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Electron scattering from the molecular hydrogen ion and its isotopologues
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We have extended the ab initio convergent close-coupling method to electron scattering from the vibrationally
excited molecular hydrogen ion and its isotopologues. Calculations have been performed within the adiabatic-
nuclei approximation. Results are presented for dissociative excitation and ionization as a function of the initial
vibrational state of the molecules. Comparison with experiment is excellent across the energy range from near
threshold to 1 keV.
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I. INTRODUCTION

Electron collisions with the H2
+, H2, and H3

+ molecules
play an important role in determining the dynamics of astro-
physical and laboratory produced low-temperature hydrogen
plasmas [1]. Physical conditions for the sustainability of
molecular systems are found on the edge of magnetically
confined plasmas, and can account for the dominant electron-
ion inelastic collision processes. Hence, collision data for H2

+

and it isotopologues (D2
+, T2

+, HD+, HT+, and DT+) are
important in the modeling of fusion plasmas. The simplest
molecule H2

+ is of fundamental interest to theorists in
the study of electron-molecule scattering, photoionization of
molecular hydrogen and dissociative excitation, recombina-
tion and ionization processes.

Electron scattering from the electronic ground 1sσg state
of H2

+ in a vibrational state v is described by the following
dissociative reactions:

e− + H2
+(1sσg,v) → 2e− + H+ + H+, dissociative ionization (DI) (1)

→ e− + H2
+∗ → e− + H+ + H(nl), dissociative excitation (DE) (2)

→ H2
∗∗ → e− + H+ + H(nl), resonant dissociative excitation (3)

→ H2
∗∗ → H(nl) + H(n′l′), dissociative recombination (DR) (4)

→ H2
∗∗ → H+ + H−, resonant ion pair production, (5)

where H2
+∗ indicates an excited state of H2

+, and H2
∗∗ is either

a doubly excited or autoionizing Rydberg state of H2 with the
respective dissociative asymptotic conditions. Autoionization
into the H2

+ continuum results in resonant dissociative
excitation (3), while the population which survives dissociates
in the vibrational continuum of H2 and produces two neutral
hydrogen atoms (4) [1]. In the low-energy region (�10 eV),
indirect resonant electron attachment processes (3), (4), and (5)
are important, while in the intermediate- and high-energy
regions the direct processes (1) and (2) are dominant [2].

Many experiments [3–7] of electron scattering from H2
+

have measured proton production (PP) cross sections σPP =
σDE + 2σDI. Total inelastic (TI) cross sections σTI = σDE +
σDI and σDE have been measured by Peart and Dolder [8,9,10]
across a wide range of energies. The low-energy region has
been investigated by Hus et al. [11], Yousif and Mitchell [12],
and Andersen et al. [13]. In the low-energy region, large
variation of the measured DE, PP, and TI cross sections is
primarily due to the production of H2

+ in different vibrational
states and other reasons pointed out by Peart and Dolder [8].
DI cross sections have been measured by Peart and Dolder [14]
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and El Ghazaly et al. [7] from 20 to 3000 eV. It is important to
note that the DI cross sections [7,14] are an order of magnitude
lower than the PP cross sections, and are smaller than the
experimental error bars of σPP [3–6]. Hence, measurements of
DE, PP, or TI cross sections can be compared with each other.

Experimentally, H2
+ is produced by electron- or photon-

impact ionization of H2, which can leave H2
+ in one of

its 20 bound vibrational states. Due to the lack of dipole
moment of H2

+ (homonuclear-diatomic), relaxation of these
states via dipole transitions is forbidden and they have long
lifetimes. Hence, many experimental measurements are taken
with H2

+ populated in a range of vibrational states [15].
Calculations of Peek [16] showed that the PP cross sections
have a strong dependence on the vibrational population and
can affect the DE cross section as much as two orders of
magnitude [16]. Theoretical [15] and experimental [17,18]
investigations have been conducted to determine the initial
vibrational populations of H2

+. The series of measurements
performed by Peart and Dolder [8,9,14], Dunn et al. [3], Dance
et al. [5], and Dunn and Van Zyl [4] were designed to have a
H2

+ ion beam source with an initial vibration population given
by the Franck-Condon (FC) factors. Peart and Dolder [14]
suggested to use the experimentally determined distribution of
von Busch and Dunn [15], which better describes experimental
conditions. The von Busch and Dunn [15] (BD) distribution
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was produced by a least-squares fit of vibrationally resolved
photodissociation cross sections of H2

+ to their measurements.
The BD distribution is smooth, close to the FC factors and
are thought to account for the coupling between electronic
and nuclear motion. The most recent experiment of El
Ghazaly et al. [7] measured their ion beam source vibrational
level distribution via resolution of the kinetic energy release
spectrum of the protons. This showed good agreement with
the FC and BD distributions. At the Aarhus Storage Ring in
Denmark, ions can be stored for tens of seconds allowing
control over the ions’ vibrational distribution. Measurements
of DE have been conducted with a laser-controlled ion beam
which produced HD+ in v = 0 and H2

+ in v = 0 and 1
vibrational states [13].

Until recently, the only theoretical investigations into
electron scattering from H2

+ and its isotopologues were
conducted by first- or second-order approaches. Adiabatic-
nuclear calculations of the electron-H2

+ system within the
first Born [16,19,20] and Bethe-Born [20] approximations
found that the direct DE cross section has a strong dependence
on the vibrational state v. Peek [16] showed that the DE
cross sections increase monotonically with increasing v and
become dramatically large for highly excited vibrational states.
Peek [16,19,20] also used and validated closure methods (sum-
ming cross sections over final rotational-vibrational states)
in the Born approximation [21]. Liu [22] used the Bethe
theory combined with the reflection approximation to obtain
vibrationally weighted PP, DI, and DE cross sections assuming
the BD or FC distributions. In the reflection (sometimes
known as the delta) approximation, the nuclear wave function
is approximated by a delta function [23] with appropriate
energy normalization conditions [24]. These methods [20,22]
accounted for direct processes only, and vibrationally weighted
results compared well with experimental PP and DI data at
high energies. The modified binary-encounter-Bethe model
(referred to as BEQ) has been used by NIST to obtain DI cross
sections [25].

The multichannel quantum defect theory (MQDT) is a
perturbative method used to calculate low-energy direct and
indirect DE and DR cross sections [2,26–28]. Fifirig and
Stroe [2] and Takagi [26] have calculated DE cross sections for
each vibrational state of H2

+ and found that DE cross sections
monotonically increase up to v = 9 and then begin to decrease.
Fifirig and Stroe [2] results for DR were in good agreement
with the measurements of Andersen et al. [13], however, their
DE cross sections underestimated experimental data. Recent
calculations of Chakrabarti et al. [28] produced DR cross
sections of HD+ in reasonable agreement with experiment
and relied on data supplied by Tennyson [29], who used the
R-matrix method to calculate resonance parameters [30].

The distorted-wave method of Robicheaux [31] utilized
the fixed-nuclei approximation to calculate DI cross sections.
Robicheaux [31] used a fixed-nuclear distance of R = 2.15 a0,
which is the average distance of H2

+ according to the BD
vibrational distribution [15]. Recently, the fixed-nuclei (equi-
librium distance R = 2.0 a0) approximation was utilized in
the time-dependent close-coupling (TDCC) method [32] and
configuration-average distorted-wave (CADW) method [33]
to calculate DI cross sections. Although these calculations
[31–33] compared well with the experiment of Peart and

Dolder [14], they did not take into account the initial vibra-
tional distribution of molecular states. The recent application
of the adiabatic convergent close-coupling (CCC) method [34]
showed that the initial vibrational distribution leads to a
substantial increase in the DI and PP cross sections.

The ab initio CCC method was originally developed to
provide accurate collision data for electron scattering from
hydrogenlike atoms and ions [35,36]. It was then extended
to more complex scattering systems [37–41], relativistic
targets [42–44], and heavy projectiles [45]. Our long-term
goal is to do the same for molecular targets. Recently, the
CCC method was extended to electron [34], positron [46], and
antiproton [47,48] scattering from diatomic molecules, which
produced results in good agreement with experiment over a
broad energy range. The purpose of this paper is to give full
details of the molecular CCC method used in the investigation
of electron scattering from the vibrationally excited molecular
hydrogen ion H2

+ [34], and present new and improved results
for H2

+ and its isotopologues. We investigate the direct DE
and DI cross-section dependence on the initial vibrational
state of H2

+ and its isotopologues within the adiabatic-nuclei
approximation. The formulation presented here relies on the
Born-Oppenheimer approximation and is a general method
that can be applied to quasi-one-electron diatomic molecules
and their isotopologues.

II. METHOD

Application of the convergent close-coupling (CCC)
method to molecules involves solution of the electronic
Lippmann-Schwinger equation at fixed internuclear distances.
Utilizing the adiabatic-nuclei approximation account of the
initial vibrational levels is performed as “post processing” of
fixed-nuclei scattering results and requires calculations to be
conducted at a (large) number of internuclear distances. Initial
vibrational state cross sections are obtained and weighted
according to FC and BD distributions for H2

+ and its iso-
topologues. This method does not retain energy conservation,
however, it has been shown to be suitable for the H2

+ molecule
in the intermediate- and high-energy regions [49].

The H2
+, D2

+, T2
+, HD+, HT+, and DT+ systems are

electronically equivalent within the Born-Oppenheimer ap-
proximation. For simplicity, we refer to H2

+ when describing
electronic properties of all these molecules. All equations are
formulated in the body frame using a single-center spherical
coordinate system, where we set the origin at the midpoint
between the two nuclei and align the z axis along the internuclei
axis R. Relativistic effects are assumed to be negligible.
Atomic units are used throughout the paper.

A. Target states

In the Born-Oppenheimer approximation, the molecular
wave function is expressed in the form

�̄nvJ (r,R) = �nvJ (R)�n(r; R), (6)

where a molecular state �̄nvJ (r,R) is characterized by the
electronic state n, vibrational quantum number v, and rota-
tional quantum number J . Utilizing the Born-Oppenheimer
approximation, the electronic wave function �n(r; R) is
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calculated at a fixed internuclear distance R. The electronic
H2

+ target Hamiltonian HT describes an electron in the
Coulomb potential of two protons that are fixed at a distance
R. HT is written as

HT = H1 + 1/R, (7)

where

Hi = Ki(ri) + Vi(ri ,R), (8)

Ki(ri) = −1

2

d2

dri
2

+ l(l + 1)

2ri
2

, (9)

Vi(ri ,R) = −
(

Z∣∣ri + R
2

∣∣ + Z∣∣ri − R
2

∣∣
)

, (10)

Z is the charge of the individual nuclei (in this case Z = 1) and
1/R is the internuclear Coulomb repulsion. The potential (10)
can be expanded in terms of partial waves

Vi(ri ,R) = −2Z

∞∑
λ=0,2,4,...

√
4π

(2λ + 1)
vλ(ri,R/2)Yλ0(r̂i ),

(11)

where vλ(ri,rj ) = rλ
</rλ+1

> , r< = min(ri,rj ), and r> =
max(ri,rj ).

Electronic target states of H2
+ are characterized by the

projection of orbital angular momentum m and parity π . For
each combination of m and π , the target Hamiltonian (7) is
diagonalized using a set of one-electron orbitals

φj (r) = 1

r
ϕkj lj (r)Ylj mj

(r̂), (12)

with mj = m and (−1)lj = π . The radial functions ϕkj lj (r) are
the Laguerre functions

ϕkl(r) =
√

αl(k − 1)!

(k + l)(k + 2l)!
(2αlr)l+1

× exp (−αlr) L2l+1
k−1 (2αlr), (13)

where αl is the exponential falloff parameter, L2l+1
k−1 are the

associated Laguerre polynomials, and k ranges from 1 to Nl .
Matrix elements of the target Hamiltonian (7) are evaluated
using analytic properties of the Laguerre basis functions [50],
which have been extensively used in the J -matrix method [51].
Upon diagonalization of (7), a total of N electronic target states
with energy εn can be generated, where

�mπ
n (r) =

N∑
j=1

C
(n)
j φj (r), (14)

and satisfy

〈�n′ |HT|�n〉 = εnδn′,n. (15)

The multicenter nature of H2
+ leads to a slow convergence

rate of the calculated wave functions with respect to the
orbital angular momentum l of the Laguerre functions, in
particular, for the 1sσg ground state and 2pσu excited state.
To improve accuracy and save on computational resources,
structure calculations are performed in two steps. First, a large
Laguerre basis is used to diagonalize the target Hamiltonian (7)

and generate accurate 1sσg and 2pσu states of H2
+. Second,

a new Laguerre basis is produced with the same values of
exponential falloffs but smaller values of l and Nl . Then, the
1sσg and 2pσu orbitals of this new basis are replaced with
the 1sσg and 2pσu states calculated at the first step. This
new basis is used to diagonalize the target Hamiltonian (7)
and generate electronic states that are then used in scattering
calculations. The lack of spherical symmetry of the system
leads to a substantial increase in the number of states generated
when compared to the atomic case for the same size of the
Laguerre basis (13).

By calculating the electronic target states of H2
+ at

various R and interpolating, potential energy curves εn(R) are
obtained. The total Born-Oppenheimer Hamiltonian is formed:

H BO
n = KNuc

1 + KNuc
2 + εn(R)

= − 1

2M1
∇2

1 − 1

2M2
∇2

2 + εn(R), (16)

where Mi is the mass of the individual nuclei; Mi = 1836.152
for a proton, Mi = 3670.483 for deuteron, and Mi = 5496.922
for triton. Nuclear wave functions �nvJ (R) of the electronic
ground state are calculated via diagonalization of the total
Hamiltonian (16) for each J using a set of nuclear orbitals

φj (R) = 1

R
ϕkj Jj

(R)YJj mj
(R̂). (17)

Here, ϕkj Jj
(R) are Laguerre basis functions (13) and the

number of functions used in the diagonalization of (16) were
taken to convergence. For the current study, we assume a
nonrotating molecule and have J = 0.

B. Coupled T -matrix equations

We start with the body-frame electronic Schrödinger equa-
tion of the scattering system for a fixed internuclear distance R

(E(+) − H )
∣∣�S(+)

i

〉 = 0, (18)

where E is the total energy of the scattering system, (+)
denotes outgoing spherical-wave boundary conditions, S is
the total spin, and i denotes the initial state of the system.
Here, we omit notation for the dependence on R unless it
is explicitly indicated. Ignoring kinetic energy of the nuclei
(assuming infinite mass) in the current formalism, the full
scattering Hamiltonian is defined as

H = H0 + H1 + V01 + 1/R, (19)

where V 01 is the electron-electron potential

V01 = 1

|r0 − r1|

=
∞∑
λμ

(−1)μ
4π

(2λ + 1)
vλ(r0,r1)Yλ−μ(r̂0)Yλμ(r̂1), (20)

and indices 0 and 1 denote the projectile and target coordinate
space, respectively.

The close-coupling method utilizes the explicitly antisym-
metrized multichannel expansion to expand the total wave
function �

S(+)
i (r0,r1) over the complete set of positive- and
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negative-energy pseudostates �N
n (r1) of the target electron

�
SN(+)
i (r0,r1) = [

1 + (−1)SPr0,r1

] N∑
n=1

�N
n (r1)f SN

ni (r0)

= [
1 + (−1)SPr0,r1

]
ψ

SN(+)
i (r0,r1), (21)

where Pr0,r1 is the space exchange operator and f SN
ni (r0)

are the multichannel functions. However, expression (21)
is too general and leads to nonunique solutions. This is a
purely numerical problem that has been addressed for atomic
and ionic targets [35,36]; a similar technique is applied to
molecules. The following condition is enforced:〈

�N
m

∣∣f SN
ni

〉 = (−1)S
〈
�N

n

∣∣f SN
mi

〉
, (22)

to make ψ
SN(+)
i (r0,r1) antisymmetric like �

SN(+)
i (r0,r1) but

only within the space spanned by the target states. Condi-
tion (22) leads to the following property:

(−1)S
〈
k(−)

f �N
f

∣∣Pr0,r1

∣∣ψSN(+)
i

〉= 〈
k(−)

f �N
f

∣∣IN
0

∣∣ψSN(+)
i

〉
,

(23)
which is implemented within the energy term of the V -matrix
elements

(−1)SE
〈
k(−)

f �N
f

∣∣Pr0,r1

∣∣ψSN(+)
i

〉
= (−1)S(1 − θ + θ )E

〈
k(−)

f �N
f

∣∣Pr0,r1

∣∣ψSN(+)
i

〉
= (−1)S(1 − θ )E

〈
k(−)

f �N
f

∣∣Pr0,r1

∣∣ψSN(+)
i

〉
+ θE

〈
k(−)

f �N
f

∣∣IN
0

∣∣ψSN(+)
i

〉
. (24)

Here, IN
0 is the projection operator built from target states in

the coordinate space of the projectile

IN
0 =

N∑
n

∣∣�N
n

〉〈
�N

n

∣∣. (25)

The scattering system asymptotic Hamiltonian is chosen as

Hasy = HT + K0 − Zion/r0 + U0. (26)

For this choice of Hasy the interaction potential is

V SN
U (θ ) = V0 + Zion/r0 − U0 + V01 − EθIN

0

− (−1)S[E(1 − θ ) − H ]Pr0,r1 , (27)

where term (24) and hence condition (22) are implemented
within the V -matrix elements. In Eqs. (26) and (27), U0

is a short-ranged distorting potential that can lead to a
number of projectile bound states. Choices of U0 will be
discussed later. For ionic targets, there are an infinite number
of projectile bound states. These bound states are included
into the Green’s function until convergence is reached.
Note that though V -matrix elements have a dependence
on an arbitrary θ , the resultant on-shell T -matrix elements
do not. Further discussion of this method can be found
in [35,52].

Utilizing the Green’s function approach, the Schrödinger
equation (18) is transformed to the momentum-space
Lippmann-Schwinger equation. Premultiplying by
〈k(−)

f �N
f |V SN

U (θ ), the coupled Lippmann-Schwinger
equation for the distorted-wave T matrix is obtained

〈
k(−)

f �N
f

∣∣T SN
U

∣∣�N
i k(+)

i

〉 = 〈
k(−)

f �N
f

∣∣V SN
U (θ )

∣∣�N
i k(+)

i

〉 + N∑
n=1

∑∫
k

d3k
〈k(−)

f �N
f

∣∣V SN
U (θ )

∣∣�N
n k(−)

〉〈
k(−)�N

n

∣∣T SN
U

∣∣�N
i k(+)

i

〉
E(+) − εk − εN

n + i0
,

(28)

where the distorted waves |k(±)〉 are solutions of the equation

(ε(±)
k − K0 + Zion/r0 − U0)|k(±)〉 = 0, (29)

f denotes the final state of the system, and
〈k(−)

f �N
f |T SN

U |�N
i k(+)

i〉 = 〈k(−)
f �N

f |V SN
U (θ )|ψSN(+)

i 〉.
Noting that the distorted-wave T matrix is defined for the
potential V SN

U (θ ) = V SN (θ ) − U0, the physical T matrix T SN

is extracted via the relation [36]〈
q(−)

f �N
f

∣∣T SN
∣∣�N

i q(+)
i

〉
≡ 〈

q(−)
f �N

f

∣∣V SN
∣∣ψSN(+)

i

〉
= 〈

k(−)
f �N

f

∣∣T SN
U

∣∣�N
i k(+)

i

〉 + δf,i〈k(−)
f |U0|q(+)

i〉, (30)

where q(±) is a Coulomb wave. The method described here
is also suitable for asymptotically neutral targets by taking
Zion = 0.

C. Solving the coupled Lippmann-Schwinger equation

It is our aim to perform accurate and large-scale mul-
tichannel calculations, so it is important to minimize the

computational resources required. A partial-wave expansion
of the projectile wave function can greatly reduce the compu-
tational resource required for solving (28). The distorted-wave
partial-wave expansion is

|k(±)〉 =
√

2

kr
√

π

∑
L,M

iLe±i(σL+δL)uL(r; k; Zion)YLM (r̂)Y ∗
LM (k̂),

(31)

where σL and δL are the Coulomb and distorting phase shifts,
respectively.

Utilising the partial-wave expansion of the projectile wave
function (31), the coupled Lippmann-Schwinger equation for
the distorted-wave T matrix is solved by expanding (28)
in partial waves, which leads to the conservation of total
angular projection M , parity �, and spin S of the scattering
system. For an incident electron with linear momentum
ki , orbital angular momentum Li , and angular projection
Mi , the partial-wave expansion for the V (or T ) matrix
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leads to〈
k(−)

f �N
f

∣∣V SN
U (θ )

∣∣�N
i k(±)

i

〉
= (kf ki)

−1
∑
Lf ,Li

Mf ,Mi

iLi−Lf e
i(σLf

+δLf
±σLi

±δLi
)

×V M�S
f Lf Mf ,iLiMi

(kf ,ki)YLf Mf

(
k̂B

f

)
Y ∗

LiMi

(
k̂B

i

)
, (32)

where V M�S
f Lf Mf ,iLiMi

(kf ,ki) are the real V -matrix elements,

M = Mf + mf = mi + Mi , � = πf (−1)Lf = πi(−1)Li , and
k̂B refers to the electron momentum vector in the body
frame. Substituting Eq. (32) into the Lippmann-Schwinger
equation (28), complex phases iLi−Lf e

i(σLf
+δLf

±σLi
±δLi

), con-
stants (kf ki)−1, and angular functions YLf Mf

(k̂B
f )Y ∗

LiMi
(k̂B

i )
can be factored out and the partial-wave Lippmann-Schwinger
equation for the distorted-wave T matrix can be written as

T M�S
f Lf Mf ,iLiMi

(kf ,ki)

= V M�S
f Lf Mf ,iLiMi

(kf ,ki)

+
N∑

n=1

∑
L′M ′

∑∫
k

dk
V M�S

f Lf Mf ,nL′M ′ (kf ,k)T M�S
nL′M ′,iLiMi

(k,ki)

E(+) − εk − εn + i0
.

(33)

Equation (33) is efficiently solved using the standard
techniques discussed in [35,36,43]. The loss of total angular
momentum conservation in Eq. (33) is the major difference
between solving Eq. (33) for diatomic molecules and atoms.
This results in very large V -matrix arrays, which in the
present calculations take ≈160 GB of memory for the first
few values of M .

When evaluating the Lippmann-Schwinger equation, it is
numerically favorable to have the most detailed structure of
the integrand in the smaller values of k. As Z increases,
the projectile-nuclei term V0 in Eq. (27) is responsible for
making the V -matrix elements go out further with respect to
momentum k. To minimize this numerical issue, a short-ranged
distorting potential U0 is chosen such that it cancels the
spherical part of the V0 potential. Here, the distorting potential
is defined as

U0 = −2Zv0(r0,R/2) + Zion

r0
+

∫
d3r1|�n(r1)|2v0(r0,r1),

(34)
where n is typically the electronic ground state. This form
of U0 is spherically symmetric, short ranged, and ensures the
shortest-range V -matrix elements by removing the projectile-
nuclei term V0 for the λ = 0 partial wave [referring to Eq. (11)].
The use of a short-ranged distorting potential is a purely
numerical technique which saves on computational resources
when solving the integral in Eq. (28). Results of T SN from
Eq. (30) must be independent of U0.

Distorted-wave T -matrix elements are used to obtain
physical (U0 = 0) T -matrix elements T M�S

f Lf Mf ,iLiMi
(qf ,qi) via

Eq. (30):

T M�S
f Lf Mf ,iLiMi

(qf ,qi) = T M�S
f Lf Mf ,iLiMi

(kf ,ki)e
i(δLi

+δLf
)

− δf,iδLf ,Li
δMf ,Mi

qiπ
−1eiδLi sin(δLi

),

(35)

where q is the linear momentum of the electron and indicates
the physical T -matrix elements. The physical T matrix can
then be expressed as〈

q(−)
f �N

f

∣∣T SN
∣∣�N

i q(+)
i

〉
= (qf qi)

−1
∑
Lf ,Li

Mf ,Mi

iLi−Lf e
i(σLi

+σLf
)

× T M�S
f Lf Mf ,iLiMi

(qf ,qi)YLf Mf

(
q̂B

f

)
Y ∗

LiMi

(
q̂B

i

)
. (36)

These physical body-frame T -matrix elements are used to
obtain orientationally averaged cross sections.

D. Scattering amplitudes and analytic Born subtraction method

Body-frame scattering amplitudes

FS
f,i(�

B) = −(2π )2
〈
q(−)

f �N
f

∣∣T SN
∣∣�N

i q(+)
i

〉
(37)

are rotated to align the incoming electron momentum q̂B
i with

the laboratory-frame z axis. The following definitions

YLM (q̂B) =
∑

ν

DL
ν,M (β)YLν(q̂ lab), (38)

Y ∗
LM (q̂B) =

∑
ν

DL∗
ν,M (β)Y ∗

Lν(q̂ lab) (39)

are utilized to transform FS
f,i(�

B) to the laboratory-frame
scattering amplitudes FS

f,i(�
lab) via rotation by Euler angles

β, which orientate the body frame relative to the laboratory-
frame [53,54]. The laboratory-frame scattering amplitudes are
then obtained

FS
f,i(�

lab) = (4π )−1/2
∑
Lf ,Li

Mf ,Mi

L̂iF
M�S
f Lf Mf ,iLiMi

D
Li∗
0,Mi

(β)

×
∑

ν

D
Lf

ν,Mf
(β)YLf ν

(
q̂ lab

f

)
, (40)

where q̂ lab
f is the unit vector of the scattered electron, L̂ =√

(2L + 1), and

FM�S
f Lf Mf ,iLiMi

= −(2π )2(qf qi)
−1iLi−Lf e

i(σLi
+σLf

)

× T M�S
f Lf Mf ,iLiMi

(qf ,qi). (41)

To save on computational resources and speed up conver-
gence, an analytic Born subtraction technique is employed.
This method relies on the property that for large values
of orbital angular momentum, the partial-wave T -matrix
elements are equal to the direct-potential partial-wave V

matrix (first Born approximation)

T M�S
f Lf Mf ,iLiMi

(qf ,qi) = Ṽ M�
f Lf Mf ,iLiMi

(qf ,qi), (42)

where q on the right-hand side refers to a plane wave and Ṽ

indicates the direct part of the interaction potential (27):

Ṽ = V0 + Zion

r0
+ V01. (43)

Incorporating the analytic Born subtraction method for
inelastic transitions, the laboratory-frame scattering amplitude
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(40) is redefined as

FS
f,i(�

lab) =
∑
λμ

F AB

f,i

λμ

∑
ρ

Dλ∗
ρ,μ(β)Y ∗

λρ( Q̂lab)

+ (4π )−1/2
∑
Lf ,Li

Mf ,Mi

L̂i F̃
M�S
f Lf Mf ,iLiMi

D
Li∗
0,Mi

(β)

×
∑

ν

D
Lf

ν,Mf
(β)YLf ν

(
q̂ lab

f

)
, (44)

where

F AB

f,i

λμ

= −(2π )2iλV AB

f,i

λμ

(Q), (45)

V AB

f,i

λμ

(Q) = − (−1)λλ̂

Q2π3/2

∑
αγ

C(f )
α C(i)

γ C
lγ 0
lα0,λ0C

lαmα

lγ mγ ,λμ

×
∫ ∞

0
dr1ϕα(r1)jλ(Qr1)ϕγ (r1), (46)

Q = qi − qf , jλ(Qr1) is a spherical Bessel function, and
Clm

l1m1,l2m2
denotes Clebsch-Gordan coefficients. In Eq. (44),

F̃M�S
f Lf Mf ,iLiMi

is defined as

F̃M�S
f Lf Mf ,iLiMi

= −(2π )2(qf qi)
−1iLi−Lf

× (
e
i(σLi

+σLf
)
T M�S

f Lf Mf ,iLiMi
(qf ,qi) − Ṽ M�

f Lf Mf ,iLiMi
(qf ,qi)

)
,

(47)

and Ṽ M�
f Lf Mf ,iLiMi

(qf ,qi) is from the partial-wave Born ele-
ments in (42).

Derivations of the adiabatic differential and integrated cross
sections are found in Lane [55]. Here, we adopt a simpler
but equivalent approach to obtain integrated cross sections.
Averaging over all orientations of the molecule, the differential
cross section (DCS) is defined as

dσS
f,i

d�lab
= qf

qi

(
1

8π2

∫ ∣∣FS
f,i(�

lab)
∣∣2

dβ

)
. (48)

Assuming the analytic Born subtraction method is not used,
orientationally averaged partial-wave integrated cross sections
are calculated via

σM�S
f,i = qf

qi

1

4π

∑
Lf ,Li

Mf ,Mi

FM�S
f Lf Mf ,iLiMi

FM�S∗
f Lf Mf ,iLiMi

. (49)

The scattering amplitudes used in (49) can be expressed in
terms of the the T -matrix elements or partial-wave Born
elements Ṽ M�

f Lf Mf ,iLiMi
(qf ,qi). Using Ṽ M�

f Lf Mf ,iLiMi
(qf ,qi), the

orientationally averaged partial-wave Born integrated cross
sections σM�

f,i can be obtained. In this study, the Born subtrac-
tion method is utilized in the calculation of the orientationally
averaged integrated cross sections

σS
f,i =

∑
M�

(
σM�S

f,i − σM�
f,i

) + σ AB
f,i , (50)

where σ AB
f,i are the orientationally averaged analytic Born

integrated cross sections, which are calculated from the
analytic Born DCS via numerical integration over q̂ lab

f .

E. Adiabatic approximation: Vibrationally
averaged cross sections

Following from Lane [55], orientationally averaged cross
sections summed over all final rotational states Jf can be
expressed in the form

σS
f vf ,ivi

= qf

qi

1

4π

∑
Lf ,Li

Mf ,Mi

∣∣〈χf vf

∣∣FS
f Lf Mf ,iLiMi

∣∣χivi

〉∣∣2
, (51)

where the vibrational wave functions χnv(R) are assumed to
have no dependence on J . The above expression does not retain
energy conservation, however, it is accurate outside the low-
energy region [55]. Due to the completeness of the vibrational
basis, the closure property

NB∑
v=0

χ∗
nv(R′)χnv(R) +

∫ ∞

0
dkvχnkv

(R′)χnkv
(R) = δ(R′ − R)

(52)
is utilized to sum over all final vibrational state transitions to
obtain

σf,ivi
=

∑
vf

σf vf ,ivi
=

∫
dR|χivi

(R)|2σf i(R), (53)

where NB is the highest bound vibrational state, σf,ivi
are

cross sections resolved for an initial electronic, vibrational
state transition to a final electronic state, and σf i(R) are ori-
entationally averaged cross sections calculated using Eq. (50).
Expression (53) requires solution of the scattering problem
at various internuclear distances and interpolation over R. To
compare with experiment, cross sections need to be weighted
to the bound H2

+ vibrational levels via

σ̃f,i =
Nv∑

vi=0

pvi
σf,ivi

/ ⎛
⎝ Nv∑

vi=0

pvi

⎞
⎠, (54)

where pvi
are the Franck-Condon (FC) or von Busch and

Dunn [15] (BD) distribution weights and Nv is the last
vibrational state of the population.

III. RESULTS

A. Scattering calculation details

The electronic target structure of H2
+ is calculated using

the method described in Sec. II A. First, accurate 1sσg and
2pσu states were produced using a large Laguerre basis with
αl = 1.4 basis functions with values of l � 9 and the number of
functions Nl = 60 − l taken to convergence (at the equilibrium
distance of R = 2.0 and sufficiently accurate at R = 5.5). In
the second step, the new Laguerre basis had the same values
of exponential falloffs αl = 1.4 for basis functions with values
of l � 4 and Nl = 17 − l. The 1sσg and 2pσu orbitals of this
second basis were replaced with the accurate 1sσg and 2pσu

states calculated at the first step. Omitting the highest-energy
pseudostates, this diagonalization generated 351 states. The
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TABLE I. Total energy of the electronic target states of H2
+ are

presented as a function of internuclear distances R for the states
1sσg , 2pσu, and 2pπu. Comparisons are made with the accurate
calculations of Bates et al. [56]. All values are in atomic units.

1sσg 2pσu 2pπu

R CCC [56] CCC [56] CCC [56]

0a − 2.000 − 2.000 − 0.500 − 0.500 − 0.500 − 0.500
0.8 − 0.304 − 0.304 0.707 0.707 0.768 0.768
1.2 − 0.528 − 0.529 0.245 0.245 0.368 0.368
1.6 − 0.590 − 0.591 − 0.008 − 0.009 0.178 0.178
2.0 − 0.601 − 0.603 − 0.166 − 0.168 0.071 0.071
2.4 − 0.594 − 0.597 − 0.270 − 0.272 0.006 0.006
2.8 − 0.581 − 0.584 − 0.339 − 0.342 − 0.037 − 0.037
3.2 − 0.567 − 0.571 − 0.386 − 0.390 − 0.066 − 0.066
3.6 − 0.553 − 0.558 − 0.417 − 0.423 − 0.086 − 0.086
4.0 − 0.540 − 0.546 − 0.439 − 0.446 − 0.100 − 0.101
4.4 − 0.528 − 0.536 − 0.453 − 0.462 − 0.110 − 0.111
5.0 − 0.513 − 0.524 − 0.466 − 0.477 − 0.120 − 0.121
5.5 − 0.503 − 0.516 − 0.472 − 0.485 − 0.125 − 0.127

aThis entry is the combined nuclear limit of H2
+, which is He+.

first few low-lying target state energies, oscillator strengths,
and static dipole polarizability are presented as a function of
R in Tables I, II, and III, respectively.

At large values of R, the single-center formulation requires
large expansions to obtain accurate 1sσg and 2pσu state
energies; other states are hydrogenic and are sufficiently
accurate in the single-center formalism. For this reason, the
ground-state nuclear wave functions �1vJ (R) have been cal-
culated using an accurate Born-Oppenheimer potential curve
ε1(R) of H2

+, which was provided by Wolniewicz and Poll [60]
(private communication). Following the method in Sec. II A,
this potential was diagonalized using a Laguerre basis with
functions that have J = 0 and NJ taken to convergence.

TABLE II. 351-state oscillator strengths obtained in the length
(L) and velocity (V ) gauges are presented for transitions involving
the n = 1, 2 levels of H2

+ at various internuclear distances R. Results
are compared with the accurate calculations of Bates [57], Bishop
and Cheung [58], and Bates et al. [59]. All values are in atomic units.

1sσg → 2pσu 1sσg → 2pπu 2pσu → 2sσg

R L V [57] L V [58] L V [59]

0 0.139 0.138 0.277 0.276 0
0.8 0.239 0.236 0.240 0.372 0.369 0.372 0.124 0.121 0.124
1.2 0.293 0.288 0.292 0.412 0.409 0.412 0.156 0.155 0.156
1.6 0.317 0.310 0.317 0.441 0.437 0.441 0.152 0.153 0.152
2.0 0.320 0.311 0.319 0.461 0.456 0.460 0.137 0.139 0.136
2.4 0.310 0.301 0.310 0.473 0.467 0.472 0.121 0.123
2.8 0.295 0.287 0.297 0.479 0.472 0.478 0.108 0.110
3.2 0.277 0.269 0.281 0.480 0.471 0.478 0.097 0.099
3.6 0.256 0.250 0.261 0.476 0.465 0.473 0.085 0.086
4.0 0.234 0.231 0.238 0.469 0.455 0.465 0.066 0.067 0.081
4.4 0.210 0.211 0.213 0.458 0.441 0.023 0.026
5.0 0.172 0.183 0.175 0.436 0.414 0.430 0.035 0.017 0.077
5.5 0.140 0.162 0.144 0.415 0.388 0.057 0.027

TABLE III. Static dipole polarizability of the H2
+ ground state

resulting from the 351-state diagonalization is presented as a function
of internuclear distance R. Comparing with the accurate calculations
of Bishop and Cheung [58]. All values are in atomic units. The number
in parentheses indicates that the entry is multiplied by 10 to the power
of the number in parentheses.

α‖ α⊥

R CCC [58] CCC [58]

0 0.2812(0) 0.2812(0)
0.8 0.8105(0) 0.8096(0) 0.6293(0) 0.6283(0)
1.2 0.1540(1) 0.1538(1) 0.9446(0) 0.9426(0)
1.6 0.2842(1) 0.2837(1) 0.1328(1) 0.1324(1)
2.0 0.5084(1) 0.5078(1) 0.1767(1) 0.1758(1)
2.4 0.8865(1) 0.8860(1) 0.2240(1) 0.2224(1)
2.8 0.1514(2) 0.1515(2) 0.2731(1) 0.2701(1)
3.2 0.2545(2) 0.2552(2) 0.3212(1) 0.3165(1)
3.6 0.4228(2) 0.4248(2) 0.3663(1) 0.3593(1)
4.0 0.6948(2) 0.7005(2) 0.4075(1) 0.3964(1)
4.4 0.1136(3) 0.4424(1)
5.0 0.2364(3) 0.2375(3) 0.4821(1) 0.4579(1)
5.5 0.4390(3) 0.5035(1)

Previous investigation [34] found that weighting cross sections
across all bound vibrational states is important. Molecular state
energies and Franck-Condon (FC) factors

FCf vf Jf ,iviJi
=

∣∣∣∣
∫

d R�∗
f vf Jf

(R)�iviJi
(R)

∣∣∣∣
2

, (55)

for the single-ionization transition between the neutral
molecule and its ion are presented in Tables IV for H2

+, V
for D2

+, and VI for T2
+. A plot of the FC factors is given

in Fig. 1. The FC factors calculated here are used to weight
cross sections according to Eq. (54). The Born-Oppenheimer
potential energy curve of H2(X 1�g) was taken from Kolos
et al. [61].

FIG. 1. (Color online) Normalized Franck-Condon (FC) fac-
tors of H2(X 1�g,0,0) → H2

+(1sσg,v,0), D2(X 1�g,0,0) →
D2

+(1sσg,v,0) and T2(X 1�g,0,0) → T2
+(1sσg,v,0).
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TABLE IV. Born-Oppenheimer molecular state energy levels of
H2

+(1sσg,v,0). Franck-Condon (FC) factors and von Busch and
Dunn [15] (BD) weights are given for the transition H2(X 1�g,0,0) →
H2

+(1sσg,v,0). Results are compared with the calculations of
Wünderlich and Fantz [62]. The asterisk denotes “stated as unbound
by potential energy curve.”

Energy (eV) Weighting

v Present [62] Present FC FC [62] BD [15]

0 −16.25594 −16.25498 0.0909007 0.0911850 0.11916
1 −15.98416 −15.98338 0.1600668 0.1605800 0.18994
2 −15.72816 −15.72753 0.1739719 0.1742600 0.18791
3 −15.48744 −15.48685 0.1525290 0.1521300 0.15173
4 −15.26153 −15.26086 0.1193440 0.1190800 0.11097
5 −15.05009 −15.04958 0.0876249 0.0875530 0.07732
6 −14.85282 −14.85237 0.0621211 0.0619910 0.05270
7 −14.66951 −14.66909 0.0432688 0.0431950 0.03564
8 −14.50006 −14.49974 0.0299371 0.0299210 0.02411
9 −14.34441 −14.34421 0.0207168 0.0207080 0.01638
10 −14.20260 −14.20250 0.0143968 0.0143850 0.01121
11 −14.07479 −14.07476 0.0100634 0.0100560 0.00773
12 −13.96122 −13.96126 0.0070698 0.0070679 0.00536
13 −13.86222 −13.86239 0.0049739 0.0049789 0.00374
14 −13.77832 −13.77860 0.0034781 0.0034841 0.00258
15 −13.71018 −13.71057 0.0023777 0.0023826 0.00175
16 −13.65863 −13.65909 0.0015287 0.0015298 0.00109
17 −13.62460 −13.62566 0.0008294 0.0007257 0.00056
18 −13.60854 * 0.0002434 * 0.00012

To demonstrate the accuracy of the molecular convergent
close-coupling (CCC) code, calculations have been performed
in the unified atom limit (R = 0) for H2

+, which equivalently
is the He+ ion. The molecular CCC code calculations used
the same Laguerre basis as the atomic CCC code [63], which
produced convergent results. Figure 2 presents total ionization
cross sections of electron scattering from the ground state
of He+ using a 289-state molecular CCC code calculation.

FIG. 2. (Color online) Total ionization cross sections (TICS) of
electron scattering from the electronic ground state of He+. The
molecular CCC united atom (R = 0 a0) calculations are compared
with the atomic CCC code calculations [63] and the measurements
of Peart et al. [64].

These results are compared with the atomic CCC code
calculations [63] and the experimental measurements of Peart
et al. [64]. The two codes are in excellent agreement with each
other and experiment across the entire energy range.

351-state CCC calculations were conducted over the energy
range from 10 to 1000 eV. Calculations were performed with
partial waves up to the total angular projection M = 9, orbital
angular momentum L = 9, singlet and triplet spin S, and odd
and even parity �. An orientationally averaged analytic Born
subtraction method (described in Sec. II D) was used to top
up the partial-wave expansion. Convergence of the 351-state
calculation is demonstrated by comparing with the results of
a 289-state calculation at a fixed-nuclear distance of R = 2.0.
The 289 states used in the calculation were generated from
the two-step diagonalization method described in Sec. II A.

TABLE V. Born-Oppenheimer molecular state energy levels of D2
+(1sσg,v,0). Franck-Condon (FC) factors are given for the transition

D2(X 1�g,0,0) → D2
+(1sσg,v,0). Results are compared with the calculations of Wünderlich and Fantz [62]. The asterisk denotes “stated as

unbound by potential energy curve.”

Energy (eV) Weighting Energy (eV) Weighting

v Present [62] Present FC FC [62] v Present [62] Present FC FC [62]

0 −16.29734 −16.29634 0.0344701 0.0346030 14 −14.23559 −14.23575 0.0080059 0.0080244
1 −16.10177 −16.10084 0.0859598 0.0863810 15 −14.14066 −14.14152 0.0058199 0.0058630
2 −15.91421 −15.91357 0.1247462 0.1251600 16 −14.05241 −14.05432 0.0043019 0.0043087
3 −15.73448 −15.73368 0.1390024 0.1387300 17 −13.97120 −13.97429 0.0032599 0.0031850
4 −15.56240 −15.56166 0.1325658 0.1325300 18 −13.89749 −13.90154 0.0024991
5 −15.39779 −15.39701 0.1144811 0.1141200 19 −13.83148 −13.83622 0.0018842
6 −15.24052 −15.23974 0.0925865 0.0924670 20 −13.77324 −13.77855 0.0013713
7 −15.09046 −15.08978 0.0716467 0.0715630 21 −13.72300 −13.72875 0.0009640
8 −14.94752 −14.94684 0.0538533 0.0537870 22 −13.68126 −13.68711 0.0006583
9 −14.81160 −14.81097 0.0397230 0.0397380 23 −13.64857 −13.65394 0.0004321
10 −14.68264 −14.68209 0.0289739 0.0289910 24 −13.62536 −13.62969 0.0002588
11 −14.56060 −14.56013 0.0210232 0.0210130 25 −13.61170 * 0.0001202 *
12 −14.44543 −14.44507 0.0152415 0.0152160 26 −13.60659 * 0.0000265 *
13 −14.33713 −14.33695 0.0110512 0.0110340

022711-8



ELECTRON SCATTERING FROM THE MOLECULAR . . . PHYSICAL REVIEW A 90, 022711 (2014)

TABLE VI. Born-Oppenheimer molecular state energy levels of T2
+(1sσg,v,0). Franck-Condon (FC) factors are given for the transition

T2(X 1�g,0,0) → T2
+(1sσg,v,0). Results are compared with the calculations of Wünderlich and Fantz [62]. The asterisk denotes “stated as

unbound by potential energy curve.”

Energy (eV) Weighting Energy (eV) Weighting

v Present [62] Present FC FC [62] v Present [62] Present FC FC [62]

0 −16.31572 −16.31470 0.0164282 0.0164670 17 −14.25558 −14.25539 0.0053657 0.0053434
1 −16.15469 −16.15369 0.0501630 0.0505410 18 −14.17672 −14.17672 0.0039946
2 −15.99905 −15.99841 0.0867873 0.0871240 19 −14.10236 −14.10273 0.0029681
3 −15.84869 −15.84784 0.1126303 0.1126800 20 −14.03241 −14.03347 0.0022145
4 −15.70352 −15.70281 0.1225468 0.1223600 21 −13.96697 −13.96903 0.0016841
5 −15.56342 −15.56257 0.1185671 0.1183400 22 −13.90637 −13.90944 0.0013151
6 −15.42833 −15.42754 0.1056883 0.1055500 23 −13.85092 −13.85479 0.0010416
7 −15.29814 −15.29732 0.0888531 0.0886560 24 −13.80080 −13.80521 0.0008156
8 −15.17280 −15.17202 0.0716072 0.0715640 25 −13.75603 −13.76082 0.0006189
9 −15.05225 −15.05152 0.0559802 0.0559270 26 −13.71668 −13.72173 0.0004539
10 −14.93643 −14.93571 0.0428184 0.0428000 27 −13.68299 −13.68815 0.0003240
11 −14.82530 −14.82462 0.0322589 0.0322840 28 −13.65526 −13.66020 0.0002255
12 −14.71883 −14.71819 0.0240594 0.0240790 29 −13.63378 −13.63809 0.0001502
13 −14.61699 −14.61638 0.0178323 0.0178500 30 −13.61870 −13.62273 0.0000906
14 −14.51976 −14.51920 0.0131779 0.0131970 31 −13.60993 * 0.0000424 *
15 −14.42711 −14.42665 0.0097356 0.0097472 32 −13.60652 * 0.0000110 *
16 −14.33904 −14.33871 0.0072128 0.0072057 33 −13.60573 * 0.0000035 *

The second basis had functions with exponential falloffs
αl = 1.4, values of l � 4 and Nl = 15 − l. In Fig. 3, we
compare the proton production (PP) and dissociative ionization
(DI) cross sections resulting from the 351-state and 289-state
calculations. Results from the two calculations indicate that
they are converged. The PP cross section feature at 20 eV is

FIG. 3. (Color online) 351- and 289-state CCC results of proton
production (PP) and dissociative ionization (DI) cross sections of
electron scattering from H2

+ at a fixed-nuclear distance of R = 2.0 a0.

from the newly opened 2pπu states contribution to the cross
section.

351-state scattering calculations were conducted over a
23-point R grid within the interval 1.2 � R � 5.5. Resulting
σPP(R) and σDI(R) were found to be smooth with respect
to the internuclear distance R. These cross sections were
interpolated and extrapolated across the grid 1.0 � R � 18.0,
the span of the highest excited vibrational levels. Extrapolation
outside the interval 1.2 � R � 5.5 introduces uncertainty in
the vibrationally weighted cross sections. By investigating
different extrapolation techniques, the resulting vibrationally
weighted cross sections were found to be quite stable. As an
additional check, vibrationally weighted analytic Born cross
sections were calculated using the same method described
above. The resulting vibrationally weighted analytic Born
cross sections compared very well with the results of Peek and
Green [21] (constructed from Table I in [21]). Vibrationally
resolved analytic Born cross sections also compared well with
Peek and Green [21]. It is estimated that the vibrationally
weighted CCC cross sections have a maximum error of 5%
from the extrapolation.

Results are not presented for impact energies below 10 eV.
This region has significant indirect processes [2] which
are unaccounted for and the closure approximation breaks
down near respective transition thresholds (in this case for
the dominant dissociative excitation transition 1sσg,vi →
2pσu).

Many applications of collision data require an estimate of
the associated uncertainty in the final cross sections. Here, we
estimate that convergence of the close-coupling and partial-
wave expansions have each been achieved to less than 5%
accuracy. Uncertainty associated with extrapolation to larger
internuclear distances R is estimated to be less than 5% and
the error associated with the adiabatic closure approximation is
estimated to be less than 1% [21]. We estimate that the accuracy
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FIG. 4. (Color online) Franck-Condon (FC) and von Busch and
Dunn [15] (BD) vibrationally weighted proton production (PP)
cross sections for electron scattering from the electronic ground,
vibrationally excited states of H2

+. Results are compared with the
present R = 2.0 a0 calculations, vibrationally weighted total inelastic
(TI) Born calculations of Peek [20], the TI measurements of Peart
and Dolder [8], and the PP experiments of El Ghazaly et al. [7], Dunn
et al. [3,4], and Dance et al. [5].

of DI (less than 5%) is higher than PP (less than 10%). This is
due to PP having a higher sensitivity to extrapolation.

B. H2
+

The 351-state adiabatic CCC results of vibrationally
weighted PP cross sections are presented in Fig. 4 for electron
scattering from H2

+. These results are compared with the
present fixed-nuclei calculations at R = 2.0, vibrationally
weighted total inelastic (TI) Born cross sections of Peek [20],
the TI measurements of Peart and Dolder [8], and the PP
measurements of El Ghazaly et al. [7], Dunn et al. [3,4],
and Dance et al. [5]. Note again that the TI and PP cross
sections can be readily compared with each other (referring
to Sec. I). The difference between previous results [34] and
results presented here come from the improved accuracy
of the 2pσu state. Here, the difference in results using the
von Busch and Dunn [15] (BD) and FC distribution is only
seen in the low-energy region (10–20 eV), where vibrational
dependence is extremely important (in particular for the
high-lying vibrational levels). FC weighting leads to a larger
cross section due to their slightly heavier weighting on the
highly excited vibrational states. Again, the R = 2.0 results
structure at 20 eV is from the newly opened 2pπu states’
contribution to the cross section. Comparing the R = 2.0
and vibrationally weighted cross sections, the importance of
accounting for the vibrational distribution of H2

+ is evident,
where the vibrationally weighted cross sections are about
380% larger at lower energies. In the low- and intermediate-
energy (20–100 eV) regions, the vibrationally weighted cross
sections are in good agreement with the experiments of Dance
et al. [5] and Peart and Dolder [8]. The large variation in
experimental data in the low-energy region could be due to
the production of different vibrational populations of H2

+,
where the dissociative excitation (DE) cross sections are highly

FIG. 5. (Color online) Franck-Condon (FC) and von Busch and
Dunn [15] (BD) vibrationally weighted dissociative ionization (DI)
cross sections for electron scattering from the electronic ground,
vibrationally excited states of H2

+. Results are compared with the
present R = 2.0 a0 results, the R = 2.0 a0 configuration-average
distorted-wave (CADW) method [33], the R = 2.0 a0 time-dependent
close-coupling (TDCC) method [32], and measurements of Peart and
Dolder [14] and El Ghazaly et al. [7].

dependent upon the initial vibrational state of H2
+. Peart and

Dolder [8] have also outlined some other possible reasons
for this variation in experimental data. It should be noted
again that the experiments of Peart and Dolder [8] and Dunn
et al. [3,4] were designed to produce H2

+ ions in a vibrational
population given by the FC factors. El Ghazaly et al. [7] stated
that their measurements indicated that their H2

+ ions were not
produced in the v � 14 states. This could be the reason for
the discrepancy in the low-energy region. In the high-energy
region (100–1000 eV), the CCC results are in good agreement
with all experiments and the vibrationally weighted Born cross
sections of Peek [20].

DI cross sections of electron scattering from vibrationally
excited H2

+ are presented in Fig. 5. The vibrationally
weighted 351-state CCC results are compared with the
present fixed-nuclei R = 2.0 results, the fixed-nuclei R = 2.0
time-dependent close-coupling (TDCC) [32], and R = 2.0
configuration-average distorted-wave (CADW) [33] results,
and the measurements of Peart and Dolder [14] and El Ghazaly
et al. [7]. Comparing the R = 2.0 calculations, the CCC DI
cross sections are lower than the TDCC results; at the peak
of the cross section (75 eV), the difference is about 20%. The
CADW [33] results are higher than the TDCC and CCC results
at the cross-section peak; this is expected low-energy behavior
for a first-order method. The present fixed-nuclei results are
about 20% lower than the vibrationally weighted results. FC
and BD weighted DI cross sections are in excellent agreement
with the measurements of Peart and Dolder [14], however, they
do not agree with the most recent measurements of El Ghazaly
et al. [7]. The experiment conducted by El Ghazaly et al. [7]
differentiated protons resulting from DI or DE by analyzing the
kinetic energy release spectrum of the ions. In their analysis,
they assumed that the DI cross sections are not dependent
upon R and, hence, σDI(R) is constant. This allowed them to
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distinguish DI by extracting the DI cross section from the tail
of the kinetic energy release spectrum. El Ghazaly et al. [7]
expected that such a procedure would produce inaccurate
results only for lower energies, however, the disagreement
between CCC results persists to high energies. Results from the
current calculations show a linear growing σDI(R) dependence
with R. For single-photon ionization of H2

+, Chapman [65]
reported cross sections with a significant dependence on R.
The excellent agreement between the vibrationally weighted
CCC results and the experiment of Peart and Dolder [14] is
most encouraging considering the fact that they differentiated
the DI cross section from the DE cross section by measuring
protons arriving at detectors in coincidence.

Further investigation identified the difference between the
fixed-nuclei R = 2.0 CCC and TDCC DI cross sections. As
demonstrated, the CCC results are converged, smooth, and
were produced with an accurate H2

+ structure. We have
achieved convergence in the partial-wave expansion of the
projectile (L = 9 and M = 9) with analytic Born subtraction
or distorted-wave top-up for the higher terms. The TDCC
results [32] were calculated with the partial-wave expansion
L = 5 and M = 2 with distorted-wave top-up for the higher
terms. CCC calculations with the same partial-wave expansion
as in the TDCC calculations resulted in DI cross sections that
are 15% larger, and in good agreement with the TDCC results.
This suggests that the larger partial-wave expansion is required
for greater accuracy.

The present adiabatic CCC results can be used to obtain
electron scattering cross sections that are resolved for vibra-
tionally excited states of H2

+. DE and DI cross sections are
presented as a function of the molecule’s initial vibrational
state vi in Fig. 6. Cross sections are presented up to the
vibrational state vi = 9, which spans over the range 1.0 � R �
5.5. The DE and DI cross sections have a major dependence
on vi at the cross-section maximum and in the intermediate-
energy region. There is also a significant dependence on vi at
higher energies. For example, the vi = 9 DI cross section at
750 eV is 30% larger than the vi = 0 cross section. Both the DE
and DI cross sections monotonically increase across the entire

FIG. 6. (Color online) Dissociative excitation (DE) and dissocia-
tive ionization (DI) cross sections for electron scattering from H2

+ in
the electronic ground, vibrational state vi .

FIG. 7. (Color online) Franck-Condon (FC) weighted deuteron
production (DP) cross sections for electron scattering from the
electronic ground, vibrationally excited states of D2

+. Results are
compared with the experiments of El Ghazaly et al. [7] and Dunn and
Van Zyl [4].

energy range as vi increases and the cross-section peak shifts
to lower energies. Looking at the vi = 9 DI cross-section peak
(60 eV), this cross section is about 70% larger than the vi = 0
cross-section peak (at 90 eV). For DE, comparing the cross
sections at 20 eV for the vi = 9 and vi = 0 states, the vi = 9
state cross section is 500% larger than the vi = 0 state. While
at 750 eV the DE cross section of the vi = 9 state is about
180% larger than the vi = 0 state. This behavior of the present
DE cross sections is consistent with the conclusions drawn by
Peek [16,19]. The monotonic increase and cross-section peak
shift of DE and DI processes comes from lower excitation and
ionization thresholds as R increases. Also, as R increases,
more electronic dissociative states rise and enter into the
ionization continuum, increasing the DI cross section.

C. D2
+

Using vibrational wave functions of D2
+ in Eq. (53),

adiabatic CCC results are obtained for electron scattering from
D2

+. In Fig. 7, vibrationally weighted deuteron production
(DP) cross sections are presented for electron scattering from
vibrationally excited D2

+. The vibrationally weighted CCC
results are compared with the measurements of El Ghazaly
et al. [7] and Dunn and Van Zyl [4]. In the high- and
intermediate-energy regions, the CCC results are in excellent
agreement with both experiments. Results in the low-energy
region overestimate the measurements of El Ghazaly et al. [7]
by about 15%. DE cross sections in the low-energy region
are highly sensitive to the vibrational population, hence,
this discrepancy could be due to the different vibrational
population assumed here and that which was produced in
experiment. Measurements of H2

+ and D2
+ are within the

error bars of each other and hence fail to show any isotopic
affects. CCC results have a minor difference in the low-energy
region as a result of isotopic effects; this will be discussed
further in the following section.
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FIG. 8. (Color online) Franck-Condon (FC) weighted dissocia-
tive ionization (DI) cross sections for electron scattering from the
electronic ground, vibrationally excited states of D2

+. Results are
compared with the experiment of El Ghazaly et al. [7].

Vibrationally weighted DI cross sections are plotted in
Fig. 8 for D+

2 . The adiabatic CCC results are presented
alongside the measurements of El Ghazaly et al. [7]. First,
the vibrationally weighted CCC results of D2

+ are within 1%
of the FC weighted results of H2

+. Again, the vibrationally
weighted CCC results do not agree with the measurements of
El Ghazaly et al. [7]. Reasons for this disagreement are the
same for H2

+ and have been discussed in the previous section.
Our calculations allow for DE and DI cross sections to be

resolved for electron scattering from D2
+ in a vibrationally

excited state vi . The DE and DI cross sections are presented
up to vi = 13 in Fig. 9. The D2

+ vi = 13 state spans the
range 1.0 � R � 5.5. Like H2

+, DE and DI cross sections
are highly dependent on the initial vibrational state of the
molecule. Major dependence is seen at the peak of the cross
section and in the intermediate-energy region, while in the
high-energy region, cross sections significantly depend on the
initial vibrational state of the molecule. As an indication,

FIG. 9. (Color online) Dissociative excitation (DE) and dissocia-
tive ionization (DI) cross sections for electron scattering from D2

+ in
the electronic ground, vibrational state vi .

FIG. 10. (Color online) Proton production (PP), deuteron pro-
duction (DP), and triton production (TP) cross sections for electron
scattering from vibrationally excited H2

+, D2
+, or T2

+, respectively.
Vibrational cross sections are weighted according to the Franck-
Condon (FC) factors.

the vi = 13 DI cross-section peak (at 60 eV) is 70% larger
than the vi = 0 cross-section peak (at 90 eV). The cross
sections also increase monotonically across all energies as vi

increases. Comparing vibrationally resolved DE and DI cross
sections of H2

+ and D2
+, there is little difference when the

respective molecule’s vibrational state spans the same range
of R. For example, the vi = 13 DI cross-section peak of
D2

+ is practically the same as the H2
+ vi = 9 (also spans

the range 1.0 � R � 5.5) cross-section peak (also at 60 eV).
The major difference in the cross section is seen near the
respective threshold, however, this where the closure method
is inaccurate.

D. T2
+

In Fig. 10, the vibrationally weighted triton production (TP)
cross sections are presented. These are compared with the FC
weighted PP cross sections of H2

+ and DP cross sections of
D2

+. Little difference in the cross sections are seen in the high-
and intermediate-energy regions. In the low-energy region,
isotopic affects are evident. Experimentally, these molecular
ions are produced from their corresponding neutral molecule,
i.e., H2(X 1�g,0,0) → H2

+(1sσg,v,0). The lightest neutral
molecule H2 has a more diffuse vibrational ground-state wave
function that reaches smaller and larger values of R compared
to its heavier isotopologues D2 and T2. This results in lighter
molecular ions having slightly heavier FC weighting on highly
excited vibrational states. From Eqs. (53) and (54), we note
that the larger weighting on highly excited vibrational states
that span large values of R allow significant contribution of
σf,i(R) at large values of R. At these large values of R, the
DE cross section is very large due to the decreasing threshold
of the 2pσu state. These differences in vibrational populations
are responsible for the variation of low-energy cross sections
and lead to isotopic effects.

The individual cross-section contributions from the FC
weighted vibrational states are given in Figs. 11 and 12 for
H2

+, D2
+, and T2

+. PP, DP, and TP cross sections are given
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FIG. 11. (Color online) Proton production (PP), deuteron pro-
duction (DP), and triton production (TP) cross sections for 20 and
100 eV electron scattering from H2

+, D2
+, or T2

+, respectively. The
molecular ions are in the electronic ground, vibrational state vi . Cross
sections are weighted according to their Franck-Condon factors.

for the impact energies 20 and 100 eV. At these energies, the
weighted cross sections come predominantly from the ground
and first few vibrationally excited states. This trend follows
the respective molecule’s FC distribution as seen in Fig. 1,
however, at the impact energy of 20 eV, the highly excited
vibrational states contribute more than the FC trend shows.
This is due to the vibrationally excited states very large DE
cross sections in the low-energy region, which are a result of
the decrease in excitation threshold. The FC DI cross sections
at an impact energy of 100 eV are almost identical to the
FC factors trend. DI cross sections are not as sensitive to
the initial vibrational state of the molecule compared to the
DE cross sections. This is consistent with the behavior of
the static dipole polarizibility contribution from the DE and
ionization continuum states as a function of R. Analyzing our

FIG. 12. (Color online) Dissociative ionization (DI) cross sec-
tions for 100 eV electron’s scattering from H2

+, D2
+, or T2

+,
respectively. The molecular ions are in the electronic ground,
vibrational state vi . Cross sections are weighted according to their
Franck-Condon factors.

FIG. 13. (Color online) Dissociative excitation (DE) and disso-
ciative ionization (DI) cross sections for electron scattering from T2

+

in the electronic ground, vibrational state vi .

calculations of polarizability for H2
+, the contribution from

DE states increases rapidly with R and is much larger than
the contribution from continuum states. Hence, the DE cross
sections are expected to be more sensitive to increases in R

than the DI cross sections.
Vibrationally resolved DE and DI cross sections of T2

+
are given up to vi = 17 (approximately spans the range 1.0 �
R � 5.5) in Fig. 13. Much like H2

+ and D2
+, the DE and DI

cross sections are highly dependent upon the initial vibrational
state of the molecule.

E. HD+

Unlike the homonuclear molecular ions H2
+, D2

+, and
T2

+, all heterogeneous molecular ions HD+, HT+, and DT+
have a permanent electric dipole moment and internally cool
via rotational-vibrational radiative transitions. This allows the
preparation of HD+, HT+, and DT+ in the ground v = 0
vibrational state. For this reason, averaging over the vibrational
distribution is not required and we do not present FC weighted
cross sections for HD+, HT+, and DT+.

DE cross sections are presented in the top panel Fig. 14
for electron scattering from HD+ in the vibrationally excited
state vi . From here onwards, cross sections presented as a
function of vi will only be presented up to the vibrational
state that spans the range 1.0 � R � 5.5. The vi = 0 DE
cross sections are compared with the experiment of Andersen
et al. [13]. The adiabatic CCC results are in excellent
agreement with experiment after the 2pσu threshold. Noting
that the current formulation neglects the indirect (resonant)
channels, this agreement with experiment above the 2pσu

threshold indicates the dominance of the direct-scattering
process. These conclusions are consistent with those of Fifirig
and Stroe [2].

The bottom panel of Fig. 14 is a plot of the DI cross sections
of HD+ as a function of its initial vibrational state. Cross
sections are presented up to the state vi = 11. Again, the cross
sections characteristics are affected by vi in the same way as the
other isotopologues. The difference between the isotopologues
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FIG. 14. (Color online) Dissociative excitation (DE) and disso-
ciative ionization (DI) cross sections for electron scattering from
HD+ in the electronic ground, vibrational state vi . DE results of HD+

in the vibrational ground state are compared with the experiment of
Andersen et al. [13].

vibrationally resolved cross sections is just the density and
spacing of the vibrational state cross sections.

F. HT+

DE and DI cross sections of HT+ in the initial state vi are
presented in Fig. 15. Results are given up to the vibrational
state vi = 12.

G. DT+

Figure 16 presents the DE and DI cross sections of DT+ in
the initial state vi . Results are given up to the vibrational state
vi = 15.

IV. CONCLUSION

The convergent close-coupling method has been applied
to electron scattering from H2

+ and its isotopologues within
the adiabatic approximation. Vibrationally weighted proton
production, deuteron production, and dissociative ionization

FIG. 15. (Color online) Dissociative excitation (DE) and disso-
ciative ionisation (DI) cross sections for electron scattering from
HT+ in the electronic ground, vibrational state vi .

FIG. 16. (Color online) Dissociative excitation (DE) and disso-
ciative ionization (DI) cross sections for electron scattering from
DT+ in the electronic ground, vibrational state vi .

cross sections are in excellent agreement with experimental
data [3–5,7,8,14]. Dissociative excitation and dissociative
ionization cross sections are also given as a function of
the molecule’s initial vibrational state. The results for
dissociative excitation cross sections of HD+(1sσg,0) are also
in excellent agreement with the measurements of Andersen
et al. [13].

Isotopic effects on the direct electron scattering processes
have been investigated for H2

+, D2
+, and T2

+. Only the
vibrationally weighted proton, deuteron, and triton production
cross sections had a noticeable variation in the low-energy
region. These isotopic effects stem from the difference
in vibrational wave functions and more importantly the
vibrational populations.

Both dissociative excitation and dissociative ionization
cross sections were found to significantly depend on the initial
vibrational state of the molecule. This dependence was seen
across the entire energy range, where the major effects were
at the peak of the cross section and in the intermediate-energy
region.

To date, the simplest molecular system H2
+ and its

isotopologues have been scarcely studied both theoretically
and experimentally. The authors would like to encourage mea-
surements of dissociative excitation and dissociative ionization
cross sections across the entire energy range for HD+ (or one of
its isotopologues) in the vibrational ground state. This would
give theorists a relatively simple benchmark result to compare
with.
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