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We theoretically investigate a scheme to enhance relative number squeezing and spin squeezing in a two-
component Bose-Einstein condensate (BEC) by utilizing the inherent mean-field dynamics of the condensate.
Due to the asymmetry in the scattering lengths, the two components exhibit large density oscillations where they
spatially separate and recombine. The effective nonlinearity responsible for the squeezing is increased by up to
3 orders of magnitude when the two components spatially separate. We perform a multimode simulation of the
system using the truncated Wigner method and show that this method can be used to create significant squeezing
in systems where the effective nonlinearity would ordinarily be too small to produce any significant squeezing
in sensible time frames, and we show that strong spatial dynamics resulting from large particle numbers aren’t
necessarily detrimental to generating squeezing. We develop a simplified semianalytic model that gives good
agreement with our multimode simulation and will be useful for predicting squeezing in a range of different

systems.
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I. INTRODUCTION

In recent years, there has been much interest in atom
interferometry for high-precision inertial measurements [1-6],
as well as measurements of the fine structure constant [7], and
potentially gravitational wave detection [8]. Although thermal
sources of atoms currently have a larger flux, Bose-Einstein
condensates (BECs) have an advantage over thermal atoms
as they have a narrower velocity distribution and a larger
coherence length, allowing for easier manipulation of the
motional state and increased visibility [9,10]. However, in any
interferometer that utilizes uncorrelated particles, our ability
to estimate an applied phase shift ¢ is limited by the standard
quantum limit (SQL), A¢ = 1/4/N;, where N, is the total
number of detected particles [11].

There has recently been much interest in the use of
spin squeezed states of ultracold atoms, as it enables atom
interferometry with sensitivity beyond the SQL [12-15]. Spin
squeezing via one-axis twisting [16—18] has previously been
demonstrated in two-component BECs [12,13]. The rate at
which spin squeezing occurs is governed by the parameter
X = X11 + X22 — 212, where

4w h aij

X = NN n;(tn;(r) d’r, (1)

where m is the mass of the atom, N; and n;(r) are the
population and number density of atoms in component i,
and a;; and a;; are the inter- and intracomponent s-wave
scattering lengths [19]. However, in some atomic species, x is
too small to create significant spin squeezing in any reasonable
time. In rubidium-87, for example, where the relevant atomic
states are the F =1 and F =2 hyperfine ground states,
ap + apn — 2a;; ~ 8 x 107*a;,. Despite this, spin squeezing
in Rb BECs has been demonstrated by manipulation of one
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of the scattering lengths via a Feshbach resonance [12] to
increase x. Spin squeezing has also been demonstrated by
manipulating the external confining potential of each spin
component to separate them spatially, thereby decreasing xi»
in Eq. (1) and increasing x [13]. These schemes used BECs
containing only a few thousand atoms, as a higher atom
number increases the interaction energy, compromising the
single-mode behavior upon which these schemes depend. Spin
squeezing via one-axis twisting in noncondensed samples of
87Rb has also been achieved by manufacturing an artificial
nonlinearity via coupling to an optical cavity [15].

In this paper we demonstrate a considerably simpler scheme
to obtain both relative number and spin squeezing that does not
require precise magnetic field control for Feshbach resonances,
time- and state-dependent potentials, or optical cavities,
considerably simplifying the process. Our scheme utilizes the
inherent mean-field dynamics of the two-component system—
which arise from the slight asymmetry in the s-wave scattering
lengths and periodically decrease the spatial overlap of the two
components—to create a much higher y, leading to significant
squeezing. Furthermore, it demonstrates that strong multimode
dynamics aren’t necessarily detrimental to generating spin
squeezing, allowing the possibility of spin squeezing via
one-axis twisting in BECs with a large, metrologically useful
number of atoms.

The remainder of this paper is organized as follows: In
Sec. II, we describe our spin-squeezing scheme and present
a multimode simulation of the quantum dynamics using the
truncated Wigner approach, which has been shown to be highly
successful in simulating such systems [21-30]. In Sec. III, we
derive an effective two-mode semianalytic model and discuss
the validity of this model. In Sec. IV, we discuss how the level
of squeezing can be controlled by changing the strength of
the trapping potential and performing multiple 7 pulses, and
we discuss the effect of multimode dynamics on the mode
overlap. In Sec. V, we discuss the usefulness of this scheme
for enhanced atom interferometry.

©2014 American Physical Society
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FIG. 1. (Color online) Sequence for the coupling pulses used in
the scheme and their effect on the Bloch sphere.

II. ENHANCEMENT OF SPIN SQUEEZING VIA
SELF-INDUCED DYNAMICS

Our spin-squeezing scheme follows the one-axis twisting
scheme [12,16], for which there has been much theoretical
interest [16-18,31-33]. Our scheme is outlined in Fig. 1.
We consider a 8’Rb BEC with two hyperfine levels, |a) =
|F =1,m = —1) and |b) = |F = 2,m = +1), confined in a
spherically symmetric harmonic potential. In this proposal,
all of the condensate atoms are initially prepared in the |a)
state and then apply a short 7 /2-microwave coupling pulse
to transfer half of the population of the atoms into the |b)
state. The system is then left to evolve for a period of free
evolution, in the absence of any microwave coupling. During
this period, nonlinear interactions between the atoms and the
slight asymmetry in the scattering lengths then cause the wave
function of the two components to spatially separate and
recombine in an oscillatory manner [34,35]. The parameter
governing the squeezing rate x is greatly increased when the
two components spatially separate [13]. A spin-echo pulse
is applied at the midpoint of the free evolution to correct
for dephasing effects due to uncertainty in the total number
of particles [36]. In particular parameter regimes, the wave
functions of the two components approximately overlap at the
end of the free-evolution period, allowing for high-contrast
interferometry between the two modes. A second microwave
coupling pulse is then applied for a variable time fy. The
behavior of the system is intuitive in the context of the three
pseudo-spin operators

X 1 A A Ar A
Jr =3 / L OPa(®) + F ) dr, 2)

[
<
”

: / WO - PIOdE P, G

1 A A A A
=3 / O Pa(r) = Pl ) () dr “4)

= (N, — Np)/2, 5)

where v, (r) is the annihilation operator for an atom at position
r in hyperfine state |i) and

N; = f Pl ) dr 6)
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is the number operator for atoms in hyperfine state |i), where
i = a and b. We begin with the spin expectation value at the
north pole of the Bloch sphere (Fig. 1). The first coupling
pulse rotates the spin expectation value to the equator. During
the period of free evolution, interparticle interactions cause a
nonlinear phase shift, shearing the uncertainty of condensate
spin, as well as a drift around the equator. A 7 pulse followed
by another period of free evolution reverses the effect of the
drift, while maintaining the shearing. At the end of the free
evolution a phase shift of 77 /2 rotates the state to lie along the J,
axis, where the final adjustable coupling pulse rotates the state
by the amount 6 = Qyfy. This rotation angle is required to
rotate the squeezed quadrature into the J, basis such that it
can be directly detected by measuring the population differ-
ence between the two components. Unlike the two previous
experimental schemes, our scheme does not rely on using
Feshbach resonance [12] or a state-dependent potential [13]
to enhance the effective nonlinearity of the two-component
rubidium BEC. Instead, we utilize the inherent mean-field
dynamics of the two components to enhance squeezing. This
requires only adjustment of the trap frequencies and timing of
coupling pulses.

Assuming the microwave field is on resonance for the
|a) — |b) transition, and making the rotating wave approxi-
mation, the effective many-body Hamiltonian which describes
the quantum dynamics of the two-component condensate is
given by H = Ho + H, [24], where

o= / ¥ O () dr

i=a,b

Ui; o o N N
+ Y - / Ji v @Pad;@dr (7

i,j=a,b

and

A1) = / <h@ﬁ(r)&h(r)e”’+H.C.) d’r.  (8)

ﬂo describes the free evolution of the two-component BEC,
whereas H. describes the microwave coupling field which is
only present when the coupling field is applied. A, = Hy =
_Z—ZZVZ + V(r)and ﬁb = 1-70 + hé represent the single-particle
Hamiltonian, where #§ is the energy difference between the
hyperfine states |a) and |b) and V (r) = %mwfrz is the trapping
potential. U;; is the nonlinear interaction potential and is
given by U;; = 4w h’a;;/m, where a;; is the s-wave scattering
length between |i) and |j). The scattering lengths for a two-
component 87Rb condensate are taken to be aj; = 100.4ag,
ay = 95.00ap, and aip = 97.66ay [20]. Q(t) = Qof(l)€i¢
represents the coupling field, where €2 is the Rabi frequency,
f(¢) is a function that can be switched between 0 and 1 to turn
the coupling on and off, and ¢ is the phase of the microwave
field. Adjusting ¢ during the final coupling pulse is equivalent
to altering the relative phase of the two atomic wave functions.
By making the transformation v/, — ¢’ the Heisenberg
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equations of motion become

v, A 1 .
in ) = £ gue) + S h 0T, ©)
BYV; A 1 .
ih %bt(r) = Lpp(r) + EHQ*U)%(I‘), (10)
where
Aéa :ﬁ0+Uaa¢fJ‘[;a+UabIZ};12}bv (11)
Ly = Hy+ U] + meﬁll%. (12)

If we assume that the dynamics of the coupling are fast
compared to the dynamics due to the potential, kinetic, and
nonlinear terms, it is sufficient to solve for the dynamics of
7, 7, and 6 pulses by ignoring the contribution from L;, in
which case

A 0 . 0 . .
Va(r.ty) = cos - Ya(r.to) — i sin - U (r,i0)e’®,  (13)

~ 0 . 0 . .
wmm=m%vmm%4m5mmmfﬂ<m

where 60 = Qu(t] — 1p).

To numerically simulate the quantum dynamics of the
system during the free-evolution period, we proceed by
using the truncated Wigner (TW) approximation. Following
standard methods [37,38], the Heisenberg equations can
be converted into Fokker-Plank equations (FPEs) by using
the correspondences between the quantum operators and
the Wigner function. By truncating third- and higher-order
terms, the FPEs can be mapped onto a set of stochastic
partial differential equations for complex valued fields v; (r,?),
which are very similar to the usual coupled Gross-Pitaevskii
equations (GPEs). By averaging over many trajectories with
different initial conditions, expectation values of quantities
corresponding to operators in the full quantum theory can be
obtained. Specifically,

(@D} ym) = FIVO.0;01 (15)

where “sym” denotes symmetric ordering [39] and the overline
denotes the mean over many stochastic trajectories. The
initial conditions are sampled from the appropriate Wigner
distribution [40].

The equations governing the evolution of the complex fields
are

1
ih% = Lo(0) + SHA0Y (D) (16)
9 1
i g 4 B v, (7)

where

_hZ 1
Qz——W+V®+M«WﬁW——J
m Av

1
+%wa—ﬂﬂ, (18)

where Av is the volume element that characterizes the numeric
discretization of the grid.
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For the purposes of spin squeezing, the behavior of the
system is largely insensitive to the number statistics of the
initial state [24], so for simplicity we chose our initial state as
a Glauber coherent state [39]. It was shown in Ref. [24] that a
mixture of coherent states with random phases or, equivalently,
a Poissonian mixture of number states behaves identically to a
pure coherent state in this situation. Specifically, we chose the
initial state of the system to be D(«)|0), with

D(e) = exp (ad] — a*ay), (19)

with
ag = / UNOYAGY RS (20)
allspace

where ¥,(r) is the (normalized) ground state of the Gross-
Pitaevskii equation with all the population in |a). The initial
conditions in the stochastic simulation that correspond to this
situation are

mm=JMm®+%%, @)
wm=3%, 22)

where N, = |a|? is the expectation value of the total number
of atoms and 7,,(r) are complex Gaussian noise functions sat-
isfying n (rj)n,(r;) = %(Sm,n(Si, j- We numerically integrated
Egs. (59) and (17) using a 32 x 32 x 32 spatial grid and 1000
stochastic trajectories using the XMDS2 numerical integration
package [41]. The total number of atoms was 1.5 x 10°, and
the trapping potential was chosen to be a spherically symmetric
harmonic potential with radial trapping frequency chosen to be
w, = 200 rad/s. Figure 2 shows the cross section (y = z = 0)
of the expectation value of the density for each component
(Iﬁj 1§51 (1)) for several different times. The two components
initially separate, but eventually wobble back together in a
quasiperiodic fashion.

t=0 t =0.6T
500 500 i i
o;- == % 5 =% o 5
= t=02Ty t=0.8Ty
= 500 500
2
(2]
c 0 0
2 -5 0 5 5 0 5
t = 04T, t="Tx
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z (jm) z (jim)

FIG. 2. (Color online) Evolution of the density profile after the
initial 77 /2 coupling pulse equally populates the two components. A
slice of the expectation value of the density (@;(r)lﬁ_,(r)) for each
component [j = a (blue), j = b (red)] at y = z = 0 is shown for
several different times. A 7 pulse is applied at t = 7T, = 13.29 ms.
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FIG. 3. Spatial overlap Q of the two components as a function
of free-evolution time, at t = 7, and Q = 0.985 and at t = 27, and
0 =0.971.

The degree to which the two components separate is
relevant for enhancing the effective squeezing rate y . However,
in order to convert the spin squeezing along an arbitrary axis
to squeezing in J, (that is, number difference squeezing) that
can be directly measured, operations with beam splitters must
be performed, which requires good mode matching or, in other
words, a high degree of spatial overlap in the density and phase
of the two components. We quantify the overlap as

‘ f W@ P, @3

0= %
V (Na)(Np)
The overlap also has implications for interferometry, as it
is directly proportional to the visibility of the fringes. Q is
also related to the expectation value of the transverse spin
vector J; =~ (J)2 + (fy)2 =V (N) (W) Q. Figure 3 shows
the overlap function Q over time for this system. The two
components separate and recombine in a quasiperiodic fash-
ion, with a slight degradation in overlap with each “bounce.”
To implement one-axis twisting in this setup, a 7 pulse is
implemented at the first revival in overlap t = 7, = 13.29 ms,
and then the variable-angle beam splitter is implemented at
t = 2T, . It should be noted that this isn’t quite commensurate
with maximum overlap, but we chose to keep the total time
of free evolution as t = 27, to minimize phase diffusion from
fluctuations in the total number.

A state with relative number squeezing is prepared by
applying a phase shift of = /2 before applying a coupling
pulse of the adjustable angle 6 at tr = 2T,,. This rotates
the squeezing such that the minimum variance is in the
J, direction. We quantify the squeezing by the normalized
variance in the number difference, as this is straightforward to
measure directly. We define the normalized number difference
variance as

(Ny — Np)?) — (N, — Np))?

a b

(24)

A normalized variance in the number difference of v(N, —
Np) < 1indicates squeezing; v(N, — Nj) = 1 is the quantum
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FIG. 4. v(N, — N,) versus the final beam-splitter rotation angle
0 att = 2T,. The minimum value of v(N, — N,) is slightly less than
0.2 at @ = 0.17. The error bars are due to the stochastic sampling
error.

(or shot-noise) limit, which is the value obtained by dividing
a condensate into two equal populations via a linear coupling
operation [42]. Alternatively the squeezing could be quantified
by the Wineland spin-squeezing parameter [42]

Nr<j12) JU(N, — N,
f= "t = ”(Q v, (25)

which is the relevant parameter for enhancing interferometric
sensitivity, which is discussed in Sec. V. Figure 4 shows
v(N, — Np) vs 6. v(N, — Np) dips significantly below 1.0,
indicating significant squeezing can be achieved via this
method.

III. SEMIANALYTIC MODEL

As the full three-dimensional (3D) TW simulations are very
computationally demanding, it is useful to be able to develop
a simplified model. We first develop an analytic two-mode
model, which requires only a few input parameters, such as
the total number of particles and the effective “squeezing
parameter.”” We then develop a model based on the two-
component Gross-Pitaevskii [43] equation to estimate the
appropriate squeezing parameter, which is used as an input
to the two-mode analytic model in order to predict the level of
squeezing present in the full multimode system. We begin
by expanding our field operators over a complete set of
time-dependent spatial mode functions:

Ta(®.t) =Y ajug j(r.1) ~ dug(r.t), (26)
J

Up(rt) = bjuy, j(r.1) ~ buy(r.1), (27)
J

where a = ay, b= l;o, Ug(r) = uy 0(r), and up(r) = up o(r).
We have made the approximation that only one mode is
significantly occupied. Using this expansion in Eqs. (7) and (8),
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the Hamiltonian becomes

A

H = hixaa()a'a'aa + hxp(0)b'61bb + 2. (1)a"

+h5z3*13+h< SUD) ot giot +Hc ) (28)
where

Ui;
X0 = = / i (e,0) (1) P, (29)
and we have assumed that, at the times when the coupling
is active, f wh(r)up(r) d*r ~ 1, which is equivalent to the
condition Q ~ 1. By transforming to the interaction picture
b — be'", we obtain

H = hya(D)atataa + hxu(OD 5T bb + 2x.,()a ab'b
( é)AbT—FHc) (30)

Following the procedure presented in Ref. [24], we choose our
initial state to be a Glauber coherent state

|20, 0). 3D

Assuming that the dynamics induced by H, occur on a time
scale much shorter than that of the dynamics induced by H,,
after applying a /2 coupling pulse [Q2y(t; — t) = 7 /2], we
obtain

W (0) =

W (D) = la(t),B(11)), (32)

with a(t)) = ag/v/2, B(t)) = —iag/~/2. Expressed in the
number basis, this is

SR
= Z Z Cm,nglnlan2>v (33)

n1=0 n2=0

W (1))

with
— o3l +IBP yo(t)" B(n)"™

Jml Jml

During the period of free evolution [€2(¢) = 0], the Hamilto-
nian is diagonal in the number basis, so it is trivial to calculate
the evolution of the state. At time #,, after a period T of free
evolution, we obtain

00
= Z Z Cnl,nz|nlyn2>

n1=0n,=0

CVL] Wy — (34)

W (1)) e P (35)

with

T
(DTl,nl,nz - f (Xaa(t)nl(nl - 1) + th(t)n2(n2 - 1)
0
+ Xap(D)nina)dr. (36)

At t =1t we apply a m coupling pulse, which completely
exchanges the population between a and b. After evolving for
another period of time T, our final state is

W(t3)) = Z Z Comlnyng)e™ P (37)

n1=0n,=0
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where @, ,, = P 0, + Prynyn, and

th+T
By = / Daa(Ona(nz — 1) + xop(Om(ny — 1)

5]

+ Xap(®)ninaldt. (38)

The evolution due to the final beam splitter is calculated in the
Heisenberg picture. Again, by assuming that the contribution
due to Hy is negligible in this time, we obtain

0 0.
a(ty) = cos E&(O) —ie' sin Eb(O), (39)

. 9 . 0

b(ts) = cos E1;(0) —ie " sin Ea(O). (40)
The number difference becomes

No — Ny = a'(tp)aty) — b'(t)b(ty)
= cos6(a'(0)a(0) — b'(0)b(0))
+ i sin0(a(0)b(0)e ' — b(0)a'(0)e'?).  (41)

We can calculate the variance in this quantity by calculating
the expectation value of the various operator-valued terms in
Eq. (41) with respect to Eq. (37). For example,

(W(13)]a" (0)b(0)| W (23))

o0 o0 oo oo
— 2 § 2 § C;fqlanCn],nzet(QmIJuZ*%M)
m

1=0m>y=0n,=0n,=1

x vy 4 Ly/ny(my,malny + 1,05 — 1)
o0 o0
= Z Z VIt + 1@/”2C§1+1'n27lcn1’n2

n1=0n2=1
@i+t =1= Py ny)

o S sn+1

B S S S
= 2 Vo D = DY V!

X /11 1 L 20m=taln=1) ,=(al+|61)
Z Z ﬂ(mz e (BFe ey o P+IBI)

| — 1)
n1=0n,=1 e (n2 1)

= a*Bexplla* € — 1)+ |B]* (e H — 1), (42)

where

T t+T
A= / Lo () — xua(0)]di + / L) — xa(1dr,
0

5]

(43)

T t+T
- / Ltaa(t) — xia(0)] it + / () — xa(O]dr.
0

5]

(44)

If the dynamics in the trap are approximately periodic, then
Jo xijdt ~ [ xi;(t)dt, in which case A ~ A, = A, and
the relevant parameter that governs the degree of squeezing is

T
A:/ x(t)dt, (45)
0
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TABLE I. Expectation value of various operators with respect to
Eq. (37).

b'e (X)

ata lee|?

5'b 8P

ath a*Bexpllal(e** — 1)+ B (e* = 1)]
atabthb lee|*1B81

ataata lor|* + [e|?

b'bb'h BI* + 1B

&’[&&E]‘ aﬁ*|a|2e—2u exp[|a|2(e—2ik _ 1) + |ﬂ|2(e2ik _ 1)]
ab'b'h ap*|BI*e* expllal’(e™>* — 1) +|B[(e** — 1]
atalbh 2B explla*(e” — 1) + |B(e " — 1]

where x (1) = x11(t) + x22(t) — 2x12(¢) is the familiar one-
axis twisting rate [19]. A list of operator expectation values
required to calculate v(N; — N;) with respect to Eq. (37) is
given in Table I.

Using the expressions in Table I and their Hermitian
conjugates, at ¢ = m/2 we find that

Nt 1
v(N, — Np) =1+ il ZNt cos(26)

1
- EeN‘(_”C"S(“))Nt cos(2A) sin’(6)

— e NS N Gin(20) sin(260).  (46)
For A « 1, this simplifies to
VN, — Np) ~ 14 LN, 4+ e VN [—1 + cos(260)]
— N, cos(20) — 8re 2N N, sin(20)}.  (47)

Figure 5 shows Eq. (46) vs 6 for several different values of
A and N;. As N; increases, higher levels of squeezing can be
obtained. Increasing A beyond a critical amount of A, begins
to degrade the quality of the squeezing. It is better to work
with A < Aop rather than A > Aoy, as the squeezing is more
tolerant to slight variations from the optimum value of 6, Oup.
Figure 6 shows v(N, — N;) evaluated at & = 6, as a function
of A and N,. For large N,, the maximum amount of squeezing
approaches

Wi

U(Na - Nb)(koptaeopt) ~ N; (48)

at

Wit

Dopt X 0.6N, . (49)

In order to incorporate the spatial dynamics, we calculate
the effective squeezing parameter » based on the evolution of
the mode functions u,(r,t) and u,(r,t) as determined from a
GPE simulation. We perform a GPE simulation of the system
that was investigated in Sec. II. This is done by simulating
Egs. (59) and (17) without the 1/Av corrections and without
noise terms in the initial conditions. After obtaining u,(r,?)
and u,(r,t) we can calculate A from Egs. (29), (43), and (44)
and obtain A = 7.99 x 10~*. Figure 7 shows a comparison
of the squeezing calculated from the semianalytic model
with A = 7.99 x 10~* with the full TW result. The optimum
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FIG. 5. (Color online) v(N, — N,) vs 6 for (a) N, = 10%
(b) N, = 10°, and (c) N, = 10°.

10%c

v(Ng — Nb)(eopt)

o o5 1 15 2 25 3
AN}

FIG. 6. (Color online) v(N, — Np) at O, vs A for several differ-
ent values of N,.
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FIG. 7. (Color online) Comparison of the two-mode model (red
dashed line) with the full 3D TW model (black dots). The effective
squeezing parameter A = 7.99 x 10~* was determined from Eq. (45).
Much better agreement is given by using A = 9.18 x 107° calculated
from Eq. (58) (blue solid line). The green squares are the result of a
one-dimensional (1D) TW simulation with spherical symmetry. The
error bars from the 1D simulation are too small to see on this scale.

squeezing appears at a vastly different value of 6, suggesting
that the GPE has drastically overestimated the squeezing
parameter. The reason for the large discrepancy is that we
have ignored the contribution from the kinetic energy to the
phase evolution in Eq. (36). Slight differences in the number
of particles in each mode cause significant deviations to the
spatial dynamics, and hence Eq. (36) is not a good estimate of
the phase evolution of each number state [44]. We note that in
some regimes [24] Eq. (36) does give reasonable agreement
with the multimode TW simulation. However, these situations
are when both modes remain close to the ground state of the
many-body system. In this paper, the excitations in the system
are well beyond the linear regime.

We now derive an alternate method to estimate the
squeezing parameter A from the GPE equation. This method
is related but not identical to the method used by Li et al. to
derive the spin-squeezing dynamics of a multimode system
[44]. The spin squeezing originates from uncertainty in the
number difference coupling to uncertainty in the phase due
to the number dependence in the energy of each mode. In
the fully quantum simulation, after the first beam splitter, the
number difference variance should be V(N, — N,) = N;. We
can estimate the phase diffusion by calculating the phase from
two slightly different GPE simulations, one with an initial
beamsplitter such that N, — N, = 4/N,/2 and the other with
N, — N, = —/N;/2, that is, two different simulations with
a difference in J, equal to the projection noise. Defining the
relative phase as

$cpe = arg (/ vy QT 0)Ya(2T; 1) d3l‘) . (30)

our estimate of the phase diffusion relating from this number
uncertainty becomes

Ap=¢, —¢, (5D
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where ¢4 is the result of evaluating Eq. (50) with the initial
conditions

N,
N,=— =

2 T =2 T

(52)

By defining

Jx = %fw;(zTnvr)wﬂ(zTﬂ’r)d3r+ ¢.c., (53)

we note that the difference in J, between the two simulations
is approximately

AJ, = N, A¢. (54)

In order to relate this quantity to the squeezing parameter
A in the fully quantum two-mode model, we define the x
component of the collective spin as

Loags  pa
Je = 2@ab' + ba") (55)
and note that Eq. (37) gives

N2
V() =N, + Tt(l + cos 2A{sinh[2N, sin® 2]

— cosh[N,(cos4xr — 1)]}) (56)
~ N, + 42*N;} (57)

for A <« 1. By comparing Eq. (57) to the square of Eq. (54), and
noting that for no phase diffusion (A =0, A¢ = 0) Eq. (57)
gives AJ, = /N, while Eq. (54) gives AJ, = 0, as it neglects
the zero-point quantum uncertainty in J,, we obtain

A¢
2N,

For the parameters used in Fig. 2, L = 9.18 x 1079, which
is nearly 2 orders of magnitude less than the value given by
Eq. (45). Figure 7 shows that this gives much better agreement
with the 3D TW simulation. The optimum value of 6 is nearly
the same, which is an indicator that this is close to the best
match with the two-mode model. There is a discrepancy with
the maximum level of squeezing obtained, which we attribute
to imperfect mode matching at the final beam splitter, leading
to an overlap of Q < 1. From Eq. (49), we see that Aqy ~
2.13 x 107*, indicating that the system is in the regime of
being considerably undersqueezed.

7

(58)

IV. INVESTIGATION OF OPTIMUM
PARAMETER REGIME

As we found in the previous section, although significant
squeezing can be obtained via this method, it is a long
way from the maximum allowed by the two-mode model
[Egs. (48) and (49)]. We now investigate how tuning the
trapping frequency affects the degree of squeezing. Tightening
the trapping frequency will have three effects. The first is that
it will increase the density of the system, which we expect
should increase the squeezing rate. The second is that the time
taken for the system to perform one bounce will be shorter,
which will decrease the degree of squeezing, as in this system
the time for a bounce is always less than the time required for
best squeezing. The third effect is that the ratio of kinetic to
interaction energy will change, which may cause higher-order
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excitation in our system. In the strongly interacting regime,
these excitation frequencies are irrational multiples of each
other, so complete spatial rephasing may not be possible,
which will significantly decrease the overlap of the two modes.
Depending on the relative scaling of these competing effects,
we may be able to find a regime that gives the maximum
amount of squeezing. We found thata TW simulation assuming
spherical symmetry gave excellent agreement with the full, 3D
simulation (see Fig. 7), which is convenient, as it uses orders
of magnitude fewer computational resources. Specifically, the
equations of motion for our complex fields become

ih w ( ) - ‘CuI/le(r) — _hQ(Z)‘(/fb(l )’ ( )
8 ! + — 1 !

where

-R*[1 3 a 1
=222 (22 L 22
2m |:r2 ar (r 8r>i| * et

U (P = =) + 0 (100 — 5=
122 1 Av L] J ZAU ’
1)

Figure 8 shows the maximum obtainable squeezing for a
range of radial trapping frequencies. Increasing w, increases
the effective squeezing parameter A, even though 77, decreases.
However, as w, increases, the dependence of A on w, becomes
increasingly weak. Even at the maximum value of w, simu-
lated, w, = 27 x 500 rad s~!, which would be a challenging
level of confinement to achieve, and A ~ 0.035N,_2/ 3 s
approximately a factor of 16 less than the A, given by Eq. (49),
which will give the maximum level of squeezing. As Q < 1,
the actual squeezing is less than the level predicted by the
two-mode model. As the level of squeezing increases, a slight
imperfection in mode matching has a larger detrimental effect
for the squeezing, which is why the discrepancy between the
TW and two-mode models increases with w, .

Counterintuitively, we can increase A by decreasing the
trapping frequency in one dimension, while keeping the same
confinement in the other two directions. This is because T,
increases, due to the breathing mode in the weaker trapping
direction, while the density remains high due to confinement
in two tightly confined directions. Figure 9 shows Q and
v(N, — Np) forw, = w, =2 x 500rad s~ and w, = 27 x
100 rad s~!. In this parameter regime, the system undergoes
complicated nonlinear evolution, and 7, increases to 56.4 ms.
However, the complicated evolution causes the revival in Q to
be much less than for the spherically symmetric case. This is
partly due to breathing oscillations occurring at vastly different
frequencies in the different directions, but also due to the
exchange of energy between the breathing mode of the tight
directions (x and y) with higher-order modes in the weak (z)
direction. This evolution has the desired effect in increasing
A to 6.16 x 107> (up from 1.26 x 107> for the spherically
symmetric w, = 27 x 500 rad s~ case). However, as the
overlap is vastly decreased, most of this increased squeezing
is lost when considering the multimode TW simulation, and it
performs worse than the spherically symmetric case.
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FIG. 8. (Color online) One-dimensional spherically symmetric
TW simulation for different values of w,. (a) Ty, the time it takes for
one breathing oscillation, vs w,. (b) The effective squeezing parameter
A as calculated from Eq. (58) and a 1D spherically symmetric GPE
calculation. (c) The overlap Q at the instant of the final beam splitter.
(d) Minimum of v(N, — N) as calculated from a 1D spherically
symmetric TW simulation (blue dots), compared to the two-mode
analytic result from Eq. (46), using the A value from panel (b).
(e) The spin-squeezing parameter &.

In an attempt to increase the level of squeezing, we try mul-
tiple iterations of the scheme, that is, repeating the sequence of
7 pulses and free evolution periods multiple times before the
final beam splitter in order to increase the interaction time and

023613-8



SELF-INDUCED SPATIAL DYNAMICS TO ENHANCE SPIN ...

0 0.02 0.04 0.06
0/m

FIG. 9. (Color online) 3D TW simulation for w, = w, = 27 x
500 rad s~' and w. = 27 x 100 rad s~!. Top: Q vs t. Bottom:
v(N, — N,) vs 6 calculated from the 3D TW simulation (blue circles)
and Eq. (46) (red solid trace), using A calculated from a 3D GPE
simulation and Eq. (58).

presumably increase . Figure 10 shows v(N, — N;) and Q
for a total of 2 and 4 times as much total free evolution time, for
w, = 27 x 500 rad s~!. The free-evolution time between each
7 pulse was always kept fixed at 7, = 5.3 ms. We refer to these
two schemes as “double bounce” and “quadruple bounce,”
respectively. While there are still quasiperiodic revivals in the

v(Ny — Np)

0 0.02 0.04 0.06 0.08 0.1
0/m

FIG. 10. (Color online) Spherically symmetric TW simulation of
multiple 7 pulses. Top: The visibility Q as a function of time for a
sequence of several m pulses separated by the free-evolution time.
After the initial 7 /2 pulse at r = 0, the 7 pulses are repeated with a
period of T,. Bottom: v(N, — N,) calculated from the spherically
symmetric TW simulation for the double-bounce (blue squares)
and quadruple-bounce (red circles) schemes. v(N, — N,) is also
calculated from Eq. (46) (blue stars, double bounce; red solid trace,
quadrupole bounce), using A calculated from a spherically symmetric
GPE and Eq. (58).
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visibility, there is a slight decay as the number of iterations
is increased. The increase in A is a factor of approximately
2 and 4 for the double- and quadruple-bounce schemes,
respectively, which is still a factor of 7 and 3.5 less than
Aopt- Due to the nonlinear dependence of Eq. (46) on A, this
leads to a reduction in v(N, — Np) of approximately 4 and 20,
respectively. However, when considering the full multimode
TW dynamics, the decrease in visibility degrades the level of
squeezing, and there is only a factor of ~2 improvement for
the double-bounce scheme and minimal further improvement
for the quadruple-bounce scheme. As increasing the evolution
time is likely to exacerbate other detrimental effects, such as
increased particle loss or decoherence due to technical noise,
it is unlikely that it will be advantageous to consider multiple
bounces.

V. RELATION TO PRECISION METROLOGY
AND SPIN SQUEEZING

We have demonstrated how to use multimode dynamics
to enhance the one-axis twisting rate in order to prepare a
state with reduced fluctuations in particle number difference.
In order to use this state for interferometry with sensitivity
beyond the SQL, the output from the final beam splitter of
the one-axis twisting scheme would be used as the input
to a two-port Mach-Zehnder interferometric scheme, that is,
a 50:50 beam splitter, followed by a relative phase shift ¢
between components a and b caused by the physical process
one wishes to examine, followed by a final 50:50 beam splitter.
The coupling operations occur on a time scale much faster than
that of the motional dynamics, so the motional dynamics can
be neglected during the beam-splitter phases. Furthermore, we
assume that the time between the beam splitters, #o1q, 1S short
compared to the time scale for motional dynamics. Typically
the sensitivity of atom interferometry scales linearly with #,414,
so it may be desirable to increase t,1q beyond the regime of
validity of this approximation. We discuss the implications of
this below. Using these approximations, we can solve for the
dynamics analytically in the Heisenberg picture:

V(T tow) = —iVra(r,tin) sin <§> — iYp(T, tin) COS (%) ,
(62)

Up(C,tour) = —iP(r,tin) cos (%) + iy (r, tin) sin (%) :
(63)

where 1%, »(1,tin) is the field operator after the final beam split-
ter of the squeezing sequence (and input of the Mach-Zehnder
interferometer) and x@u,b(r,tom) is the field operator after the
final beam splitter of the Mach-Zehnder interferometer. At
this point (f = t,,), the number difference is measured, from
which we can estimate the value of the applied phase shift.
The phase sensitivity of the device is given by

— \/V [Na(tout) - Nb(toul)]
| 45 (INa(fow) = Np(tou)])|

For uncorrelated input states, we recover the standard quantum
limit A¢ = 1//N; [11]. Noticing that N, — N, = 2J, and

A¢

(64)
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using Eqs. (62) and (63), we find J,(fou) = sin ¢ Jy (i) —
cos ¢ fz(t,-n). If we ensure that our input state lies along the
J, axis (that is, (J,(£)) = (f_\,(tm)) = 0, which can always be
achieved by a suitable choice of a deterministic phase shift),
the slope of our signal will be maximum at ¢ = 0 (or 7). In
this case, we can write the maximum phase sensitivity as

(jzz(tin)> _ &

Ap = — = ,
4 (o) VN

(65)

where & = VN,(JZZ) /(Jy) is the usual spin-squeezing pa-
rameter [17,42]. Figure (8) shows & calculated immediately
after the final beam splitter for different values of w, from
the spherically symmetric TW simulation. For o, = 2w X
500 rad s~!, £ ~ 0.32, which indicates an interferometric
phase uncertainty ~3 times better than that for uncorrelated
particles, or equivalent to using 9 times as many uncorrelated
particles.

In writing Egs. (62) and (63) we have neglected the motional
dynamics of each component during the Mach-Zehnder pro-
cess. This is equivalent to assuming that the overlap between
the modes is unchanged during the interferometer process
(however, in calculating & we have taken into account the
effect of imperfect overlap at the input to the Mach-Zehnder).
To gain any significant benefit from the spin squeezing, the
interferometry scheme must involve a high degree of overlap
between the two modes. In a trapped configuration, this would
limit the duration f;,014 of the interferometer to very short times,
before the multimode dynamics from the strong nonlinear
interactions begin to degrade the overlap. Alternatively, setting
thod to multiples of 7, would also achieve high overlap due
to the revivals in Q. For some applications, such as inertial
sensing, an atom interferometer that operates in free fall is
desirable, as it is isolated from vibrational noise (aside from
that coupled through the control lasers). After the relative
number squeezing is created, the clouds could be expanded by
releasing, or adiabatically expanding, the confining potential.
For an inertial sensor, momentum separation between the
two modes is required, which could be achieved accelerating
one of the modes with a state-selective Bragg transition or
Bloch oscillation after the wave packets are sufficiently dilute
[45]. Expanding the BEC has the added benefit of reducing
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the density, which will reduce any deleterious effects due to
nonlinear interactions, such as phase diffusion.

VI. SUMMARY

We have shown that spatial dynamics can be used to
enhance the rate of one-axis twisting to produce significant
spin squeezing without the use of a Feshbach resonance or
state-dependent dynamic potentials in atoms such as ®’Rb
where the squeezing rate would otherwise be too low. We
find that generally tighter traps are better, leading to higher
squeezing, which is achieved much more quickly, which will
be important in the presence of loss processes such as col-
lision with background gas. Using a cylindrically symmetric
potential causes the effective squeezing parameter to increase,
but the time taken to achieve squeezing is also increased,
and the increased dynamical excitations limit the degree of
squeezing achievable. Performing multiple bounces seems
promising, but this also eventually causes a loss of overlap due
to multimode excitations. We found that the best achievable
squeezing for 1.5 x 10° atomsis v(N, — Nj,) ~ 0.047, with an
overlap of Q = 0.95, by performing a four-bounce sequence
in the tightest trap we considered, w, = 27 x 500 rad s~ It
seems unlikely that this scheme could yield significantly higher
squeezing, as the achievable squeezing is very sensitive to the
degree of overlap. However, even though this is considerably
less than the theoretically achievable limit predicted by
Eq. (46), we are considering a large number of atoms, which
will yield a large absolute increase in sensitivity for an
interferometric device, equivalent to an increase of a factor
of 19 in the atom number. One of the benefits of incorporating
the multimode excitations into the squeezing scheme, rather
than trying to remove them altogether, is that it opens the way
for one-axis twisting experiments with larger samples of atoms
where previous schemes have been limited in the number of
particles to try and maintain single-mode dynamical behavior.
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