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Generation of Rydberg states of hydrogen atoms with intense laser pulses:
The roles of Coulomb force and initial lateral momentum
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We investigate the generation of Rydberg states of hydrogen atoms with intense laser pulses by solving the
time-dependent Schrodinger equation and by means of classical-trajectory Monte Carlo simulations. Both linearly
polarized multicycle pulses and pairs of optical half-cycle pulses are used. Comparisons between these methods
show that both the Coulomb force and initial lateral momentum, which have effects on the n distribution and
[ distribution of the population of excited states, are important in the generation of Rydberg states.
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I. INTRODUCTION

Tunnel ionization is a fundamental atomic and molecular
process in strong laser fields [1]. The tunneled electron is ac-
celerated in the fields and may return to the vicinity of the ion,
resulting in many highly nonlinear strong-field phenomena,
such as high-harmonic generation, above-threshold ionization,
and nonsequential double ionization [2]. A recent experiment
showed that in the strong-field tunnel ionization of helium
atoms, a substantial fraction of Rydberg atoms was produced
and measured in the intense laser pulse, which was explained
with the strong-field tunneling-plus-rescattering model and
named frustrated tunneling ionization (FTI) [3]. FTI is the
completion of the tunneling-rescattering scenario.

The neglect of Coulomb force after ionization in the
classical three-step model [4] and quantum Lewenstein model
[5] works surprisingly well to explain the process of high-
harmonic generation. For the generation of Rydberg states,
a semiclassical model [6] that neglected Coulomb force
during the laser pulse was used to explain the experimentally
measured dependence of the excited-state population on the
ellipticity of the laser pulses [3]. However, more recently, the
role of the Coulomb force has drawn considerable attention,
and the inclusion of the Coulomb force has proven to be
essential in many studies [7—12]. While some progress has
been made in analyzing the generation of Rydberg states
in both elliptically [6] and linearly polarized light [13], the
underlying physics, especially the role of Coulomb force, still
remain to be explained. We will also investigate the role of
the initial lateral momentum distribution with respect to the
tunneling process [14].

Previous investigations focused on the generation of Ryd-
berg atoms with multicycle laser pulses [6,13,15,16]. In this
paper, we first present some results utilizing the multicycle
laser pulses. To filter out the complexity and gain better insight
into the underlying mechanism, we have also utilized a pair
of optical half-cycle pulses (HCP). The HCP fields in the
frequency of the terahertz (THz) regime have been widely used
in investigating and controlling the Rydberg states in the past
[17-24]. If the pulse duration of a HCP is very short compared
to the orbital time of a Rydberg electron [25], the impact of
this HCP is generally described as a momentum kick [17].
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No studies have been done using the HCPs in the frequency of
the optical regime. Such optical HCPs have several advantages
against THz HCPs: (1) Due to the weak intensity, the THz HCP
can only be used to generate a THz Rydberg wave packet (a
superposition of the initial state and its neighboring states) [19]
from an initial optically excited atom. (2) The pulse duration
of THz HCP is of (or near) the same order as the orbital
time of a highly excited Rydberg electron [19], thus mixing
the interaction with more complex wave-packet dynamics and
making the “kick” description less valid. (3) For the ground
and low-lying excited states, the interaction with THz HCP is
difficult to treat in an ab-initio way since the electron moves at
an attosecond time scale [2]. The theoretical investigation of
Rydberg state generation with optical HCPs is thus meaningful
and may provide insights into the underlying physics.

The organization of this paper is as follows: In Sec. II we
briefly describe the methods of solving the three-dimensional
(3D) time-dependent Schrodinger equation (TDSE) and
classical-trajectory Monte Carlo (MC) simulation. Section III
gives the calculation details. In Sec. IV, we present our results
and discussion in detail. We conclude in Sec. V.

II. THEORY

A. Time-dependent Schrodinger equation

The TDSE for atomic hydrogen in the presence of external
laser fields [F(#)] can be written as [atomic units (a.u.) are used
unless otherwise stated]

ov(r,t)
ot
where the field-free Hamiltonian Hy = —V?/2 — 1/r and
laser-atom interaction V(r,t) = F(¢) - r. The orbital W(r,?) is
expanded in the spherical harmonics,

i = [HO + V(r,t)]\lj(r,t), (1)

Lmax

m=l
vaen=Y 3 200y 6.p) 2)

=0 m=—I[ r

For linearly polarized laser fields, the expansion includes only
the m = 0 partial waves.

For the r coordinate, we use the discrete variable represen-
tation (DVR) basis functions. To this purpose, the variable
r is first truncated from the semi-infinite (0,00) domain
into the finite domain (0,rm.x] (with sufficiently large ryax)-
The r coordinate is then discretized using the generalized
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Gauss-quadrature points r’ and weights w!:

1+ x; ,
R=L— W =, 3)
l—x+a
where the points and weights [{x;, w;}, i =1,...,n,] are

associated with the standard (n,) point Gauss-Radau quadra-
ture (x, = 1) [26]. L and o = 2L /rmax are the mapping
parameters. This mapping function r(x) allows for denser
grids near the origin, leading to more accurate eigenvalues and
eigenfunctions [27]. The Coulomb singularity at the origin is
avoided since ryi, = r(x;) > 0.

The radial partial wave ¢, (r,7) is expanded in a product
basis of functions,

Gim(rit) =Y cl"(0)gi(r), )
where the DVR functions read

ny

1 r—r
gi(”)=\/—w—rnri_r

j
i j#i i

&)

Note that the factor 1 /\/wiir is built in to remove the inte-
gration overlaps, which results in the orthonormal condition,
S 8ir)g(r)dr = ;; [28].

The ground and excited states of the hydrogen atom
are calculated by dialogizing the ground-state Hamiltonian.
Equation (1) is propagated in time by the second-order split-
operator technique [28]. An absorbing layer between r;, and
Fmax 18 used to smoothly bring down the wave function and
to prevent the unphysical reflection from the boundary. After
the time propagation, we get the final wave function W (r, 7).
We calculate the probability of having the electron in the
nlm bound state by projecting W (r,T) onto the corresponding
field-free eigenstates W, (1),

Paim = (Wt ()| W (x, T)) . (©6)

The probability of having the electron in the n quantum state
is Pn = Zlm Pnim-

B. Monte Carlo

To compare with the TDSE calculations, we employ the
classical-trajectory MC method including tunneling [29-31].
Tunnel ionization dominates if the Keldysh parameter y =
\/ﬁw/ F(t) < 1 [32], where I, is the ionization potential
and w is the carrier frequency of the laser field. If the
polarization direction of the laser electric fields is along
the z axis, the trajectories start at time #y at the tunnel exit
with the coordinates

I, + /12 — 4F (o) Z.

2F (ty)

z(to) = . x(to) = y(t0) = 0. (7)

This expression requires F(#y) < I§ /4Z., and the over-the-
barrier ionization (OTBI) is avoided. In agreement with the
tunneling model the initial momentum in the z direction is
zero, i.e., p, = 0. The probability w, of tunneling with a

certain lateral momentum p, (fy) = v p)zc(t()) + pi (to) is given
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by [14]

wy o |pylexp (—pt—— ). 8)
PUTPLFG)

and the ionization probability wy is given by the Ammosov-
Delone-Krainov (ADK) theory [1],

2/(3 2Z./k—|m|—1 2K3 9
o e <F<ro>> P <_3F<to>>' ©

Here, m is the magnetic quantum number, which is initially
m =0, and Z. =1 is the core charge. I, = 0.5 a.u. is the
binding energy, and k = m .

Using the probabilities in Egs. (8) and (9), we randomly pick
an initial lateral momentum and an initial ionization time #;.
The electron is then propagated by integrating Newton’s
equations, under the combined field of the laser field and
Coulomb force,

2

r
o ="FO+va/n. (10)

After the laser pulse, we evaluate the total energy E = p?/2 —

1/r, where p = «/ p? + pf_ is the momentum of the electron.
If E is negative, the electron is bounded, and we determine
an effective principal quantum number n.¢ and an effective
angular momentum number /. from

ILP = Lege(lerr + 1), (11)

where the classical angular momentum reads L = rxv =
(rjvy —rivp)e xe . To compare with the quantum results
from TDSE calculations, the probabilities with neg and leg
are integrated within each unit interval. If v =0, we find
| = n — 1, corresponding to a circular Rydberg state.

III. CALCULATION

For the TDSE calculations, a high / quantum number should
be used in the partial wave expansion in Eq. (2) if the hydrogen
atom is subjected to intense laser fields. For the laser pulses
we have used in this paper, convergency is reached at [,y =
80. For hydrogen atoms, according to the classical Bohr-
Sommerfeld model, the orbital radius scales as n% and 2n?
for / =n — 1 and / = O for the principal quantum number n
[25]. In this paper, we investigate the Rydberg states generation
of hydrogen atoms with n < 40, which results in a simulation
box as large as rmax &~ 3000 a.u. The size of the Gauss-Radau
quadrature n, = 2000. For this large simulation box, the dipole
approximation is still valid for the 800-nm laser fields.

The ground and excited states of hydrogen atoms are
calculated accurately by dialogizing the field-free Hamil-
tonian Hjy, and the energy of the ground state E;; =
—0.499999999998 a.u., with a relative error of 10712 com-
pared to the exact value (0.5 a.u.). For the split-operator
propagation scheme, the field-free propagator exp(—i % At Hy)
only needs to be constructed once before the propagation,
using the energy values and eigenstates of the unperturbed
system. To improve the numerical stability of the propagation,
a cutoff in the energy is applied to get rid of the spurious
transitions to the irrelevant regions of the very high energy
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spectrum. The external field operator exp[—i AtV (¢)] is diag-
onal in the coordinate representation when using the length
gauge. The time step for the propagation takes Ar = 0.01 a.u.
For efficient matrix and vector operations we use the basic
linear algebra subroutines (BLAS) [33] and the linear algebra
package (LAPACK) [34].

For the MC simulations, about 2 x 10° trajectories have been
launched every optical cycle at each fixed laser intensity while
the initial lateral momentum and ionization time are randomly
varied. To investigate the effects of Coulomb force and initial
lateral momentum, we have also performed MC simulations
(1) ignoring the Coulomb force after the electron tunnels out
of the barrier [V.(¢) = 0, > ty] and (2) ignoring the initial
lateral momentum distribution at the tunnel exit [p (#p) = O].
Comparisons with and discussions about TDSE calculations
are given.

The multicycle laser electric field F(z) is chosen to be
F(t) = Foer sinz(rrt/r) sin(wt + §), where Fj is the peak
field amplitude, 7 is the pulse duration, and § is the carrier
envelope phase (CEP). In this paper, the unit of laser intensity
Iy = 1x10™ W/cm?. We use multicycle pulses with a pulse
duration of 107, where T = 2m /w is the optical period. For a
HCP pulse, the electric field is F(¢) = Foer sin(wt + §), with
0 <t < v = T/2. The phase § is used to control the parity of
the unipolar field.

IV. RESULTS AND DISCUSSION

Figure 1 presents the sum population of excited states of
n = 20-40 and the n quantum number of the most populated
excited states for different laser intensities from TDSE
calculations. The laser-pulse duration is ten optical cycles.
The sum population increases rapidly for relatively weak
laser intensities and reaches a plateau at higher intensities.
Ionization saturation is reached at higher laser intensities,
while the population of highly excited Rydberg states does
not drop (in fact, there is a slight increase at intensities of
10> W/cm? and higher). This plateau of population may

PHYSICAL REVIEW A 90, 023409 (2014)

B — — 10
= .| 1
5 -3F 9 3
1 E D 8
(= u E
9 i ]
L o4t 8 28
i E = 2
° F B
& 5k 17 5.2
5 F ER:
=3 sd)
%-65 -6 €3
(¥ E i gg
=3
5-75 45 E&a
2 1 g2
> g
on Q[ 14 =
2 d |
9L [ [ 3

1

10

Intensity (1014 W/cmz)

FIG. 1. (Color online) Sum population of excited states of
n = 2040 (circles) and the n quantum number of the most populated
excited states (squares) vs the laser intensity from the TDSE
calculations. The laser-pulse duration is ten optical cycles, and the
carrier wavelength is 800 nm.
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FIG. 2. (Color online) (a) n distribution of the population of
excited states from a TDSE calculation (circles) and MC simulations:
full (squares), V. =0 (diamonds), and p, =0 (triangles). The
populations from MC simulations have been normalized to the
maximum of the TDSE calculation at n = 6. (b) n distribution of
the population of excited states from MC simulations: full (circles),
Ve = 0 (squares), V., =0 (diamonds), and p, =0 (triangles).
The laser-pulse duration is ten optical cycles, and the intensity is
1.2x10™ W /cm?.

be explained by the fact that highly excited Rydberg atoms
can survive in very intense laser fields, as shown by the
experimental investigation of helium atoms [35]. For the
nonresonant 800-nm laser fields we have used, the n quantum
number of the most populated excited states is insensitive to
the laser intensity, yielding a principal quantum number of 6
on average.

To investigate the n distribution of the population of
excited states in detail, Fig. 2(a) presents the results from
TDSE calculation and MC simulations at a laser intensity
of 1.2x 10" W/cm?. This intensity is chosen so that tunnel
ionization is satisfied while OTBI is avoided. For comparison,
the MC results are normalized according to the TDSE result.
For the TDSE calculation, a sharp maximum in the distribution
is found around n = 6. The full MC simulation yields a result
in good agreement with TDSE. In a previous work [13] where
a laser pulse of w =0.05 a.u. and 7 =3.5x10" W/cm?
were used, the population distribution was very similar to
our results: a sharp peak at n = 6 in the distribution. This is
consistent with the conclusion of Fig. 1. If the nuclear Coulomb
force is ignored in the classical propagation (V. = 0), MC
simulation yields a broad distribution in the high n quantum
number part, in qualitative disagreement with TDSE and full
MC results. This demonstrates the importance of the Coulomb
force in the generation of highly excited Rydberg states. On
the other hand, if the initial lateral momentum distribution is
set to zero (p, = 0), the result still seems to be in qualitative
agreement with TDSE and full MC simulations.

Does the initial lateral momentum have little effect in this
case? To answer this, in contrast to the normalized results
in Fig. 2(a), Fig. 2(b) presents the unnormalized population
results from different MC simulations. For the linearly po-
larized laser fields, the Coulomb force can be divided into
two parts: the forces parallel (V) and perpendicular (V)
to the polarization direction of the laser electric field. If
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FIG. 3. (Color online) Normalized [ distribution of the popula-
tion of excited states when the n quantum number takes values of
n = 6 (circles), n = 8 (squares), n = 10 (diamonds), and n = 12
(triangles) (a) from TDSE calculations and (b) full MC simulations.
The typical [ distribution from MC simulations with p; = 0 (side-
ways triangles) is also presented in (b) for comparison. The laser
parameters are the same as in Fig. 2.

the parallel component V) is set to zero, the change in the
population is small compared to the full result. However, if the
perpendicular component V,, is set to zero, the population is
greatly suppressed. This result originates from the Coulomb
focusing effect [29,36]. During the propagation, the amplitude
of lateral momentum decreases due to Coulomb focusing,
which focuses parts of the electron wave function, increasing
the efficiency of rescattering. This population suppression
shows that the initial lateral momentum is important since the
perpendicular force acts only on the lateral momentum. On
the other hand, by setting the initial lateral momentum p; to
zero, a suppression similar to the case of V., = 0 is observed
in the population, which demonstrates that in the full MC
simulation the dominant contribution comes from electrons
with an initial lateral momentum that is close to but not zero.
This agrees with the conclusion that the captured electron
has a not too large transverse velocity in Ref. [13]. Upon
rescattering, the nonzero lateral momentum will result in a
nonvanishing angular momentum [see Eq. (11)]. To check this,
the /-dependent populations of excited states are compared in
Fig. 3. In experiment, the [ distributions can be measured
with the /-state selective field ionization [37]. The n quantum
number takes values of 6, 8, 10, and 12, respectively. The MC
simulation with zero p, yields only the / = O states, and in
Fig. 3(b) a single line is presented for p; = 0. For comparison,
the results are normalized to the maximum. As expected, for
the TDSE and full MC simulations, the states with nonzero [
numbers exist and even overrun the / = 0 part. Note that due
to the Coulomb focusing, the distributions in the / quantum
number center mostly at the smaller / part.

The above investigations show that both the Coulomb force
and initial later momentum are important in the generation
of excited states. The initial lateral momentum affects the /
distribution of the population, and the Coulomb force plays
an important role in the lateral direction. But what about
the Coulomb force in the parallel direction? These effects
may be stronger for higher-lying Rydberg states, while the n
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FIG. 4. (Color online) Visualization of two HCP pulses with a
time delay 7, between the peak electric fields. The intensities of the
two pulses are 1.2x 10" and 0.2 x 10'* W /cm?, respectively. The time
delayis 7, =2T.

quantum number of the most populated Rydberg states centers
at small values (typically less than 10) for multicycle laser
pulses. For helium atoms, the n distribution of the population
of excited states has a similar sharp peak with a maximum
around n = 8 at an intensity of 10> W/cm? [3]. Also, the
dynamics of the electron is complicated for multicycle pulses,
making it difficult to investigate the physical mechanism for
the formation of Rydberg states. In the following the more
simplified tool of HCP fields are utilized.

To generate very high lying Rydberg states, we have utilized
a pair of HCPs. The HCP pair is visualized in Fig. 4. A
positive-field HCP (HCP 1) is followed by a negative-field
HCP (HCP 2), with a time delay T, between the peak electric
fields. HCP 1 serves as a “pump” field, which kicks the electron
in the ground state and initiates an outgoing electron wave
packet. The “probe” field HCP 2 kicks the outgoing electron
in the reverse direction and traps it in the high-lying excited
states. With maximum intensities of the two pulses fixed at
1.2x10'" and 0.2x 10'* W/cm? with varying time delay, the
n distributions of the population of excited states from TDSE
calculations are presented in Fig. 5. As T, increases, the
peak in the distribution moves to higher n quantum states.
For T; = 0.5 T, the head and rear of these two HCPs meet,
and a complete optical cycle is formed. The peak is found at
n = 6, in agreement with the long-pulse case (see Fig. 2). The
position of the peak shifts to n = 15 at T; = 3.5 T. To verify
this kicking-trapping scenario, we also perform simulations
employing only the first HCP. The peaks in the distribution
disappear in this single-HCP case, showing that the electron is
really trapped by HCP 2. If we use both HCPs but project out
all the bound states (E < 0) after the interaction of HCP 1, the
distribution is nearly the same as for the full simulation. The
continuum wave function initiated by HCP 1 is responsible for
the generation of excited states.

The n quantum number of the most populated Rydberg
states and the corresponding populations using these HCPs
from MC simulations are compared in Fig. 6. The TDSE
results, which are extracted from Fig. 5, are also given for
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FIG. 5. (Color online) 7 distribution of the population of excited
states from TDSE calculations with two time-delayed HCPs. The
intensities of the two pulses are 1.2x10'* and 0.2x10" W /cm?,
respectively. The time delay 7} is in units of optical cycles, varying
from 0.5 to 3.5.

comparison. Both the n quantum number and the population
from full MC simulations are in good agreement with TDSE
results. The shift in the maximum position can be explained
by the energy change due to the interaction of the ionized
electron with the second HCP. The energy change upon HCP
2 reads [17]

AE =p, - Ap+ Ap?/2, (12)

where the momentum kick Ap = — f F(¢)dt. For a fixed kick
momentum Ap, AE depends on the electron momentum p,
at the instant of kicking time ¢, which, however, depends on
the distance r, between the outgoing electron and the nucleus.
During the field-free propagation between the two HCP fields
(see Fig. 4), due to the energy conservation Eg = p?/2 — 1/r,,
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FIG. 6. (Color online) (a) The n quantum number of the most
populated Rydberg states and (b) the corresponding populations vs
the time delay 7, between two HCPs from TDSE calculations (circles)
and MC simulations with (squares) and without (diamonds) the lateral
momentum distribution. The populations from MC simulations have
been normalized to the TDSE calculation at 7; = 0.5 T in (b). The
laser parameters are the same as in Fig. 5.
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the farther the distance r; is, the smaller the momentum |p;|
will be, leading to the shift in the most populated Rydberg
states. The Coulomb force is weak in the asymptotic region
(r > 0), which is ignored in the classical propagation of
the three-step model [4]. However, our results show that the
generation of highly excited Rydberg states is sensitive to the
Coulomb field, even in the asymptotic region, due to the small
energy difference between adjacent Rydberg states (AE,
1/n3 <« 0 for n > 1). In Fig. 6(b), the population at the peak
distribution decreases with increasing time delay 7. This
decrease originates from the lateral wave-packet dispersion.
We turn to the MC simulations with p;, = 0. In Fig. 6(a), the
MC simulations with p; = 0 yield results that qualitatively
agree with TDSE and full MC calculations. The agreement is
due to full incorporation of the Coulomb force in the parallel
direction. In Fig. 6(b), for the MC simulation with p; =0,
although the maximum population still displays a slight decay,
the decaying rate is much smaller than the TDSE and full MC
cases, where lateral dispersion is considered.

The lateral momentum plays an important role not only in
the absolute population of the most populated Rydberg states
but also in the normalized n distribution of the population.
For example, in Fig. 7 we present the n distribution of the
population of excited states at a time delay of 7, = 3.0 T. The
TDSE result is extracted from Fig. 5. The MC simulation with
p.1 predicts a narrow distribution, similar to the multi-cycle
pulse (MCP) case except for a shift in the position of the
peak (Fig. 2). However, the TDSE and full MC calculations
predict much broader distributions, especially for the highly
excited states. This is different from the MCP case where
the TDSE and full MC calculations yield narrow distributions
as well. The agreement between TDSE and full MC results
demonstrates the accuracy of the initial lateral momentum
distribution given by the ADK tunneling theory [Eq. (8)]. The
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FIG. 7. (Color online) n distribution of the population of excited
states from a TDSE calculation (circles) and MC simulations with
(squares) and without (diamonds) the initial transverse-momentum
distribution. The populations from the MC simulations have been
normalized to the maximum of the TDSE calculation at n = 13. The
intensities of the two pulses are 1.2x10' and 0.2x10'* W/cm?,
respectively, with a time delay of 7, = 3.0 T.
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FIG. 8. (Color online) Normalized [ distribution of the popula-
tion of excited states when the n quantum number takes values of
n = 12 (circles), n = 13 (squares), n = 15 (triangles), and n =17
(side-ways triangles) from (a) TDSE calculations and (b) full
MC simulations. The typical [ distribution from MC simulations
with p; =0 (upsidedown triangles) is also presented in (b) for
comparison. The laser parameters are the same as in Fig. 7.

width of the n distribution may be used as a tool to measure
the lateral momentum distribution for the tunnel ionization.
To investigate how the lateral momentum broadens the
n distribution in detail, we calculate the [ distributions for
several n quantum numbers, as presented in Fig. 8. A gradual
change in the / distributions is observed with increasing n.
For n = 12, which lies on the rapid rising edge before the
peak distribution, the major contribution comes from the low [
quantum states (Iyax = 2). For the peak distribution atn = 13,
the intermediate / quantum states contribute the most. On the
slowly decaying side, the high/ states dominate the distribution
for n = 15 (and for n > 15). The full MC simulations predict
results that qualitatively agree with TDSE. Setting the initial
lateral momentum to zero, only the / = 0 state contributes for
each n quantum number. This explains the difference of the
distribution width in Fig. 7. In contrast to the MCP case where
the [ distribution is limited to the small / states, the / distribution
can reach high [ states in the HCP case. In the MCP case, the
Coulomb focusing effect is enhanced in the multiple-return
case of the tunneled electron with multicycle laser pulses [38].
In the HCP case, however, the tunneled electron does not
need to return to the vicinity of the nucleus. Thus Coulomb
focusing is weakened, and high-angular-momentum states can
be formed. The Rydberg states with high / values (I ~ n) can
have very long lifetimes (7; oc n3[?) [25]. With properly chosen
parameters, this HCP pair scheme may provide a universal way
to selectively excite atoms into an arbitrary nl state. The time
delay between the two HCP fields controls the energy, so it also
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controls the principal n quantum number of the Rydberg states.
The lateral momentum is related to the impact parameter b;
thus angular momentum L. = bx v and the / quantum number
can be determined.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have investigated the generation of
Rydberg states of hydrogen atoms with intense laser pulses.
The theoretical methods we use include the TDSE and
classical-trajectory MC simulation. For the multicycle pulses,
the sum population of highly excited Rydberg states increases
rapidly at lower laser intensities and reaches a plateau at
higher intensities due to the stabilization of Rydberg atoms
in superintense laser fields. The n quantum number of the
maximum population of excited states is insensitive to the laser
intensity. A sharp maximum in the n distribution of excited
states from TDSE calculations is reproduced by the full MC
simulations. The initial lateral momentum is responsible for
the nonzero / quantum states, and the Coulomb force plays
an important role in the lateral direction due to the Coulomb
focusing effect.

For the half-cycle pulses, as the time delay between the two
HCPs increases, the peak in the distribution shifts to higher n
quantum states. This originates from the energy conservation
due to the Coulomb force in the asymptotic region, where
the energy difference between adjacent Rydberg states is
comparable to the Coulomb force. The lateral wave-packet
dispersion results in the decreasing of the population at the
peak distribution. The major contribution comes from the low
! quantum states for low n quantum states, while the high /
quantum part dominates the highly excited states. High [ states
are generated because of the weakening of Coulomb focusing
in the asymptotic region.

Our single-electron results also have implications for the
generation of Rydberg states in multielectron atoms [39]. In
this paper, the discussions are limited to the tunnel ionization
regime. With more intense laser fields, the over-the-barrier
regime will be reached and different characteristics compared
to the tunnel ionization case may be expected. The study of
the over-the-barrier regime, which requires a microcanonical
distribution [40] instead of the one given by Eqs. (7) and (8),
is in progress.
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