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Ionization amplitudes in electron-hydrogen collisions
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Recently Zatsarinny and Bartschat [Phys. Rev. Lett. 107, 023203 (2011)] have given an ansatz for extracting
ionization amplitudes from close-coupling calculations of electron-impact ionization of atoms. They applied it
with extraordinary success to a fully differential cross section of electron-helium single ionization leaving the
residual ion in an n = 2 state. By considering electron-impact ionization of atomic hydrogen we explain the
origin of the ansatz and show that it forms an effective interpolation scheme for determining the amplitudes, so
long as the pseudostate energy distribution is sufficiently dense.
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I. INTRODUCTION

The last two decades have seen extraordinary progress in
the field of calculating electron-impact differential ionization
of atoms. Following the pioneering approach of Curran and
Walters [1] the convergent close-coupling (CCC) method [2]
was extended to ionization processes for hydrogen [3] and
helium [4], with the goal of yielding accurate results for
any total energy E > 0. Along the way unexpected behavior
of the resulting close-coupling excitation amplitudes for
positive-energy ε(N)

n < E states was found [5]. Whenever the
energy of the projectile k2

n/2 was less than the energy of
the target electron E/2 < ε(N)

n < E the excitation amplitudes
were shown to converge to zero with increasing N , leading to
a step function [6]. This, in effect, resolved the apparent in-
consistency of the close-coupling approach to ionization with
the standard theory by reducing the inherent close-coupling
secondary energy integration interval from [0,E] to [0,E/2],
as would be expected for identical electrons. A detailed
analysis suggested that solving the close-coupling equations is
like taking a Fourier expansion of the underlying step-function
complex amplitudes, with convergence to half the step height
at ε(N)

n = k2
n/2 = E/2 [7]. This explained the oscillations seen

for ε(N)
n < E/2 and the stability of the results at E/2.

The CCC approach required interpolation of complex
amplitudes available at discrete energies ε(N)

n to yield the
ionization amplitude at the measured energy of interest. This
is particularly problematic using a Laguerre basis in the
E/2 region where the energy distribution is most sparse.
Attempting to avoid (at the time) impossibly large calculations,
a systematic variation of the Laguerre exponential fall-off λl

was used to ensure that ε(N)
n = E/2 for each orbital angular

momentum l � lmax. This created a systematic convergence
problem [8]. However, the exterior complex scaling method [9]
had no such problems and was the first computational method
to show complete agreement with the measured equal energy-
sharing e-H ionization differential cross sections. Soon after,
when greater computational resources were available, the CCC
formalism was shown to be able to do the same [10].

All of the computational methods had to deal with the vexed
question of how to correctly extract the ionization amplitudes
from the calculations. This topic is in itself immense. A
review of the underlying formal theory has been given by
Kadyrov et al. [11] and a connection to various computational
techniques discussed by Bray et al. [12]. Recently Zatsarinny
and Bartschat [13] have suggested a novel ansatz for the

problem using the B-spline R-matrix (BSR) method with
pseudostates for e-He scattering calculations with extensive
comparison with experiments [14]. In particular, they yielded
good agreement with the experiment of Bellm et al. [15,16]
for e-He fully differential ionization leaving the residual ion
in n = 1 and n = 2 states. Furthermore, a recent application
has yielded good agreement with measurements of the e-He
ionization with excitation-integrated cross sections [17].

II. THEORY

The ansatz of Zatsarinny and Bartschat [13] is as applicable
to atomic hydrogen as it is to helium and appears to follow the
same derivation route as for the CCC method [4,10]. Staying
with the atomic hydrogen case, the total e-H Hamiltonian H

is written as

H = K1 + K2 + V1 + V2 + V12, (1)

where the indices indicate the two electrons (1 for projectile
space; 2 for target space), K is the one-electron kinetic energy
operator, V is the electron-nucleus interaction, and V12 is the
electron-electron interaction.

The Schrödinger equation (H − E)|�(+)
Si 〉 = 0, where S is

the total spin and i is the initial state, is solved by firstly
obtaining the N target (pseudo)states via〈

φ(N)
m

∣∣K2 + V2

∣∣φ(N)
n

〉 = εnδmn, (2)

in a Laguerre basis in the case of the CCC method [2].
Box-basis states [18], which are similar in their energy
distribution to those in the BSR method, may also be used.
The completeness of the states ensures that for

I
(N)
2 =

N∑
n=1

∣∣φ(N)
n

〉〈
φ(N)

n

∣∣ (3)

we have

lim
N→∞

I
(N)
2 = I2, (4)

the true identity operator in target space.
The close-coupling expansion may be written as

0 = (H − E)|�(+)
Si 〉

≈ (H − E)(1 + (−1)SPr )I (N)
2 |ψ (+)

Si 〉, (5)

where the space exchange operator Pr ensures the required
symmetry for the total (spin-dependent) wave function �

(+)
Si ,

irrespective of the symmetry of the numerically obtained ψ
(+)
Si .
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In the CCC method [2] the resulting close-coupling
equations are solved directly for the transition amplitudes
〈kf φ

(N)
f |VSI

(N)
2 |ψ (+)

Si 〉 ≡ 〈kf φ
(N)
f |TS |φ(N)

i ki 〉 via〈
kf φ

(N)
f

∣∣TS

∣∣φ(N)
i ki

〉
= 〈

kf φ
(N)
f

∣∣VS

∣∣φ(N)
i ki

〉

+
N∑

n=1

∫
d3k

〈
kf φ

(N)
f

∣∣VS

∣∣φ(N)
n k

〉〈
kφ(N)

n

∣∣TS

∣∣φ(N)
i ki

〉
E(+) − ε

(N)
n − k2/2

, (6)

where VS = V1 + V12 + (−1)S(H − E)Pr .
For discrete excitation (ε(N)

f = εf < 0) the Tf i amplitudes
are used to calculate the physically observable processes.
For ionization amplitudes FSi(kf ,qf ), with outgoing electron
energies satisfying q2

f /2 + k2
f /2 = E, we begin with [4,10,11]

FSi(kf ,qf )

≡ 〈�(−)
f |←−H − E|�(+)

Si 〉
≈ 〈�(−)

f |I (N)
2 (H − E)[1 + (−1)SPr ]I (N)

2 |ψ (+)
Si 〉

= 〈kf q(−)
f |I (N)

2 [H − E + (−1)S(H − E)Pr ]I (N)
2 |ψ (+)

Si 〉
= 〈kf q(−)

f |I (N)
2 [V1 + V12 + (−1)S(H − E)Pr ]I (N)

2 |ψ (+)
Si 〉

=
N∑

n=1

〈
q(−)

f

∣∣φ(N)
n

〉〈
kf φ(N)

n

∣∣TS

∣∣φ(N)
i ki

〉
. (7)
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FIG. 1. (Color online) Singly differential cross sections for
54.4 eV electron-impact ionization of atomic hydrogen in the S-wave
model. The results are presented for six separate CCC(N ) calculations
with N = 30, . . . ,35. The solid points arise from using Eq. (9), and
the corresponding lines are obtained via the usage of Eq. (10).

The main assumption is that the close-coupling expansion
ensures that the total wave function has the projectile-space
electron always shielded by the target-space one due to the
utilization of I

(N)
2 . In other words, the asymptotic Hamiltonian

is simply K1 + H2, and so the asymptotic state is a product of
a plane wave kf and a pure Coulomb wave qf .

As Eq. (7) stands it cannot be used because 〈kf φ(N)
n | is not

on the energy shell. In the CCC method we take advantage of
the fact (see the Appendix of Abdurakhmanov et al. [19]) that
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FIG. 2. (Color online) Singly differential cross sections for
27.2 eV electron-impact ionization of atomic hydrogen, calculated
with the N0 = 40 and lmax = 5 CCC calculation of Bray [21].
Individual l � 5 components are given together with the sum (bottom
panel). The cubic spline interpolations over the presented solid points
arising from Eq. (9) are compared with those obtained via the usage
of Eq. (10). The step function estimate (as N0 → ∞) [21] is also
given in the bottom panel.
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if q2
f /2 = ε(N)

m for some m, then

〈
q(−)

f

∣∣φ(N)
n

〉 = δmn

〈
q(−)

f

∣∣φ(N)
n

〉
, (8)

in which case

FSi(kf ,qf ) ≈ 〈
q(−)

f

∣∣φ(N)
f

〉〈
kf φ

(N)
f

∣∣TS

∣∣φ(N)
i ki

〉
, (9)

where it is implicit that q2
f /2 = ε

(N)
f , and so the ionization am-

plitudes are available only at the energies of the pseudostates
in the CCC calculations. To obtain amplitudes at any other
energies, interpolation over the available complex amplitudes
is required.

The ansatz suggested by Zatsarinny and Bartschat [13]
avoids any interpolation by simply replacing 〈kf φ(N)

n | with
〈knφ

(N)
n | in Eq. (7) and performing the full sum

FSi(kf ,qf ) ≈
N∑

n=1

〈
q(−)

f

∣∣φ(N)
n

〉〈
knφ

(N)
n

∣∣TS

∣∣φ(N)
i ki

〉
. (10)

While we are unable to derive Eq. (10) from first principles,
it is much more convenient to use since no interpolation is
required to obtain an ionization amplitude at any secondary
energy q2

f /2. Furthermore, it still yields Eq. (9) whenever
q2

f /2 = ε(N)
n .

III. RESULTS

Here we wish to investigate why the formulation in Eq. (10)
has worked so well [13,17], and if there are any limitations to its
application. We begin by considering the S-wave model for e-H
ionization, where the singly differential cross section (SDCS)
has all of the (nonphase) ionization information. The CCC-
calculated SDCS is expected to converge to a step function
with increasing Laguerre basis size N , for both singlet (S = 0)
and triplet (S = 1) scattering [6]. In the latter case owing to
the Pauli exclusion principle the height of the step is zero, and
so no oscillations are expected in the SDCS for ε(N)

n � E/2. In
the singlet case the height of the step at ε(N)

n = E/2 should be
1/4 the true result, even in not fully convergent calculations,
with extensive oscillations for ε(N)

n < E/2 [7].
In Fig. 1 we present the SDCS arising from 54.4 eV

e-H CCC(N ) calculations for the S-wave model with N =
30, . . . ,35. Exact results for this case have been given by
Bartlett et al. [20]. The dots are the raw data points, from
all six CCC(N ) calculations, arising via Eq. (9), and the
corresponding lines are from Eq. (10) calculated on a dense
energy mesh. In the singlet case we see consistency of the raw
CCC results in the vicinity of E/2. However, those obtained
via Eq. (10) show substantial variation in this energy region.
This is rather problematic given that the exact result at E/2
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FIG. 3. (Color online) Fully differential cross sections for 27.2 eV electron-impact ionization of atomic hydrogen. The CCC calculations
are the N0 = 40 and lmax = 5 ones from Bray [21]. The original results utilizing Eq. (9) are compared with those obtained via the usage of
Eq. (10). Experimental data are as presented by Berakdar et al. [22].
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is four times the raw result. In other words, the procedure
given by Eq. (10) is not guaranteed to go through the correct
result at q2

f /2 = E/2. This suggests that this equation may
not have any fundamental origin, but in effect is yet another
interpolation scheme whose application requires some care.
Furthermore, the oscillations in the asymmetric energy sharing
case will require a rescaling procedure as for the CCC
method [21] to yield the correct smooth results of Bartlett
et al. [20]. No problems are seen in the S-wave model triplet
case.

Having considered application of Eq. (10) to the S-wave
model we now consider the full problem for the case of 27.2 eV
electron-impact ionization fully differential cross sections.
This is a particularly convenient case due to measurements
existing for three separate energy sharing cases of EB = 2, 4,
and 6.8 eV (EA = 13.6 − EB), and the convergence study
of the CCC method has already been considered in some
detail [21].

We begin by first considering the SDCS, which now
comprises several l � lmax components obtained from the
integrated cross sections for positive-energy pseudostates φ(N)

n

with l � lmax. As an example we take the CCC calculations
with N0 = 40, and lmax = 5 [21]. In Fig. 2 the solid dots
are the results obtained directly from Eq. (9) and connected
using cubic splines. Also given are the results using Eq. (10),
performed on a fine energy mesh. We see very good agreement
between the two approaches, though a little variation can
occasionally be seen (e.g., around 7 eV for l = 2, and
around 6 eV for l = 5). Note that Eq. (8) (when partial-wave
expanded) ensures that the SDCS obtained via Eq. (10) has
to pass through the solid dots. At other energies Eq. (8) is
approximately satisfied with the 〈q(−)

f |φ(N)
n 〉 peaking for ε(N)

n

closest to q2
f /2. We believe this is the reason why Eq. (10)

works so well.

Having found good agreement for the SDCS it is not
surprising that a similarly good agreement is found for the fully
differential cross sections presented in Fig. 3. Any variation
for the asymmetric energy-sharing case is barely visible. For
the equal energy-sharing case there is some minor variation,
perhaps due to the minor variation visible in the individual
SDCS components. Note that to get accurate absolute cross
sections the same rescaling technique, to the step function of
Fig. 2, has been applied to the usage of Eq. (10) as for the CCC
method [21].

IV. CONCLUSIONS

To summarize, we believe the ansatz presented by Zat-
sarinny and Bartschat [13] is in effect a useful interpolation
procedure for generating ionization amplitudes at any sec-
ondary energy, but it has no formal origin and still requires a
rescaling procedure as for the CCC method to yield accurate
absolute cross sections. So long as the pseudostate energy
mesh is sufficiently dense it will yield accurate answers due to
the approximate satisfaction of Eq. (8), which improves with
increasing energy density. Its advantage is that it requires no
interpolation over the underlying complex amplitudes and may
be readily applied to multichannel final states, which occur in
e-He ionization with excitation problems. This will be the next
area of our focus.
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