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Evaporative cooling of cold atoms at surfaces
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We theoretically investigate the evaporative cooling of cold rubidium atoms that are brought close to a solid
surface. The dynamics of the atom cloud are described by coupling a dissipative Gross-Pitaevskii equation for the
condensate with a quantum Boltzmann description of the thermal cloud (the Zaremba-Nikuni-Griffin method).
We have also performed experiments to allow for a detailed comparison with this model and find that it can
capture the key physics of this system provided the full collisional dynamics of the thermal cloud are included.
In addition, we suggest how to optimize surface cooling to obtain the purest and largest condensates.
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I. INTRODUCTION

Since the advent of microchip traps for cold atoms [1–12],
interest in developing quantum hybrid systems, which exploit
the long coherence times of Bose-Einstein condensates with
the flexibility of modern micro- and nanoelectronics, con-
tinues to grow. There is potential to use such systems as
quantum memory devices [13–15], precision measurement
devices [16–19], and even rewritable electronic systems [20].
More recently, there have been proposals to use cold atoms
to cool nanoscaled solid objects [21,22]; ion cooling using
neutral atoms has already been demonstrated [23,24].

As a result of these experimental advances, a need has
grown to develop theoretical tools that can describe hybrid
devices at finite temperatures. A range of methods has been
previously developed for describing finite-temperature cold
gases in isolation [25–45], but none has been used in the
context of hybrid devices.

A challenging test of a finite-temperature method is the
problem of evaporative cooling when atoms are brought
close to a solid surface. This is, in fact, a rather common
experiment in the atom chip community, where surface losses
are frequently used to calibrate the position of the surface.
Such experiments lead to nontrivial loss curves [46,47] and
are known to be an efficient route to Bose-Einstein conden-
sation [48]. Previous work on free-space evaporative cooling
(see, e.g., Ref. [49] for an early review) has typically been
based on the classical ergodic Boltzmann equation [50–52],
extended to include rate equations for the losses [53], or on
phase-space methods [54]. Condensate growth has also been
studied by sudden truncation of the thermal distribution in the
ergodic approximation [37,38,55,56] or through a dynamical
quench [39,57–61]. However, the surface cooling problem,
which requires a detailed description of the atomic collisional
processes for both the condensate and the thermal cloud,
has not yet been theoretically studied, either qualitatively
or quantitatively. In addition, further experimental work is
required to provide benchmarks for such theories.

The aim of this paper is to show that the key physics
of surface evaporative cooling may be captured using the
Zaremba-Nikuni-Griffin (ZNG) model [27,35] in its full
dynamical nonequilibrium implementation, extending beyond
ergodicity [62]. The ZNG kinetic model accounts for full

collisional redistribution between the condensate and the
thermal cloud, taking Bose enhancement and Bose-Einstein
condensation (BEC) growth into account. It has been pre-
viously applied successfully to a diverse range of problems
[63–68]. To demonstrate the applicability of this model to
the problem of surface evaporative cooling, we also present
experimental results based on 87Rb and a silicon surface,
revealing consistency between theory and experiment. In spite
of neglecting fluctuations around the phase transition, this
method appears to be able to describe condensate growth and
the nontrivial atom loss curves observed in experiments. At the
end of this study, we show how to optimize the surface cooling
of a cold cloud to obtain the purest or largest condensates.

II. METHODS

We begin by briefly reviewing the ZNG formalism [27,35]
for describing a cold cloud of N atoms at finite temperature.
In this model, thermal excitations are treated semiclassically
within the Hartree-Fock and Popov approximations [29].
This leads to a generalized Gross-Pitaevskii equation (GPE)
for atoms of mass m, describing the time evolution of the
condensate wave function �(r,t) in an external potential V (r),

i�
∂�

∂t
=
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−�

2∇2

2m
+ V + gnc + 2gñ − iR

)
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which is coupled to a quantum Boltzmann equation for the
thermal atoms,

∂f

∂t
+ p

m
· ∇f − ∇U · ∇pf = C12[f,�] + C22[f ]. (2)

Here, f (r,p,t) is the phase-space density of the thermal cloud,
nc(r,t) = |�(r,t)|2 is the condensate spatial density, ñ(r,t) =∫

(dp/h3)f (p,r,t) is the thermal cloud spatial density, iR is a
source term that leads to loss or gain of condensate atoms, p is
the atomic momentum vector, U (r,t) = V (r) + 2g[nc(r,t) +
ñ(r,t)] is the effective potential experienced by the thermal
atoms, combining the external and interaction potentials, and
C12 and C22 are the collision integrals. The strength of the
atomic interactions in the condensate is given by the coupling
constant g = 4π�

2a/m, where a is the s-wave scattering
length (≈5.4 nm for 87Rb). The other symbols have their
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usual meaning, with ∇, ∇p representing the three-dimensional
derivatives with respect to space and momentum.

The condensate density is normalized to the current number
of condensate atoms, Nc, and the thermal cloud density ñ(r,t)
is obtained by integrating f (r,p,t) over momentum space. The
two densities appear not only in Eq. (1) for the condensate, but
also in the expression for the effective potential U (r,t). This
leads to a mean-field coupling between the condensate and the
thermal cloud. In addition to this mean-field coupling, atoms in
the thermal cloud can scatter from one another (C22 collisions),
and atoms can scatter into or out of the condensate (C12

collisions). These collisions are calculated via the collision
integrals

C22[f ] = 2g2

(2π )5h7

∫
dp2dp3dp4δ(p + p2 − p3 − p4)

× δ(e + e2 − e3 − e4)

× [(1 + f )(1 + f2)f3f4 − ff2(1 + f3)(1 + f4)],

(3)

C12[f,�] = 2g2nc

(2π )2h4

∫
dp2dp3dp4δ(mvc + p2 − p3 − p4)

× δ(ec + e2 − e3 − e4)

× [δ(p − p2) − δ(p − p3) − δ(p − p4)]

× [(1 + f2)f3f4 − f2(1 + f3)(1 + f4)], (4)

where fi ≡ f (pi ,r,t) and ei = p2
i /2m + U (r,t). They con-

sider all two-body scattering events; δ functions ensure
momentum and energy conservation. To accurately describe
the energies involved in a C12 collision, it is necessary to
include the local condensate energy ec = mvc(r)2/2 + μc(r),
where μc(r) is the chemical potential and vc(r) is the local
condensate velocity [69]. If an atom leaves the condensate or
goes into the condensate because of a scattering event, the
normalization of the GPE needs to be changed accordingly
using the non-Hermitian source term −iR(r,t) in the GPE,
which is defined with the C12 collision integral as

R(r,t) = �

2nc

∫
dp

(2π�)3
C12[f (r,p,t),�(r,t)]. (5)

We now discuss the specifics of applying the ZNG theory to
the problem of surface evaporative cooling.

III. IMPLEMENTATION

In our system, the external potential is given by a combi-
nation of the trapping potential and the potential due to the
surface, and takes the form

V (r) = 1
2mω2

x(x − xs)
2 + 1

2mω2
yy

2 + 1
2mω2

zz
2 + VCP(x).

(6)

The first three terms represent a harmonic trapping potential,
centered at x = xs , where xs is the distance of the trap
center (Fig. 1) from the surface, defined as the x = 0 plane.
Trap frequencies are ωi=x,y,z in the x, y, and z directions,
respectively. The Casimir-Polder potential VCP(x) describes
the interaction between an atom and the surface, approximated

0 xs
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x

Casimir-Polder

total

trap

FIG. 1. (Color online) Schematic diagram (not to scale) of the
system showing the total potential V (x,y = 0,z = 0) (red solid
curve) for atoms in a harmonic trap in the vicinity of a surface.
For short distances, the Casimir-Polder potential (gray dashed curve)
dominates. Far away from the surface, the atoms only see the
trapping potential (gold dashed curve). In between, the Casimir-
Polder potential leads to an opening of the trap. The solid rectangle
indicates the surface and the colored oval indicates the atom cloud.
The black arrow shows the x axis, with xs the distance between the
trap center and the surface.

using a single-correction function [70],

VCP(x) = − C4

x3
(
x + 3λ

2π2

) . (7)

Here, λ = 780 nm is the effective atomic transition wavelength
for 87Rb, and C4 is a material constant of the form

C4 = 3�cα

32π2ε0

(
ε − 1

ε + 1

)

(ε), (8)

with ε the relative permittivity of the surface, α the static
polarizability of the atom, and 
(ε) a dimensionless constant
for the surface [71]. The other symbols have their usual mean-
ing. For a silicon surface and 87Rb, C4 = 1.22×10−55 Jm4

[72].
The potentials are sketched in Fig. 1. Far away from the

surface, the atoms only see the trapping potential, whereas
close to the surface, the attractive Casimir-Polder potential
dominates. In the intermediate regime, the Casimir-Polder
potential leads to an opening of the trap (solid red curve)
and atoms are lost to the surface.

The generalized Gross-Pitaevskii equation [Eq. (1)] can be
solved using a split-step method [73], as outlined in Ref. [27].
This can be parallelized using the FFTW package [74] combined
with the message-passing interface (MPI) [75].

In the full ZNG numerical implementation [62], the
quantum Boltzmann equation [Eq. (2)] is iterated in time
by a direct-simulation Monte Carlo (DSMC) [76] approach,
in which a swarm of test particles models the distribution
function f (r,p,t). The collision integrals in Eqs. (3) and (4) are
then replaced by collision probabilities for each test particle.
The test particles are binned into collision cells to determine
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possible collision partners. Because the density of the atom
cloud can vary considerably, we use an adaptive Cartesian
grid in real space as outlined in [77], while keeping a global
time step.

Our initial state is a thermal cloud in equilibrium with a
temperature T . This state is calculated using self-consistent
Hartree-Fock as outlined in [78]. In addition to the thermal
cloud, the initial state requires a small condensate “seed”
to allow for C12 collisions, and hence condensate growth;
the number of atoms in the seed is obtained using the
Bose-Einstein distribution, assuming μc = 0 [38].

Interactions between the surface and the atoms are modeled
by calculating the single-correction function [Eq. (7)] for the
generalized Gross-Pitaevskii equation [Eq. (1)] and combining
it with a linear imaginary potential to remove condensate
atoms, effective from the position where the trap opens [79].
In addition, we annihilate test particles that are beyond this
opening point, resulting in an atom loss for the thermal cloud.
These two processes lead to a reduction in the total atom
number in the system.

IV. RESULTS

Having set up our computational model, we now employ
it to study surface evaporative cooling. We show the results
of simulations for two different geometries. In Sec. IV A, we
directly compare theory with experiment to examine the extent
to which the model captures the important physical processes.
We then go on to consider a simpler model system in Sec. IV B,
with a view to optimizing parameters to create the purest or
largest condensates.

The experiments were performed using the apparatus
described in [17]. Clouds of 87Rb atoms were loaded into
an atom chip trap with frequencies ωx = 2π×16 rads s−1

in the axial direction and ωy = ωz = 2π×85 rads s−1 in the
radial direction. The cloud was initially prepared with the
trap center at a distance xs ≈ 135 μm from a silicon surface,
defined as the x = 0 plane. At this point, there was negligible
overlap between the cloud and the surface. The cloud was then
transported along the x axis at a variable speed to a variable
distance, xs , from the surface and held for a variable hold time.
In order to measure the remaining atom number N , the cloud
was swiftly brought back to its initial position, after which we
performed time-of-flight measurements and CCD imaging.

A. Loss curves

1. Time series

We begin by considering atom loss curves as a function of
time when the cloud is brought into overlap with the surface.
In the experiments, the cloud was transported to the surface
in 1 s and held stationary at a final hold point for up to 2.5 s.
Three hold points were considered: xs ≈ 14, 29, and 72 μm.
These were estimated from the point where the trap completely
opened and all of the atoms were lost to the surface. Reference
measurements revealed that temperature-related drifts could
shift the position of the surface by up to 10 μm, hence the
given values for xs are approximate; this is the dominant source
of error. The initial cloud temperatures were 130 nK for xs ≈
14 μm and xs ≈ 29 μm, and 140 nK for xs ≈ 72 μm. These
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FIG. 2. (Color online) Total atom number N against time t for
three different trap-surface separations: xs = 68 μm (gold solid
curve), 30 μm (red dashed curve), and 15 μm (black dotted curve).
Points correspond to experimental data and the curves correspond
to simulations. The dot-dashed gold curve shows a simulation for
xs = 68 μm without collisions, i.e., C12 = C22 = 0. The gray vertical
dashed line marks the point when the atom cloud reaches its final hold
position at t = 0. The gray hashed area shows the shift of the curve
when the surface position is varied by ±2.5 μm. The inset shows a
breakdown of the cloud atom numbers against time for xs = 68 μm
from the point when the cloud reaches its holding position. The solid
curve shows the total atom number, the dashed curve corresponds to
thermal atoms, and the dotted curve corresponds to the condensate
atom number.

temperatures are slightly above the critical temperature for
condensation, Tc, for an ideal gas [80].

We performed the simulations using these experimental
parameters [81]. We plot the theoretical and experimental atom
numbers against time in Fig. 2 (a “time series”). We consider
the time t = 0 to be the point when the cloud reaches its
final hold position, indicated by the gray vertical dashed line.
Since the absolute surface position may vary due to drifts, we
performed a range of simulations with varying xs to obtain the
best fit. In this sense, the simulations served as a calibration
tool: for the xs ≈ 14, 29, and 72 μm curves, the best fits
were obtained with a simulated cloud-surface separation of
15, 30, and 68 μm, respectively, well within the experimental
uncertainties. Figure 2 shows the evolution of the total number
of atoms, N , remaining in the cloud during the course of the
simulation, with curves corresponding to numerical results and
points corresponding to experimental data.

The gold solid curve and gold star points are for the xs =
68 μm hold point, the red dashed curve and red open circles
are for the xs = 30 μm hold point, and the black dotted curve
and black crosses are for the xs = 15 μm hold point. To give
an idea of how the surface position affects the remaining atom
number, we vary the surface position by ±2.5 μm for the
68 μm curve, shown as the gray hashed area in Fig. 2.

For all values of xs , we observe a nontrivial loss curve;
the loss rates increase to a maximum as the cloud is brought
to the surface. Once the cloud reaches its final position, the
losses swiftly reduce. The transfer between these regimes is
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FIG. 3. (Color online) Density profiles of a cooling ZNG gas at (a) the beginning of the simulation before transport, (b) time t = 0.6 s hold
time, and (c) t = 2.25 s hold time. The upper panels show the full cloud density integrated along the y direction, and the lower panels show
cross sections of the thermal cloud density through the y = 0 plane. Arrows indicate axes and bars indicate scale. In the upper panels, the z

direction has been stretched by a factor of 4 to improve clarity.

especially pronounced for the red dashed and black dotted
curves, where most of the atoms are lost, and a sharp “elbow”
is observed.

The initial fast losses occur because atoms are forced over
the trap edge during transport. On reaching the final position,
the atoms with sufficient kinetic energy in the x direction (see
Fig. 1) are lost within one trap period. After this, a slow loss of
atoms still continues because the gas rethermalizes due to the
collisions. The importance of describing the rethermalization
correctly is shown by the gold dot-dashed curve in Fig. 2,
which repeats the simulation for xs = 68 μm without any
collisions, i.e., setting C12 = C22 = 0 in the solution of Eq. (2)
so iR = 0 in Eq. (1). We see that once all the losses due
to transport have occurred, no further losses take place and
the deviation of this curve from the collisional simulation
and experimental data points is stark. The overlap between
theory and experiment suggests that losses due to three-body
recombination of atoms should be small. Calculations using
Refs. [82] and [83] and the initial thermal density return
three-body loss rates of no more than 500 atoms per second,
confirming that this is the case.

Surface evaporative cooling has already been experimen-
tally demonstrated [48] as an effective route to Bose-Einstein
condensation, with condensate formation clearly observed
in those experiments. Our theoretical scheme also predicts
the gradual formation of a condensate; this is shown in
the inset of Fig. 2 for the xs = 68 μm simulation, depict-
ing the characteristic growth curve [37,38,56,58,61,84,85].
The surface removes the hottest atoms from the edge of
the cloud, which, in combination with rethermalization,
reduces the temperature of the cloud and leads to condensate
formation.

We investigate condensate formation further by plotting
gas density profile snapshots in Fig. 3 at three different times
during the simulation with xs = 68 μm. The lower panels
show cross sections of the thermal cloud density through
the y = 0 plane, whereas the upper panels show the full
density, including any condensate, integrated along the y

direction. At the start of the simulation [Fig. 3(a)], we see
the thermal distribution expected of a gas above Tc. However,
by t = 0.6 s [Fig. 3(b)], a bimodal distribution has formed,
suggesting the presence of a condensate, and a temperature
below Tc. In the lower panels, a small dip in the central thermal
density emerges, as the condensate mean-field potential forces
thermal atoms from the center of the trap. By t = 2.25 s

[Fig. 3(c)], the condensate has grown and the thermal cloud
has shrunk. The central dip in the thermal cloud has become
more pronounced, giving rise to two density “shoulders.” It
should be noted that there is no rescaling of the vertical
density scale in the upper panels, revealing that the process
does more than simply remove thermal atoms; C12 collisions
ensure that significant numbers of atoms are transferred to
the condensate through rethermalization. The ZNG method
provides access to the condensate number through integration
of the condensate wave function and returns Nc ≈ 11 000
for the xs = 68 μm simulation and Nc ≈ 2540 for the xs =
30 μm case [86]. Determination of experimental condensate
fractions at such low atom numbers is extremely error prone,
but may be estimated using absorption imaging and bimodal
fitting. Obtained values of Nc ≈ 9000 and Nc ≈ 3000 for
xs = 68 μm and xs = 30 μm, respectively, at least reveal no
serious inconsistencies.

2. Distance series

In addition to the time-series results plotted in Fig. 2, plots
of atom number as a function of distance from the surface, xs ,
are of particular interest to experiments, revealing estimates
of the cloud temperature and approximate surface position.
Figure 4 shows the remaining atom number against xs , with
each point corresponding to a single time-series simulation.
These results were done at a slightly different temperature of
115 nK with an initial atom number of 1.37×105 and a shorter
hold time of 0.6 s. Trap parameters are the same as for Fig. 2.

The red curve in Fig. 4 is for a ZNG simulation with
collisions and the gold cross points are from experiment.
The gray curve with open circles is the same as for the
ZNG simulation but without collisions (C12 = C22 = 0). We
see again that collisions make an important contribution
to the atom losses, causing greater losses further away
from the surface and influencing the functional form of the
curve. The collisionless simulations deviate strongly from the
experimental data, as observed in our time-series simulations.

To further analyze these results, we present simplified
atom loss calculations employing a classical model [72],
which neglects Bose enhancement, rethermalization, and other
dynamical effects within the cloud. It is based on the total-
energy distribution n(E) ∼ D(E) exp(−E/kBT ) of thermal
atoms, which is given by the density of energy states D(E) and
the corresponding Boltzmann factor, with kB the Boltzmann
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FIG. 4. (Color online) Total atom number N for a cloud held for
600 ms at a surface for varying trap-surface separations as measured
experimentally (crosses) or simulated (solid curves). The main red
solid curve corresponds to a ZNG simulation with collisions; the
gray solid curve with open circles corresponds to a ZNG simulation
without collisions (C12 = C22 = 0). The gray area around the red
solid curve represents the error bounds assuming the surface position
is shifted by ±2.5 μm. The black dashed and dotted curves come
from the classical model of Eq. (10) applied respectively in 1D and 3D
(see text). The black dot-dashed curve is an error function [Eq. (11)]
corresponding to the limit of very rapid transport.

constant and T the temperature. For traps of limited depths,
�V , the fraction of atoms remaining in the trap can then be
approximated by

N (�V )

N0
=

∫ �V

0 D(E)e−E/kBT dE∫ ∞
0 D(E)e−E/kBT dE

. (9)

For a harmonic trap of dimensionality d, D(E) ∼ Ed−1. In-
troducing the dimensionless parameter η = �V/kBT , Eq. (9)
becomes

N (η)

N0
=

⎧⎪⎨
⎪⎩

1 − e−η for d = 1

1 − (1 + η)e−η for d = 2

1 − (
1 + η + 1

2η2
)
e−η for d = 3.

(10)

Starting from Eq. (6), we can now calculate the trap depth η(xs)
as a function of the trap-surface separation, which, together
with Eq. (10), allows us to model the number of remaining
atoms N (η(xs)) in a trap close to the surface.

The black dashed curve and black dotted curve in Fig. 4
show the simple classical model results for d = 1 and d = 3,
respectively. As this model neglects collisions, we compare it
with the ZNG simulation without collisions (gray solid curve
with open circles) and find approximate agreement with the
d = 1 curve. This is expected as the process of collisionless
surface evaporation corresponds to a one-dimensional (1D)
loss channel; the small shift between the two curves is
most likely due to the Casimir-Polder-induced change in the
density of states and the Bose enhancement in the initial state,
which are both neglected in the classical model. Compared

with the noncollisional curves, the full ZNG simulations
show much larger loss rates, which are consistent with the
experiments. This is due to atomic collisions, which cause
an energy redistribution between different directions. Atoms
with large kinetic energy perpendicular to the surface normal
can thus be scattered towards the surface and out of the
trap. This redistribution can be mimicked in the classical
model by increasing the dimensionality of the loss channel.
In the limit of d = 3, the trap depth is effectively reduced in
all directions, similar to radio-frequency (RF) evaporation,
assuming negligible gravitational sag. The corresponding
curve (black dotted curve), however, has to be seen as an upper
limit for the expected losses, as it lacks a proper description
of rethermalization effects; rethermalization causes the cloud
to shrink, thereby reducing the loss rates. The inclusion of
collisions in the nonergodic ZNG implementation simulated
here thus leads to a more efficient loss mechanism than the
simple 1D classical model; nonetheless, the geometry of the
problem implies that this rate is still necessarily smaller than
that of full 3D evaporation, as also confirmed experimentally.

If the cloud is brought to and from the surface very
rapidly, such that the period in which losses may be observed,
toverlap, is much shorter than the relevant trap period and
thermalization time [87], it is possible to fit the loss curves with
a complementary error function, where the remaining atom
number N is given by an integral over a truncated Gaussian
function,

N = N0

∫ ∞

0

√
α

π
e−α(x−xs )2

dx. (11)

Here, N0 is the initial atom number and α = mω2
x/2kbT .

With the help of this error function, the cloud temperature
and surface position can be estimated, as has been done in
previous studies [17,88]. This limiting case, corresponding
to toverlap = 0, is plotted for the experimental parameters
(T = 115 nK) in Fig. 4 (black dot-dashed curve). We note
that this curve deviates significantly from all other models
(which account for toverlap > 0) as the error function describes
the case of swift transport that does not induce in-trap sloshing.
The curve of Eq. (11) thus sets an upper limit on the number
of atoms left at any distance.

Figure 4 indicates that in contrast to 3D radio-frequency
evaporative cooling, there are additional atom loss regimes
when a surface is involved. At one end, there is a “fast limit”:
if the cloud transport to and from the surface is very rapid, then
the surface acts as a pure spatial cutoff and the atom losses
may be described with the error function (black dot-dashed
curve). In this regime, collisions and rethermalization play
no role. At the other end, there is a “slow limit” when
toverlap is much greater than the thermalization time; in this
case, the surface acts much like a pure energy cutoff, albeit
one with a directional dependency. In between these limits,
there is a further regime in which the rethermalization is
negligible (no collisions), but toverlap is greater than the
trap period. In this case, we have a 1D energy cutoff and
the results may be described by collisionless models, such
as Eq. (10) [black dashed curve] (we note that the ZNG
simulations with no collisions agree well with such results
[gray curve with open circles]). However, comparison of the
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collisionless ZNG results (gray curve with open circles) with
both the experimental results (gold crosses) and the full ZNG
simulation (red solid curve) shows the importance of including
the full collisional dynamics of the system if thermalization is
significant, but the system is not yet in the slow limit.

It is important to remember that in spite of the 3D energy
cutoff in the slow limit, we still have 1D evaporation; only
a small spatial area surrounding the cloud has a reduced trap
height. This means that not all atoms that achieve a high energy
from a collision will necessarily be lost, thereby lowering
the evaporation efficiency [89]. It is therefore necessary that
high-energy atoms are lost at a rate that is high compared with
any technical losses (these are negligible on the time scales
considered in our experiments here).

B. Optimizing condensate formation

In this section, we discuss how to improve condensate
formation using surface evaporative cooling. Because the
condensate atom number is influenced by many factors, such
as trap frequencies, transport velocity of the cloud, distance to
the surface, initial atom number, and initial temperature, a full
exploration of the parameter space is not possible, given that
the simulations can last on the order of tens of hours, even in
parallel. We therefore focus our analysis here on a simplified
system of an isotropic trap and a constant transport velocity,
which should at least provide some basic guidance on how to
obtain large condensate fractions and condensate numbers.

We consider a trap with 105 87Rb atoms and investigate
the formation of a condensate for four different isotropic
trap frequencies: ω1 = 2π×40, ω2 = 2π×80, ω3 = 2π×120,
and ω4 = 2π×160 rads s−1. The temperature of the initial
equilibrium states is equal to the critical temperature T = Tc

and the cloud is prepared at 2.2 Wl away from the surface,
where Wl = √

2kbT /mω2
n is the initial thermal width of the

cloud; this leads to different starting positions for each trap
frequency. Fixing the total evolution time at 0.75 s while
keeping the same transport speed 0.1 mm s−1 yields a variable
hold time in each case. These hold times always exceed 0.4 s,
which allows for sufficient equilibration.

Figure 5 shows condensate fraction [Fig. 5(a)] and con-
densate number [Fig. 5(b)] plotted against hold position xs ,
which is defined here in terms of the harmonic oscillator length
aho = √

�/mωn to aid comparison. Gold diamond-shaped
points show the condensate fraction for ω1, gray triangles
for ω2, open red circles for ω3, and black stars for ω4. In
all four cases, the condensate fraction is highest between 4
and 7.5 aho. Although we observe condensate fractions of up
to 90% in that region, the corresponding condensate atom
numbers are relatively small, as shown in Fig. 5(b). This is due
to the fact that the condensate is already in contact with the
surface at these distances, leading to the loss of ground-state
atoms. Higher condensate atom numbers are achieved further
away from the surface, with the optimal distance between
around 10 and 15 aho for the parameters considered here.
In order to maximize the condensate fraction and minimize
the remaining thermal atoms at the same time, a holding
distance xs ∼ 10 aho appears to be a good compromise. As
expected, higher trap frequencies increase the atom density and
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FIG. 5. (Color online) (a) Condensate fraction N/Nc and (b)
condensate atom number for different hold points, xs , in the case of an
isotropic trap, in units of the harmonic oscillator length aho. We show
the results for four different trap frequencies: ω1 = 2π×40 rads s−1

(gold diamond points), ω2 = 2π×80 rads s−1 (gray triangles), ω3 =
2π×120 rads s−1 (open red circles), and ω4 = 2π×160 rads s−1

(black stars). Condensate fractions are highest for these parameters
between 4 and 7.5aho, whereas the condensate atom number has a
maximum between 10 and 15 aho. The inset in (a) shows condensate
fractions plotted against transport velocity for a trap with frequency
ω3 = 2π×120 rads s−1.

hence improve rethermalization properties, leading to faster
formation of larger condensates.

We now briefly consider the influence of the transport
velocity v, at which the cloud is brought to the surface,
on condensate formation [Fig. 5(a), inset]. We see that if
the transport velocity is reduced below 0.1 mm s−1 for the
case with ω3 = 120 Hz and hold position 1 Wl (9.3 aho), the
condensate fraction increases from ∼60% to ∼70%. However,
it saturates when going to velocities �20 μm s−1. In terms of
the condensate fraction, there is, therefore, little to be gained
through lower approach speeds. We have checked that for
faster transport speeds of 1 mm s−1, the best hold position is
roughly in the same place.

The results in Fig. 5 are for a very cold cloud at Tc. In
order to mimic a more realistic starting state when atoms are
loaded into a chip trap, we have performed further simulations
for ω4 = 2π×160 rads s−1, but with a starting temperature of
2 μK and 2×106 atoms. We use the hold position of 10 aho,
as suggested by the results in Fig. 5. Due to the higher atom
number, condensates of ∼90% purity and ∼100 000 atoms
were observed. It is interesting to note that our ZNG method
remains at least qualitatively correct even for this unusually
warm starting state. It suggests that the primary limitations
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of the method are the simulation run time and the s-wave
scattering approximation, which is valid up to approximately
100 μK [77].

V. CONCLUSIONS

In conclusion, we have studied the evaporative cooling of
cold atom clouds at surfaces, finding that the ZNG method
provides a satisfactory description of the physics provided a
full numerical implementation of the collisions is included. We
have seen that there are multiple atom loss regimes; only very
fast transport of the atom cloud permits an analytic description
of atom losses under normal circumstances, a fact which has
important implications for surface calibration in experiments.
Finally, we suggest that at least for cold starting temperatures,
the purest condensates are achieved by bringing the cloud to
a separation from the surface of around 5 harmonic oscillator
units. The biggest condensates, however, were achieved for
separations of 10–15 oscillator units.

For a complete cooling scheme of 87Rb atoms in a chip
trap, we suggest starting by bringing the cloud rapidly to a
hold position, xs ≈ 3.0 Wl , while avoiding in-trap sloshing.
At this point, there is negligible overlap between the cloud and
the surface. The trap should then be moved with a velocity
v � 0.1 mm s−1 to a final hold position at about 10 aho. In this
way, a large and relatively pure condensate can be achieved

even for low trap frequencies in a time which is comparable
with that for conventional RF cooling.

We end with a few general remarks and a discussion of
how surface cooling compares with traditional radio-frequency
cooling. The geometry of the surface cooling process implies
that this mechanism cannot reach the efficiency of 3D cooling
as the trap height is not reduced at all points around the
cloud. However, condensate formation times do not appear
to compare poorly with those reported for RF cooling, at least
for 87Rb samples [48]. This is possibly due to gravitational
sag, which may make RF cooling a 1D effect for cold clouds
in loose traps. In addition, surface cooling may convey certain
advantages: the Casimir-Polder potential leads to a sharper
energy “knife” and the positioning accuracy limits of atom
chips (<2 nm [17]) might allow competitive control of the
energy barrier height, without the need for a signal generator.
Furthermore, the ability to use a long cloud axis for cooling
might offer greater control with respect to in-trap oscillations.
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[4] R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and

J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000).
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Nature (London) 413, 498 (2001).
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