. [12], the action S (a) has been solved by using the
ansätze uk=2

a (z) = A2z
2 + A0 and uk=3

a (z) = A3z
3 + A1z for

the k = 2 and k = 3 first-sound modes, respectively. Here,
k is the index of a mode and counts the number of nodes
(=k + 1) in its density fluctuation. These are the first two

023616-4



FIRST AND SECOND SOUND OF A UNITARY FERMI GAS . . . PHYSICAL REVIEW A 90, 023616 (2014)

FIG. 3. (Color online) (a) Temperature dependence of the first-
sound mode frequencies. (b) Enlarged view for the fourth first-sound
mode frequency. The dashed (red) line shows the result with the
ansatz ua(z) = A3z

3 + A1z, obtained earlier by Hou, Pitaevskii, and
Stringari [12]. Vertical gray lines show the critical temperature, Tc �
0.223TF .

solutions, whose frequency varies with increasing temperature,
due to the nontrivial temperature dependence of the equation
of state [12]. Indeed, it is easy to prove that

K
(a)
ij =

[
7

5

ij

(i + j − 1)
+ 1

]
ω2

zM
(a)
ij . (39)

Thus, if i = 0 or j = 0, we have K
(a)
ij = ω2

zM
(a)
ij . Together with

the fact that K
(ae)
i=0,j = 0 or K

(ae)
j=0,i = 0, it is clear that the k = 0

first-sound mode with the variational ansatz uk=0
a (z) = A0 is

an exact solution of the two-fluid hydrodynamic equations.
In fact, it is precisely the undamped dipole oscillation, with
invariant frequency ω = ωz. Similarly, in the case of i = 1
or j = 1, K

(a)
ij = (12/5)ω2

zM
(a)
ij , revealing that the k = 1

first-sound mode—the breathing mode—is another exact
solution of the two-fluid hydrodynamic equation with invariant
frequency ω = √

12/5ωz [12,32].
In Fig. 3(a), we report the variational results for first-sound

mode frequencies with Np = 24. In agreement with the
observation by Hou, Pitaevskii, and Stringari [12], we find
that uk=2

a (z) and uk=3
a (z) provide excellent variational ansätze

for the third and fourth modes. As shown in Fig. 3(b), the
higher-order correction, for example, for the k = 3 mode, is
of the order of 0.1% relatively and can only be seen in the
vicinity of the critical temperature.

B. Decoupled second sound

In Fig. 4(a), we present the results for the mode frequency
of decoupled second sounds. With increasing temperature, the
mode frequency initially increases and reaches a maximum be-
fore finally dropping to 0 at the superfluid phase transition [12].
In sharp contrast to first-sound modes, the convergence of
the polynomial ansatz for second-sound modes appears to be
slow. For the lowest dipole second-sound mode, our variational
approach only converges at Np � 16, as shown in Fig. 4(b).
Moreover, compared with the fully converged result, a constant
displacement field ue (i.e., Np = 1) can lead to a relative

FIG. 4. (Color online) (a) Temperature dependence of the
second-sound mode frequencies with Np = 24. Mode frequencies
vanish right at the superfluid phase transition. However, our numerical
calculations become less accurate slightly below the transition
and cannot produce correctly the zero frequency exactly at Tc.
(b) Enlarged view for the lowest second-sound mode frequency. The
mode frequency converges with an increasing number of variational
ansätze Np . The result with Np = 1 [dot-dashed (green) line]
corresponds to a constant displacement field ue [12]. The vertical
gray lines show the critical temperature.

error as large as 20% close to the superfluid phase transition.
For higher order second-sound modes, we observe that the
convergence of the polynomial ansatz becomes even slower.

C. Full solutions of 1D two-fluid hydrodynamics

We now include the mode coupling term S (ae). In Fig. 5, we
represent the full variational results with Np = 24 by (blue)
circles. For comparison, we also show the decoupled first-
and second-sound mode frequencies, by solid black lines and
dashed (red) lines. As anticipated, at the qualitative level,
the full variational predictions can be well approximated by
the decoupled results, confirming our previous idea that in
highly elongated harmonic traps, the solutions of two-fluid
hydrodynamics of a unitary Fermi gas can indeed be viewed
as weakly coupled first- and second-sound modes.

At the quantitative level, the first-sound mode is nearly
unaffected by the coupling term S (ae). This is evident in
Fig. 6(a), where we present an enlarged view for the k = 3
first-sound mode. The mode frequency has been pushed up by
about 0.5% at T ∼ 0.15TF by the coupling. Experimentally,
the frequency of the k = 3 first-sound mode has been measured
very recently [9,10]. In the figure, we show the experimental
data by filled black squares with error bars. It is known
that the data systematically lie above the variational result
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FIG. 5. (Color online) Temperature dependence of the full two-
fluid hydrodynamic mode frequencies [(blue) circles]. For compari-
son, we show also the mode frequencies of the decoupled first and
second sounds, by solid black and dashed (red) lines, respectively.
The vertical gray line indicates the critical temperature.

with uk=3
a (z) [9,10,12]. Our full variational predictions seem

to agree better with the experimental data. However, the
improvement is too slight to account for the discrepancy.

On the other hand, the frequency of second-sound modes is
notably pushed down by the coupling, as shown in Fig. 6(b).
The maximum correction is up to 10% when the temperature
is about 0.15TF . Therefore, for a quantitative prediction of
second-sound modes over the whole temperature regime, we
must fully solve the coupled Landau two-fluid hydrodynamic
equations.

D. Density measurement of discretized second-sound modes

The sizable correction in mode frequencies strongly indi-
cates that the density fluctuation δnk(z) of a second-sound
mode, as a result of its coupling to first-sound modes,
could also be significant. In Fig. 7(b), we show the density

FIG. 6. (Color online) Blowup of the full two-fluid hydrody-
namic mode frequencies [(blue) circles], near (a) the k = 3 first-sound
mode and (b) the lowest second-sound modes. In (a), experimental
data from the Innsbruck experiment [9] are shown by filled (brown)
squares with error bars.

FIG. 7. (Color online) (a) Density distribution (solid line) and
superfluid density distribution (dashed line) at T = 0.18TF , in units
of the peak linear density of an ideal Fermi gas at the trap center (nF ).
(b) Density fluctuations of the k = 2 and k = 3 first-sound modes
(thin lines) and of the three lowest second-sound modes (thick lines),
at the frequencies indicated in Fig. 6(b) by A, B, and C. The amplitude
of the second-sound density fluctuations is about one-third that of the
first-sound density fluctuations.

fluctuations of the lowest three second-sound modes at the
temperature T = 0.18TF (thick lines), relative to the density
fluctuations of the k = 2 and k = 3 first-sound modes (thin
lines). The absolute amplitude of density fluctuations depends
on the detailed excitation scheme used in experiments.

In a recent investigation by the Innsbruck group [9,10], the
density fluctuations of the k = 2 and k = 3 first-sound modes
have been excited and measured, to a reasonable accuracy.
For the detailed resonant excitation scheme, we refer to the
experimental papers, Refs. [9] and [10]. We anticipate that
a similar excitation procedure works also for second-sound
modes, by carefully choosing the position and size of the
excitation laser beam, which provide the best mode matching.
As shown in Fig. 7(b), it is remarkable that the amplitude of
the second-sound density fluctuations is of the same order as
that of the k = 2 and k = 3 first-sound modes, over a useful
range of temperatures. As we see below from the analysis of
the density response function, this implies that the low-lying
second-sound mode could be observed by looking at its density
fluctuation, after proper excitation.

To obtain the density response function, we consider adding
a density perturbation of the form δV (z,t) = λf (z)e−i
t to
the equilibrium two-fluid equations, where λ is the strength of
the perturbation and f (z) is a normalized shape function [i.e.,∫

dzf 2(z) = 1]. This leads to a density fluctuation δn(z,t) with
its amplitude proportional to λ and, in turn, gives the response
function χnn(
; f ), defined by

λχnn (
; f ) e−i
t =
∫

dzf (z)δn (z,t) . (40)
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FIG. 8. (Color online) Sensitivity of the lowest second-sound
mode on the superfluid density. The critical temperature Tc �
0.223TF .

Note that, in general, the response function depends on the
form of the perturbation f (z). In greater detail, the density
perturbation generates an additional term δS(2) in the two-fluid
hydrodynamic action,

S(2) = 1
2	

†

S(
)	
 + δS(2), (41)

where

δS(2) = λ

Np−1∑
i=0

∫
dzf (z)

∂

∂z
[n(z)z̃i]A(
)

i . (42)

Here we have used the index “
” to distinguish 	


from the eigenvector 	 obtained by diagonalizing the
action matrix, Eq. (29). By introducing a vector F =
[f0,0,f1,0, . . . ,fNp−1,0]T , where fi ≡ ∫

dzf (z)∂[n(z)z̃i]/∂z,
we obtain

	
 = −λS−1 (
) F (43)

by minimizing the perturbed action. Substituting this result
into the expression for the density fluctuation, Eq. (36), we
find that

χnn (
; f ) = F †S−1(
)F,

=
∑

k

Zk

2ωk

(
1


 − ωk

− 1


 + ωk

)
, (44)

where

Zk = |F †	k|2 =
∣∣∣∣
∫

dzf (z)δnk(z)

∣∣∣∣
2

(45)

is the residue of the response function for the kth collective
mode with eigenvector 	k and frequency ωk [33].

Using Eq. (45), it is clear that a sizable density fluctuation
δnk(z) of second-sound modes—as reported in Fig. 7—implies
that a significant residue in the density response for second
sounds can be achieved by optimizing the unit shape function
f (z) such that f (z) ∝ δnk(z). Therefore, a discrete second

sound can be excited in a similar way as the first sound, without
imposing a high strength λ for the density perturbation δV (z,t).

E. Dependence on the superfluid fraction

We so far have restricted ourselves to the phenomenological
superfluid fraction, Eq. (18). In Fig. 8, we report the depen-
dence of the lowest second-sound frequency on the form of
the superfluid fraction. The sensitive dependence indicates that
practically the unknown superfluid density of a unitary Fermi
gas could be accurately determined by measuring the mode
frequency of low-lying second-sound modes.

V. CONCLUSIONS

In conclusion, using a variational approach, we have fully
solved the 1D simplified Landau two-fluid hydrodynamic
equations, which describe the collective excitations of a unitary
Fermi gas in highly elongated harmonic traps. Resembling
the superfluid helium, the solutions are well characterized by
weakly coupled first- and second-sound modes. Discretized
first- and second-sound mode frequencies have been accurately
predicted.

Though the coupling between first and second sounds
is weak, it still induces significant density fluctuations for
second-sound modes, suggesting that second sounds could be
observed by measuring the density fluctuations after properly
modulating the axial harmonic trapping potential. Owing
to the very high precision in the frequency calibration, the
experimental measurement of discretized second sound mode
frequency provides a promising way to accurately determining
the superfluid density of a unitary Fermi gas, which remains
elusive to date.

Ideally, we anticipate that the relative error in the mea-
surement of the second-sound mode frequency is about 0.5%.
For low-lying modes, whose mode frequency is lower than
ωz, the damping rate might be reasonably low. By assuming a
superfluid fraction in the form

f

(
T

Tc

)
=

(
1 − T

Tc

)2/3 [
a0 + a1

(
T

Tc

)
+ · · ·

]
, (46)

which correctly reproduces the critical behavior near the
superfluid phase transition, we may determine the parameters
{a0,a1,a2, . . . } by fitting the experimental data to the full
variational predictions for the discretized low-lying second-
sound mode frequencies.
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