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Using well-known scaling techniques we present that for a given laser intensity the photoionization decay rate
I" of the core electron in the 1s orbital of an atom is varied with the laser frequency w such that ' Z* vs w/Z?
has a universal behavior that does not depend on the nuclear charge Z. One can conclude that the laser frequency
required to stabilize the 1s core electron is larger by the factor Z2 than the laser frequency required to stabilize
the electron in the most diffused orbital. This condition ensures the applicability of the Kramers-Henneberger
approximation (KHA) for all electrons including the core electrons. However, simple analytical arguments, which
are confirmed by our numerical results, show that when the photoionization of the core electron is due to the
absorption of one photon only, then the KHA is applicable for a lower frequency that is linearly proportional to
Z and not to the square of atomic number as expected. This condition is a lower bound for the laser frequency
which is needed to stabilize a many-electron atom in the presence of high-frequency strong laser fields.
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Presently high-intensity laser pulses with a dominant
frequency which is higher than the atomic frequency of the
valence electrons in atoms are feasible and enable applications
in different areas of physics. One may expect that strong laser
fields always lead to a fast photoionization process. As was
shown recently by Eichmann ef al. [1,2], most of the atoms
which were accelerated by intense femtosecond laser pulses
remained stable during the pulse. The electronic structure
of these stable “laser-dressed” atoms can be visualized by
spectroscopy of photoelectrons [3]. The question of the appli-
cability of the Kramers-Henneberger approximation (KHA)
[4,5] which provides the picture of stable “laser-dressed”
atoms in the theory of strong-field ionization has been a
subject of research for a long time [6-17]. In the most
recent publications on chemistry and physics in strong high-
frequency laser fields, it has been presented that by applying
the KHA for all electrons including the core electrons the
interesting phenomena can be observed, e.g., strong chemical
bonds in He, and HeS molecules [18,19], a strong linear Stark
effect for a sulfur atom rather than the usual quadratic one
[20].

The KHA is based on the acceleration gauge representation
of the problem. However, when the length gauge is used instead
of the acceleration gauge the core electrons are often assumed
not to be affected by the external field. It means that only the
valence electrons “feel” the oscillating laser field. Here we
address the question under what condition one should apply
the KHA not only for the electrons in the valence shell, but also
for the core electrons. No doubt, the answer to this question is
important for new developed areas of chemistry and physics
in high-frequency strong laser fields. In particular, due to the
enormous investments in free-electron laser equipment, it is
possible to carry out experiments in a high-frequency and
large intensity regime which could not be done before.

In this paper, we take a single-electron approach: Each one
of the two core electrons in the 1ls orbital is described by
a one-electron Hamiltonian, where the nuclear charge is Z.
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Here we neglect the small screening effect of two electrons
occupying the same orbital. For a given laser intensity we look
for the minimal laser frequency for which the core electrons
are stabilized and the Kramers-Henneberger approximation
holds. This value of the frequency provides a lower bound to
the actual laser frequency that stabilizes the core electrons in
the many-electron neutral atom. Based on Gauss’s electrostatic
law, we know that the effective nuclear charge for the electron
in the most diffused orbital, which is outside of a sphere
containing all the other electrons, is 1, i.e., Z. = 1. According
to the Slater’s rules for the valence electron of an atom
Zeoir > 1, but it is much smaller than Z, i.e., Z.5 < Z [21].
This is the base for our claim that a comparison between
the photoionization decay rate of a one-electron ion with the
nuclear charge Z > 1 and the photoionization decay rate of a
hydrogen atom (Z = 1) gives us the ratio between the decay
rate of the 1s core electron and the decay rate of the valence
electron that populates the most diffused atomic orbital of a
many-electron atom.

We use the well-known Z-scaling technique. For field-
free many-electron atoms, it has been applied by Hylleraas
to develop the 1/Z perturbation theory [22]. For example,
Bieliniska-Waz et al. have used such a technique to investigate
spectra of hydrogenic systems embedded in a Debye plasma
environment [23]. The Z scaling has also been used many
years ago by Madsen and Lambropoulos in the their study of
the strong-field ionization of hydrogenlike atoms [24]. They
have found some general scaling relations perturbative or
directly from the time-dependent Schrodinger equation. Our
approach is slightly different. We do not scale time by the
nuclear charge Z as in Ref. [24], but define dimensionless
time variable, T = wt. This is a crucial point in our derivation
presented below. By using the Z scaling we first show that
the photoionization decay rate I" of the 1s core electron of an
atom with a nuclear charge Z is varied with the frequency w of
a strong linearly polarized laser field such that T Z* vs w/ 2>
has a universal functional behavior which is Z independent.
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The most important result of our derivation is the new scaling
law: For a given laser intensity the ratio between the decay
rate of the electron in the most diffused orbital and the decay
rate of the electron in the ls orbital of an atom is equal to
Z*, while the laser frequency which is required to stabilize
the core electron (i.e., the KHA is applicable) is larger by the
factor Z? than the frequency necessary to stabilize the valence
electron. However, our numerical ab initio calculations and
simple analytical analysis show that this condition for stability
is too strong. Actually, it is sufficient to stabilize the 1s core
electron by the laser frequency which is larger by the factor
Z than the frequency required to stabilize the electron in the
most diffused orbital where Z.¢ =~ 1. This is another important
conclusion of our work.

Let us consider an atom in an external ac field within
the frameworks of the length gauge and the acceleration
gauge representations. In the dipole approximation the time-
dependent Schrodinger equation (TDSE) for a single-electron
system in a linearly polarized strong laser field in the length
gauge representation has the form

[ i v Ze . £(1) cos( r)]
o — —— } eg)Z w
2m X ) /x2+y2+Z2 0
9
x [ (@) = ihgh/f(l)), (1)

where e and Ze are, respectively, the charges of the electron
and the nucleus. The shape of the laser envelope is given
by f(¢). The laser intensity is defined as Iy 83, where g
is the field amplitude. By carrying out the transformation
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{x,y,z} = Z{x,y,z}, one obtains the following TDSE:
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From Eq. (2), it is clear that as Z gets larger values the
first-order perturbation theory becomes a better approximation
when the zero-order Hamiltonian is the field-free Hamiltonian
of a hydrogen atom. Let us now define dimensionless time
unit

T=owt, 0<1<2m, 3)

such that Eq. (2) is transformed into

h2 2 62 scaled
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and
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By following the same scaling transformation procedure in
the acceleration gauge (ag) representation [4,5,25-29], one
obtains

[pag(T)) = lhwscaled < 1Pa(T). )

X,¥,2
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Within the Kramers-Henneberger approximation the laser-dressed atom is well described by the effective time-independent
Hamiltonian which includes the time-averaged potential. The electron in such potential oscillates because of its strong interaction
with the electromagnetic field. The Kramers-Henneberger (KH) Hamiltonian [4,5] after our transformation has the form

e2

R 2
A = ———V2, d
kit = =5, Vi 271/ i J

For a laser pulse whose duration is sufficiently long the laser
envelope can be considered as unity, g(t) = 1 [and f(¢) = 1]
[30]. Therefore, the above KH Hamiltonian is reduced to

; (1)

\/X2 + y2 + [Z + a(s)caled cos(r)]2

(10)
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[
where otacaled is the quiver length defined as
scaled
O[scaled _ egacae (12)
- 2
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The applicability of the Kramers-Henneberger approxima-
tion, where the dressed Hamiltonian is time independent,
depends on the laser parameters for which the atom is
stabilized by the strong laser field. It was shown in Ref. [31]
that the coupling of the field-free atomic bound state with
the continuum resulting from absorbing photons is linearly
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proportional to a Bessel function with the quiver length o
as an argument. This phenomenon results in a “breathing”
above-threshold-ionization (ATT) spectra [32]. When the laser
frequency is much larger than the atomic frequency, then
the time-averaging approximation is applicable and the KH
potential given above in Eqs. (10) and (11) is the leading
term in the Fourier expansion of the time-dependent potential
obtained within the framework of the acceleration gauge
representation. As the laser frequency is increased the KH
potential becomes more dominant in the Fourier expansion and
the photoionization decay rate I" is exponentially suppressed.
This behavior is expected also for the photoionization decay
rate of the core electron (this expectation will be checked
by our illustrative numerical studies presented below). The
question we address ourselves here is, how does the core
electron decay rate depend on nuclear charge as a function
of laser frequency?

When the duration of the laser pulse is sufficiently long
the photoinduced dynamics is described by the Floquet
Hamiltonian where f(¢) and therefore g(t) as defined above
are taken as unity [30]. Within the framework of the length
gauge representation the scaled width [scyeq 1s associated with
the imaginary part of the complex eigenvalue of the Floquet
operator when outgoing boundary conditions are imposed
on the Floquet solutions [29], i.e., |¢(7)) = exp[—i(Escaled —
iFscaled/z)f/(hwscaled)]|(p(f)>7 where (P(T) = 90(77 + 27[”) isa
periodic function and n = 1,2, .. .. The Floquet-Schrodinger
equation after Z scaling is given by

. 0 h? e?
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T
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E,
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r
Iﬁscaled = ?7 (15)

where E, and I are, respectively, the energy position and width
(inverse lifetime) of the metastable (resonance) state. The last
equation is exactly as obtained by Madsen and Lambropoulos
[see Eq. (10) in Ref. [24]]. Here we get to a simple yet
important point in our analysis. The photoionization rate of
decay associated with the first peak in the ATI spectrum is
linearly proportional to the laser intensity Iy (see, for example,
the calculation of the resonance width by applying the Fermi
golden rule as given in the solution to problem 3.2 in Chap. 3
in Ref. [29]). Hence I'y o Iy, where I'y is the photoionization
decay rate of the ground-state hydrogen atom for which Z = 1.
Therefore, we expect that in our case

Fscaled 1-‘H
I scaled I . ( 1 6)
0 0
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Since Iy o &3, we obtain

Escaled 2
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0

Using Eq. (8) and Eq. (15), we get that
'y =z (18)

This simple scaling formula shows that for the same laser
intensity (and not for the scaled one) the behavior of a one-
electron system with Z > 1 in a strong laser field of scaled
frequency (7) is like that of a hydrogen atom. In the context of
a many-electron atom, the ratio between the decay rate of the
electron in the most diffused orbital and the decay rate of the
electron in the 1s orbital is approximately equal to Z*.

The above result (18) has been verified by our illus-
trative numerical ab initio calculations. The values of T"
have been computed based on a variational Ritz method by
applying the complex scaling transformation [29] and by
representing the wave function by 11 Fourier basis functions,
{exp(iwnt)},—o,+1.... +5. As spatial basis functions 480 Slater-
type orbitals (STOs) of L =0,...,5 and M = 0 have been
used. For each value of L, we have taken 80 STOs. Since
the the symmetry is axial, M is a good quantum number.
In our computations we have considered M = 0 states only.
Such constructed basis set has proved to obtain converged
results. The field amplitude was held at ey = 0.025 a.u. For
more details of calculations see Ref. [33]. Since the 1s core
electron and the valence electron are approximately described
by a one-electron ion (Z > 1) and a hydrogen atom (Z = 1),
respectively, we plot in Fig. 1 the variation of I as a function of
the laser frequency for hydrogenlike atoms for Z = 1,2,3,4.
In turn, in Fig. 2 we present that [ Z% VS Wscaled = @ / 22 has
a Z-independent functional behavior. It clearly shows, in the
context of the condition for the applicability of the KHA, that
the laser frequency required to stabilize the core electron in the
Ls orbital is larger by the factor Z? than the laser frequency
required to stabilize the electron in the most diffused orbital.
Unfortunately, it is still difficult to specify the mutual relations
between all the above quantities. However, in general one can
write

Z%T (e9,w/ Z%) = F(go,w), (19)

where F does not depend on the atomic number. The fact
that F is a nonlinear function indicates the importance of our
results presented in Figs. 1 and 2.

A better estimate of the condition for the laser frequency for
which the Kramers-Henneberger approximation is applicable
for the core electrons can be obtained by carrying out time-
independent perturbational analysis. In such analysis the KH
dressed Hamiltonian in Eq. (10) is the zero-order Hamiltonian
(see Refs. [34,35]). Let us assume that the calculations for
a hydrogen atom show that at a given laser intensity and for
w > wy the Hamiltonian (10) is indeed the dominant term (the
higher-order terms can be neglected) in the perturbation series
expansion of the exact solution of the Schrodinger equation as
defined in Refs. [34,35]. In order to keep the same condition
for the applicability of the KHA obtained for the hydrogen
atom also for the core electron we should require the laser
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FIG. 1. The width of the resonance state associated with the ground state of a (a) H atom (Z = 1), (b) He* ion (Z = 2), (c) Li** ion
(Z = 3), and (d) Be** ion (Z = 4) as a function of the laser frequency. The laser field amplitude is held at &, = 0.025 a.u.

frequency to satisfy the following inequality:

w > ogZ2. (20)

However, the results in Figs. 1 and 2 present that the
photoionization decay rates are substantially reduced as Z
is increased. The question arises: How much the condition
given in Eq. (20) is too strong for the requirement of the
applicability of the KHA for the core electron? In order to
answer this question we plotted the decay rates 'y, [ye+,
[ i+, and ['ges+ as a function of w divided by Z. The results
illustrated in Fig. 3 clearly show that when H, He*t, Li**, and
Be*t (2 =1,2,3,4, respectively) interact with a laser field
for a given intensity, then the high laser frequency which is
required to have I'y = 'ge+ = ' 2+ = ['pes+ is about linearly
proportional to Z and not to the square of atomic number as
might be expected on the basis of the scaling laws derived
above. A simple explanation is as follows. The field-free
Hamiltonian for a hydrogenlike ion (Z > 1) is given by

. h? e’
Hipn = —— ;2 - 1= .
2m ¥/ Z|
By carrying out the transformation 7 — 7/Z and h — h/Z,

we obtain the Hamiltonian for a hydrogen atom. Using the
scaling we shift the ground energy level of an ion to be as
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FIG. 2. (Color online) The width of the resonance state multi-
plied by Z* associated with the ground state of a H atom (Z = 1),
Het ion (Z =2), Li** ion (Z =3), and Be** ion (Z=4) as a
function of the laser frequency divided by Z2, where Z is the
nuclear charge of the atom or ion. The laser field amplitude is held at
g = 0.025 a.u.
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FIG. 3. (Color online) The width of the resonance state associ-
ated with the ground state of a H atom (Z = 1), He™ ion (Z = 2),
Li** ion (Z = 3), and Be** ion (Z = 4) as a function of the laser
frequency divided by the nuclear charge of the atom or ion. The laser
field amplitude is held at &y = 0.025 a.u.

the ground energy level of a hydrogen atom. It implies that
the photoionization decay rate of a hydrogenic ion is the same
as that of a hydrogen atom when (%/2)w = hwy. Hence, we
get w = wyZ. This simple analytical result is in agreement
with our numerical calculations. Note that this result has
been obtained under the assumption that the one-electron
atomic, molecular, or mesoscopic system is ionized due to
the absorption of a single photon only (as, for example, by a
free-electron laser) regardless of the polarization of the laser
field. A schematic diagram presenting our simple explanation
is shown in Fig. 4.

The conclusion of our paper is that the applicability of
the KHA for core electrons in the 1s orbital of an atom can
be determined on the basis of the knowledge of the laser
parameters (intensity and frequency) for which the KHA holds
for a hydrogen atom (see, for example, Fig. 1 in Ref. [14]).
We have presented that for a given laser intensity the 1s core
electron is stabilized when the laser frequency is larger than
a value which is obtained from a product of the square of
the atomic number Z2 and the laser frequency wy for which
the KHA is applicable for a hydrogen atom in its ground
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FIG. 4. Schematic diagram of the photoionization due to the
absorption of a single photon only for a hydrogen atom (Z = 1)
and a hydrogenlike ion (Z > 1). After the transformation, ¥ — 7/ Z
and h — h/Z, the energy level of the ground state of an ion is shifted
up to the position corresponding to the energy level of the ground
state of a hydrogen atom. Then, the decay rates of both systems are
the same when (7/ Z)w = hwy. Namely, for a given laser intensity the
one-electron ion (which approximately describes the 1s core electron
in a many-electron atom) and the hydrogen atom have about the
same photoionization decay rate when w = wyZ, provided this is a
single-photon dynamical process.

electronic state. The fact that the photoionization decay rate is
decreased as Z is increased for a fixed intensity and a fixed
frequency divided by Z2 shows that the condition we derived
for stabilization is too strict. The softer condition is to find
out for what value of R one gets that I'(w = wyR) = I'y(wn),
where w is the laser frequency required to stabilize the core
electron of an atom with atomic number Z. Based on the
simple analytical arguments we have obtained that R = Z. Our
numerical calculations confirm this result. Thus, w = wyZisa
lower bound for the laser frequency which is needed to stabilize
amany-electron atom in the presence of high-frequency strong
laser fields.
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