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Ultracold mixtures of metastable He and Rb: Scattering lengths from ab initio calculations
and thermalization measurements
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We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We
performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies
elastic cross section for an ultracold mixture of metastable triplet 4He and 87Rb in a quadrupole magnetic trap
at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering
length a4+87 = +17+1

−4a0, which prior to this work was unknown. More general, our work shows the possibility of
obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron
atom, such as Rb.
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I. INTRODUCTION

Ultracold mixtures of different atomic species offer a
number of advantages over single-species experiments. For
instance, these mixtures are the starting point to obtain a
dense sample of ultracold heteronuclear molecules, which (in
contrast to homonuclear molecules) can have long-range and
anisotropic interactions, resulting in rich new physics with
many novel properties [1]. Ultracold mixtures can also feature
very interesting few- and many-body phenomena, for which
the mass ratio between the two atomic species can play a
crucial role (see, e. g., [2]). A prominent example is the
observation of more than two successive Efimov loss features
to test the scaling laws of the Efimov trimer spectrum, which
experimentally requires an extremely large mass ratio, and for
which first results have been obtained in ultracold mixtures of
6Li + 133Cs [3].

Most experiments on ultracold mixtures involve two alkali-
metal species, while recently also mixtures of alkali-metal
and alkaline-earth(-like) atoms became available [4]. Here we
are considering a different type of mixture, namely, of an
alkali-metal atom and helium, in the metastable 2 3S1 triplet
state (denoted as He∗, radiative lifetime of about 8000 s),
for which quantum degeneracy has been realized for both
fermionic 3He∗ and bosonic 4He∗ isotopes [5]. The application
of He∗ in ultracold mixtures increases the range of possible
mass ratios by a factor of 2 compared to the commonly
used 6Li.

The feasibility of an ultracold or quantum degenerate
mixture depends strongly on the collisional properties and
stability, which in turn is given by the intraspecies and
interspecies interaction potentials. Scattering between He∗
(total electron spin s = 1) and an alkali-metal atom (s = 1/2)
in the electronic ground state is described by a doublet 2�+
and a quartet 4�+ molecular potential. Here we focus on the
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4�+ potential, for which Penning ionization is suppressed
due to spin conservation [6] and which fully describes a
mixture in which both atoms are either in the lower or upper
spin-stretched states. These spin mixtures are most favorable
for sympathetic and evaporative cooling towards quantum
degenerate mixtures. Precise knowledge of those potentials
is completely lacking, due to the absence of spectroscopic
data. Therefore one has to rely on ab initio calculations for
which, however, the predicted power in terms of accurate
scattering lengths is generally considered to be limited, except
for few-electron systems like He∗ + He∗ [7].

In this article we present state-of-the-art ab initio quantum
chemistry calculations of the 4�+ potential and the quartet
scattering lengths for the He∗ + Rb system. In parallel, we
have experimentally determined the quartet scattering length
for 4He∗ + 87Rb by measuring the interspecies elastic cross
section for an ultracold mixture in a quadrupole magnetic trap.
Our combined theoretical and experimental work gives tight
bounds on the interspecies scattering lengths, which provides
crucial knowledge for the realization of quantum degenerate
He∗ + Rb mixtures.

This paper is organized as follows. In Sec. II we present
the ab initio calculations. In Sec. III we describe the ex-
periment, including a theoretical description of interspecies
thermalization measurements in a quadrupole magnetic trap
(Sec. III A), the experimental setup (Sec. III B), the two-
species magneto-optical trap (Sec. III C) and quadrupole
magnetic trap (Sec. III D), and the determination of the
scattering length (Sec. III E). In Sec. IV we compare the
theoretical and experimental results and conclude. Finally, in
Sec. V we give some future prospects.

II. AB INITIO CALCULATIONS

The calculations of the 4�+ potential have been per-
formed using the all-electron restricted open-shell coupled
cluster singles and doubles with noniterative triples correc-
tions [CCSD(T)] method [8], implemented in the MOLPRO
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package [9], and using the Douglas-Kroll-Hess Hamiltonian
to take into account relativistic effects [10]. These calculations
are challenging for a system like He∗Rb, since the molecular
states are submerged in the continuum of ionized states of
HeRb+, which might in principle lead to a variational collapse
to lower lying states already during the Hartree-Fock (HF)
optimization [11]. To circumvent this, we have constructed
starting orbitals from appropriate orbitals of the isolated atoms
and during the optimization we have kept the occupancies of
orbitals fixed.

For He∗Rb the available standard electronic Gaussian basis
sets are not appropriate, in particular because the basis sets
for He are optimized to recover the ground-state energy.
Therefore we have optimized our own basis set, suitable
for He∗. For Rb we have used the atomic natural orbital
relativistic correlation-consistent (ANO-RCC) basis set [12],
to which we have added one g-type and two h-type orbitals
optimized to the atomic energies. To better account for the
dispersion interaction we have augmented both basis sets
using two sets of even-tempered functions per function type
(generated with the MOLPRO package). The convergence of the
counterpoise-corrected interaction energies [13] is carefully
analyzed both in terms of the number of augmented functions
added, as well as the highest angular momentum function
in the basis set. By removing the h basis functions we
have found that the interaction energy changes by less than
1 cm−1.

The coupled-cluster equations are divergent for internuclear
distances smaller than r = 8a0, for which the interaction
energy is approximately −200 cm−1 and the inner turning
point is not yet reached. Still, we were able to converge the
HF reference state down to r = 5.5a0, from which we can
exclude the possibility of crossings of the potential energy
curve with other states. To extrapolate the potential towards
shorter distances we have made use of the fact that the
contribution of correlation energy to the interaction potential,
which is by far dominated by the dispersion energy, varies
exponentially near the inner turning point [14] and added
the extrapolated values to the HF interaction energy (see
Appendix A 1).

The long-range van der Waals coefficients have been
recently calculated by Zhang et al. [15], however, with an
uncertainty of 1%–5% in C6 and 1%–10% in C8 and C10, which
is too large for our purpose. We therefore have calculated
the dipolar and quadrupole dynamic polarizabilities of He∗
at imaginary frequencies and integrated them with recently
tabularized dynamic polarizabilities of Rb. With the present
calculations the error in the C6 coefficient for the Rb2 system
is estimated as 0.5%, while the C6 and C8 coefficients of
He∗

2 reproduce the reference data [16] to better than 0.1%.
For He∗Rb we obtain C6 = 8.47(2) × 108 cm−1 a6

0 , with an
uncertainty of 0.25%. Using the single-pole approximation
to the quadrupole dynamic polarizability derived by Porsev
et al. [17], we have obtained also C8 = 8.01(4) × 108 cm−1 a8

0 ,
which has an accuracy of 0.56%. Finally we include the C10

coefficient from Zhang et al. [15] to the long-range part of our
potential.

The potential energy curve obtained from the ab initio
calculations is shown in Fig. 1. The data points are fitted with
the Morse/long-range (MLR) potential proposed by LeRoy
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FIG. 1. (Color online) Results of the ab initio calculations on
the 4�+ potential of He∗Rb (red circles) and the MLR fit (red solid
line). The inset shows the quartet scattering length for 4He∗ + 87Rb
as a function of the scaling parameter λ (see text), where the shaded
area (bounded by the blue dotted lines) represents the uncertainties in
the long-range coefficients. The dashed vertical lines and the arrow
represent the uncertainty in the ab initio calculations, corresponding
to a range of λ = 0.998−1.017.

et al. [18], which has the form

V (r) = De

[
1 − uLR(r)

uLR(re)
exp[−φ(r)yp(r)]

]2

− De, (1)

where De is the well depth of the potential, re the equilib-
rium distance, uLR(r) = C6r

−6 + C8r
−8 + C10r

−10, yk(r) =
(rk − rk

e )/(rk + rk
e ), and φ(r) = [1 − yp(r)]

∑4
j=0 φjyq(r) +

yp(r)φ∞, where p = 5 and q = 4. The free parameters in the
potential, determined by fitting, are φj (j = 0, . . . ,4), while
De, re, and φ∞ = log[2De/uLR(re)] are directly obtained from
the ab initio calculations. The resulting parameter values of
the MLR potential are given in Table I. Note that the statistical
error introduced by the analytical fit is much smaller than
the systematic uncertainty in the ab initio calculations. The
MLR potential is particularly convenient for the analysis of
the scattering length in the case that the long-range part of
the potential is known very accurately, but the short-range
potential has a larger uncertainty. Hence we can conveniently
parametrize the scattering length by introducing a λ scaling
parameter such that De → λDe.

To predict quantitatively the scattering length it is crucial
to explore possible errors in the ab initio calculations. We
therefore have used higher-order coupled cluster methods,
using the MRCC code [19], to estimate the uncertainty in the

TABLE I. Parameter values of the MLR potential.

Parameter Value Parameter Value

De 452.71 cm−1 φ0 −1.8284

re 9.4079a0 φ1 0.486 78

C6 8.4673×108 cm−1 a6
0 φ2 −0.065 081

C8 8.0108×1010 cm−1 a8
0 φ3 −0.300 87

C10 9.4242×1012 cm−1 a10
0 φ4 −1.5195
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TABLE II. The quartet scattering lengths of He∗ + Rb in units
of Bohr radius a0, obtained from the ab initio calculations (theory)
and thermalization measurements (experiment). For the theory we
give the values connected to λ = 1 and the bounds corresponding to
λ = [1.017; 0.998]. The experimentally obtained interspecies elastic
cross section gives rise to two possible values of the scattering length
(see Sec. III E), where the error bars correspond to one standard
deviation.

Isotopes 3 + 85 3 + 87 4 + 85 4 + 87

Theory +6 +5 +18 +16
[−19; +8] [−21; +7] [−5; +20] [−8; +18]

Experiment −29+5
−5 or +17+4

−4

potential energy curve. We have found that the systematic
error that can be attributed to the incompleteness of CCSD(T)
is approximately +4.3 cm−1 (see Appendix A 2). We have also
compared the potential depths for the homonuclear He∗ and Rb
dimers obtained with the same method used in this work, and
the reference De parameters for He∗

2 [7] and Rb2 [20]. The frac-
tions δ(X2) = [Dref

e (X2) − Dcalc
e (X2)]/Dref

e (X2) are, respec-
tively, 5.4 × 10−3 and 4.1 × 10−2, hence for the heteronuclear
system we can estimate the error as

√
δ(He∗

2)δ(Rb2) = 0.015,
which translates into +6.8 cm−1. Finally, the long-range
CCSD(T) potential curve can be tested by comparing it with
the VLR(r) = −uLR(r) expansion of the interaction energy. For
distances between 25a0 and 40a0, where the potential energy
is dominated by the interaction of multipoles, VLR(r) is sys-
tematically larger by about 1.2% than the CCSD(T) potential,
which corresponds to a difference in De of +5.4 cm−1. All
estimations on a possible error in De give a systematically
positive shift. Therefore we conservatively assume the error
bound between −1 cm−1 (uncertainty of basis set) and
+7.8 cm−1 [uncertainty of basis set and most conservative
estimate of the CCSD(T) uncertainty], which translates to a
scaling parameter range of λ = 0.998–1.017.

From the potential energy curve we calculate the scattering
lengths for all four isotope combinations, for which the results
are given in Table II. The inset of Fig. 1 shows the scattering
length for 4He∗ + 87Rb as a function of λ. We find that
the scattering lengths for all isotope combinations are small,
i.e., |a| � 21a0. The small difference between 85Rb and 87Rb
for a given He∗isotope is due to the small difference in reduced
mass. In contrast, the small difference between 4He∗ + Rb and
3He∗ + Rb, for which the reduced mass is very different, is
completely accidental. For instance, the 4He∗ + Rb potential
supports 15 bound states, compared to 13 for the 3He∗ + Rb
potential.

III. EXPERIMENT

In the following we discuss the thermalization measure-
ments, including the experimental setup and our strategy to
obtain an ultracold mixture in a quadrupole magnetic trap
(QMT), in which both species are in their fully stretched
magnetic substate, i.e., 4He∗ in the J = 1, mJ = 1 state and
87Rb in the F = 2, mF = 2 state. The reason for choosing this
doubly spin-stretched mixture is that interspecies Penning and

associative ionization processes (which we both will refer to
as PI), i.e.,

He∗ + Rb →
{

He + Rb+ + e−

HeRb+ + e− , (2)

are expected to be suppressed because of spin conservation [5].
An upper limit for the loss rate coefficient of 5 × 10−12 cm3 s−1

at 0.2 mK has been experimentally obtained by measuring the
ion production rate [6]. For other spin mixtures large loss rate
coefficients on the order of 10−10 cm3 s−1 are expected [5].
Simultaneous laser cooling and trapping of 4He∗ and 87Rb has
already been demonstrated by the Truscott group [6,21].

A. Theoretical description of interspecies
thermalization in QMT

Interspecies thermalization of ultracold mixtures has been
described in detail in many papers (see, e. g., [22]), although
mostly for an Ioffe-Pritchard type of magnetic trap or optical
dipole traps, i.e., a harmonic trapping potential. Here we
consider thermalization for a QMT, i.e., a linear trapping
potential, which requires the inclusion of Majorana heating.

The time evolution of the temperature difference T1 − T2

in a two-species mixture is described by

d

dt
(T1 − T2) = −γth(T1 − T2), (3)

with thermalization rate γth = γcollξ/2.7, where γcoll is the
collision rate and ξ = 4m1m2/(m1 + m2)2. For equal mass
systems 2.7 collisions are required for thermalization [23],
which can be generalized to 2.7/ξ for nonequal masses [22].
The collision rate is given by γcoll = σ 〈v〉〈n〉, with the
interspecies elastic cross section σ , the mean velocity
〈v〉 = √

8kB/π (T1/m1 + T2/m2), and the mean density 〈n〉 =
(1/N1 + 1/N2)

∫
n1(�r)n2(�r)d�r . The temperature dependence

of σ will be discussed in Appendix B.
In a QMT the density distribution (assuming an infinitely

deep trap) is given by

n(x,y,z) = n0 exp

[
−μα

√
x2 + 4y2 + z2 − mgz

kBT

]
, (4)

where in our case the axial direction of the coils (y axis) is
in the horizontal plane, μ is the magnetic moment, α is the
magnetic field gradient along the weak (radial) axis, g is the
gravitational acceleration, and the peak density

n0 = N

4π

(
μα

kBT

)3
[

1 −
(

mg

μα

)2
]2

. (5)

In our case we can safely neglect the effect of gravity,
as mg/μα is small (0.13 for 87Rb, 0.003 for 4He∗), and
the reduction of the overlap 〈n〉 caused by the gravita-
tional sag of the 87Rb distribution is less than 3%. In this
approximation,

∫
n1(�r)n2(�r)d�r = (α3N1N2/4πk3

B)(T1/μ1 +
T2/μ2)−3 and the thermalization rate is given by

γth = σξα3(N1 + N2)

2.7
√

2π3/2k
5/2
B

√
T1
m1

+ T2
m2(

T1
μ1

+ T2
μ2

)3 . (6)

In case N1 	 N2, γth does not depend on N2.
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FIG. 2. (Color online) Calculated thermalization curves for dif-
ferent interspecies elastic cross sections σ , with α = 120 G/cm,
χ = 0.1, initial temperature THe∗ = 0.4 mK, and atom numbers
N 0

He∗ = 5 × 106 and N 0
Rb = 2 × 108, where for 4He∗and 87Rb we have

included a one-body loss rate of (30 s)−1 and (15 s)−1, respectively.
For the 87Rb temperature we assume TRb = (T0 − Tf )e−βt + Tf , with
T0 = 0.4 mK, Tf = 0.2 mK, and β = 0.1 s−1.

In addition we have to include the Majorana effect,
i.e., nonadiabatic spin flips to untrapped states at the magnetic
field zero at the center of the QMT, which leads to both losses
and heating, and therefore limits evaporative cooling [24], but
also interspecies thermalization and sympathetic cooling. The
Majorana heating rate is described by [25]

d

dt
T = γMaj

2T
, (7)

where γMaj = (8/9)χ (�/m)(2μα/kB)2, and χ is a dimen-
sionless factor. The solution of Eq. (7) is given by T (t) =√

T 2
0 + γMajt , where T0 is the initial temperature.
The combined effect of interspecies thermalization and

Majorana heating is then described by

d

dt
(T1 − T2) = −γth (T1 − T2) + γMaj,1

2T1
− γMaj,2

2T2

+
[
dT1

dt

]
ev

−
[
dT2

dt

]
ev

, (8)

where the last two terms include the effect of evaporative
cooling. For our experimental parameters we can neglect
Majorana heating for 87Rb (γMaj is a factor 87 smaller than
that of 4He∗). As we will show below, the time evolution of the
87Rb temperature is due to plain evaporation, i.e., dTRb/dt =
[dTRb/dt]ev, whereas for 4He∗ the trap depth is too large for
evaporative cooling, i.e., [dTHe∗/dt]ev = 0. This all means
that for our situation we can effectively simplify Eq. (8) to

d

dt
THe∗ = −γth(THe∗ − TRb) + γMaj,He∗

2THe∗
, (9)

where it is important to note that γth depends on THe∗ , TRb, and
NRb, which all change during the hold time in the QMT. The
solution of Eq. (9) for different values of σ is shown in Fig. 2.

B. Experimental setup

A schematic of the setup is shown in Fig. 3. We have added
a two-dimensional magneto-optical trap (2D-MOT) for Rb on
one of the viewports of the stainless steel vacuum chamber of
an existing He∗ setup [26]. We use a liquid-nitrogen-cooled dc-
discharge source to produce a 4He beam with a 4He∗ fraction
of 10−4 [27]. The 4He∗ beam is collimated with a total power
of about 500 mW, slowed in a 2.5-m-long Zeeman slower and
loaded into the three-dimensional (3D)-MOT. An in vacuo
shutter is opened only during the loading time of the 4He∗
3D-MOT. Without the shutter the lifetime of 4He∗ and 87Rb
atoms in the QMT is limited to less than 2 s. The pressure in
the main vacuum chamber is 1 × 10−10 mbar.

For the detection of 4He∗ two microchannel plate (MCP)
detectors are placed at a distance of 106 mm from the trap
center, both under an angle of 22◦ with respect to the direction
of gravity. MCP 1 is behind a grounded grid and detects 4He∗
atoms after release from the trap, resulting in a time-of-flight
signal that contains information about the atom number and
the temperature. MCP 2 is not shielded and therefore also
collects all ions (He+, Rb+) produced via PI. We have
calibrated the MCP signals using the saturated fluorescence
method, collecting transient fluorescence from a retroreflected
high-power resonant beam [28]. For 87Rb we use standard
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He* Zeeman slower (ZS)
collimation

He*
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in vacuo shutter

Rb 2D-MOT

push beams

ZS

z

y
x

3D-MOT

MCP 2

MCP 1

3D-MOT

MCP 2

MC

FIG. 3. (Color online) A schematic overview of the experimental setup and laser beams. The vertical direction is along the z axis. Note
that the pair of laser beams along the y axis of the collimation section, the 2D-MOT and the 3D-MOT, are not shown. Optical pumping and
absorption imaging beams are along the y axis (ZS: Zeeman slower; MCP: microchannel plate).
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absorption imaging (along the y direction) to obtain the atom
number and temperature.

One pair of water-cooled coils provides the magnetic field
gradient for both the 3D-MOT and QMT, which has a gradient
along the weak axis α = ∂B/∂x = ∂B/∂z = 1

2∂B/∂y of
0.6 (G/cm)/A. The axial direction of the coils (y) is in the
horizontal plane. The laser beams for optical pumping and
absorption imaging are along the y direction.

C. Two-species magneto-optical trap

The three retroreflected 1-in. laser beams of the 3D-MOT
are derived from single mode optical fibers, in which both
wavelengths for laser cooling of 4He∗ and 87Rb, 1083 and
780 nm, respectively, are coupled together using dichroic
mirrors. In this way, the 3D-MOT laser beams of the two
species are automatically overlapped. To create the proper
circular polarization for both wavelengths, zero-order quarter
wave plates at 920 nm are used. For 87Rb a detuning of
−15 MHz with respect to the F = 2 → F ′ = 3 transition is
used, and a total power of the three laser beams of ∼40 mW. For
4He∗ we use a large detuning of −32 MHz (corresponding to
20 linewidths) to reduce the light-assisted intraspecies PI loss
in the 3D-MOT, and a total laser beam power of ∼30 mW. The
magnetic field gradient α is 12 G/cm. For 87Rb an additional
repumper beam on the F = 1 → F ′ = 2 transition is added.
For 4He∗ no repumper is needed because of the absence of
hyperfine structure.

87Rb is loaded from a 2D-MOT with a two-color push
beam scheme, in which a red-detuned push beam pushes the
atoms that leave the 2D-MOT in the wrong direction back
towards the 3D-MOT, while a blue-detuned push beam guides
the atoms through the differential pumping tube [29]. The two
retroreflected cooling beams are circular with a diameter of
2 in. and a total power of the two laser beams of ∼100 mW. The
detuning is −8.4 MHz with respect to the F = 2 → F ′ = 3
transition, while the red- and the blue-detuned push beams
have a detuning of −8.4 MHz and +17 MHz, respectively.
In one of the cooling beams repumper light is mixed in.
The differential pumping tube between the 2D- and 3D-MOT
sections has a diameter of 2.5 mm and a length of 50 mm,
which provides a differential pressure of 1.1 × 104 between
the 2D- and 3D-MOT sections. With a typical loading rate
of 3 × 108 atoms/s we reach 1 × 109 87Rb atoms in 5 s.
Fluorescence signals of the 87Rb 3D-MOT loading for different
configurations of the 2D-MOT are shown in Fig. 4.

4He∗ is loaded from a zero-crossing (spin-flip) Zeeman
slower. The detuning of the Zeeman slowing beam is
−415 MHz and the power is 9 mW/cm2. We obtain 4He∗
3D-MOT loading rates of about 3 × 108 atoms/s; however,
because of strong losses this results in ∼5 × 107 4He∗ atoms
within 1 s. Ion signals during the 4He∗ MOT loading are shown
in Fig. 5, with and without the presence of a 87Rb MOT,
indicating a small decrease in 4He∗ final atom number for the
two-species MOT compared to single-species conditions.

In the experimental sequence we first load 87Rb in the 3D-
MOT, while only in the last 2 s we open the in vacuo shutter
to load 4He∗. During the 4He∗ loading we observe a small
decrease of the 87Rb atom number (see inset of Fig. 5), which
is mostly due to the flux of ground state He atoms (i.e., this
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FIG. 4. (Color online) 87Rb fluorescence during the loading of
the 87Rb 3D-MOT, showing different configurations of the 2D-MOT:
(1) both the red- and blue-detuned push beams (black), (2) only the
blue-detuned push beam (blue), (3) only the red-detuned push beam
(red), and (4) no push beams (gray). A fluorescence signal of 400 mV
corresponds to about 1 × 109 atoms.

loss is independent of whether the Zeeman slower or 4He∗
3D-MOT light is on or not).

Afterwards, we compress the 3D-MOT by increasing the
gradient to α = 24 G/cm in 70 ms, during which we increase
the detunings for 87Rb and 4He∗ to −21 and −44 MHz,
respectively. Then we switch off the magnetic field gradient
and apply optical molasses on both species for 7 ms. During
this optical molasses we ramp the 87Rb detuning from −21 to
−29 MHz and lower the intensity of the repumper beam, while
for 4He∗ we immediately jump to a detuning of −3.5 MHz.
Finally we spin polarize in 0.5 ms 87Rb to the F = 2, mF = 2
state by optical pumping on the F = 2 → F ′ = 2 transition
with circular polarized light at a small magnetic field, while
at the same time we spin polarize 4He∗ in the mJ = 1 state
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FIG. 5. (Color online) Two-species MOT loading. Ion signal of
MCP 2 during the loading of the 4He∗ MOT, with and without the
presence of the 87Rb MOT. The inset shows the 87Rb fluorescence,
where after 12 s we start the 4He∗ MOT loading. The drop in the
87Rb signal is mainly due to the flux of ground state He atoms. A
fluorescence signal of 250 mV corresponds to about 1 × 109 atoms,
while the 87Rb loading rate is smaller than in Fig. 4.
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FIG. 6. (Color online) Trapping potentials of 4He∗ (light red) and
87Rb (dark blue) in the QMT along the z direction (i.e., along the
direction of gravity), for α = 120 G/cm. The inset shows the effective
potential (solid line) for 87Rb when introducing MW radiation
75 MHz above the hyperfine splitting. The noticeable asymmetry
in the 87Rb potential is due to gravity.

by optical pumping on the J = 1 → J ′ = 2 transition with
circular polarized light.

D. Ultracold mixture in quadrupole magnetic trap

After the spin-polarizing pulse we ramp the magnetic field
gradient within a few ms to α = 48 G/cm. After waiting for
100 ms, we ramp to α = 120 G/cm in 100 ms. The final
trapping potentials are depicted in Fig. 6. More than 95% of
the 87Rb atoms are in the F = 2, mF = 2 state, while the
mJ = 1 state of 4He∗ is the only magnetically trappable state.
The initial atom numbers for 87Rb and 4He∗ are about 2 × 108

and 5 × 106, respectively, and their initial temperatures are
both about 0.4 mK.

We hold the mixture for a variable time in the magnetic
trap, after which we measure the properties of the remaining
atoms by absorption imaging (87Rb) and MCP detection
(4He∗). We obtain the time evolution of the atom numbers
and temperatures of the two species, in the mixture and under
single-species conditions. We do not observe any significant
effect of 4He∗ on 87Rb, both regarding atom number and
temperature, which is mostly explained by the condition
NRb 	 NHe∗ .

We apply evaporative cooling on 87Rb by shining in
microwave (MW) radiation at 6910 MHz, which is 75 MHz
above the hyperfine splitting, leading to an effective trap depth
of 2.1 mK (see inset Fig. 6). The time evolution of the 87Rb
atom number in the QMT is shown in Fig. 7, with and without
MW, while the 87Rb temperature is shown in Fig. 8 (with
MW). Without MW we observe an exponential decay of the
atom number with a lifetime of 36(2) s, which is due to
background collisions. With MW a stronger, nonexponential
decay is visible. At a hold time of 4 s we observe from
our absorption images that the 87Rb cloud becomes cross-
dimensional thermalized, at which point it can be described by
a single temperature of 0.33 mK. Afterwards, plain evaporation
further reduces the 87Rb temperature to 0.25 mK at 14 s.
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FIG. 7. (Color online) The number of 87Rb atoms as a function
of hold time in the QMT, with and without MW. The inset shows the
4He∗ atom number, with (red squares) and without (gray circles) 87Rb
and the solid lines are fits of Eq. (10).

The time evolutions of the 4He∗ atom number and tem-
perature are shown in Figs. 7 and 8, respectively, with and
without 87Rb. The initial temperature of 4He∗ is 0.40 mK,
after which it increases due to Majorana heating to about
0.50 mK (with 87Rb) or 0.55 mK (without 87Rb) after 13 s.
Thus, we observe interspecies thermalization, which however
only partly counteracts Majorana heating. In Sec. III E we will
determine the interspecies scattering length from this data. For
4He∗ the trap depth is about 30 mK (see Fig. 6), which excludes
evaporative cooling and losses.

We also observe a small reduction in the lifetime of 4He∗
in the presence of 87Rb (inset of Fig. 7). The time evolution of
the 4He∗ atom number can be described by

d

dt
NHe∗ = −�NHe∗ − L2

∫
nHe∗ (�r)nRb(�r)d�r, (10)

0 2 4 6 8 10 12 14
0.2

0.3

0.4

0.5

0.6

QMT hold time s

T
m
K

He w o Rb
He w Rb

Rb

FIG. 8. (Color online) 4He∗ and 87Rb temperatures as functions
of hold time in the QMT. For 4He∗ the temperature data with 87Rb
(red squares) and without 87Rb (gray triangles) are shown, together
with the fits of Eq. (9) (red and gray solid lines, respectively), for
which only the data from 4 s on is considered. The data points are an
average over four experimental runs and the error bars represent the
standard deviation. The 87Rb temperature data (blue circles) are fitted
by an exponential function of the form T (t) = (T0 − Tf )e−βt + Tf

(blue dashed line), which is used as input for solving Eq. (9).
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where � is the one-body loss rate due to background collisions
and Majorana spin flips, and L2 is the total interspecies two-
body loss rate coefficient, which includes both interspecies PI
and spin relaxation. Intraspecies two-body loss, for which the
loss rate coefficient is 2 × 10−14 cm3 s−1 [30], can be fully
neglected.

To extract L2, we first fit the data without 87Rb to obtain
�, after which we fit the data with 87Rb to obtain L2. We only
give an upper limit of L2 because the observed reduction in
lifetime may also be explained by a few percent of 87Rb atoms
in the F = 2, mF = 1 or F = 1, mF = −1 states, for which
PI is not suppressed, or an increase in the Majorana spin-flip
loss rate because of the smaller temperature in the presence of
87Rb. We find L

upper
2 = 1.5 × 10−12 cm3 s−1, which includes

the estimated 50% systematic uncertainty in NHe∗ . L
upper
2 is

three times lower than the reported upper limit of interspecies
PI at a temperature of 0.2 mK [6].

E. Determination of the interspecies scattering length
from thermalization measurements

To extract the interspecies elastic cross section σ from
our data that is displayed in Fig. 8, we first fit the 4He∗
temperature data without 87Rb, which is only described by
Majorana heating [Eq. (7)], and we find χ = 0.09(1), similar
to 0.14 for 23Na [31] and 0.16 for 87Rb [25]. Then we fit
the full solution of Eq. (9) to the 4He∗ temperature data with
87Rb, from which we obtain σexpt = 14+6

−4 × 10−14 cm2. In this
analysis we fully take into account the measured time evolution
of NHe∗ , NRb, and TRb, and propagate their uncertainties (one
standard deviation) to obtain the uncertainty in σexpt. We only
fit the data for hold times from 4 s on, at which the 87Rb
cloud has become cross-dimensional thermalized. Note that
the intraspecies thermalization rate for 87Rb is about (0.5 s)−1

during the whole time evolution, whereas for 4He∗ it decreases
from (0.5 s)−1 to (1.5 s)−1.

To relate the temperature dependent elastic cross section
to the scattering length we have numerically solved the
Schrödinger equation (see Appendix B). It is important to note
that such a calculation is only sensitive to the long-range part of
the potential, and completely independent of the short-range
part obtained from the ab initio calculations. The result is
depicted in Fig. 9, showing the elastic cross section σT (a) for
the relevant temperature range of 0.45–0.50 mK as a function
of scattering length (blue shaded area), which clearly deviates
from the zero-temperature limit σ = 4πa2 (gray dashed line).
With our experimental value of σexpt (red horizontal band),
we find the scattering length to be either a−

expt = −29+5
−5a0

or a+
expt = +17+4

−4a0. Note that for the doubly spin-stretched
mixture, scattering only occurs in the 4�+ potential, and the
experimentally obtained scattering length is the pure quartet
scattering length.

IV. RESULTS AND CONCLUSIONS

The theoretically and experimentally obtained quartet scat-
tering lengths are compared in Table II. One recognizes that
a+

expt is in excellent agreement with the ab initio calculations,
whereas a−

expt can be fully excluded. In fact, with the bounds
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FIG. 9. (Color online) The experimental interspecies elastic
cross section σexpt (red horizontal band) for 4He∗ + 87Rb and the
calculated elastic cross section σT (a), including the contribution from
p-wave collisions, for T = 0.45 → 0.50 mK (blue shaded area). The
interspecies scattering length is given by the intersections of σexpt and
σT (a), resulting in either a−

expt = −29+5
−5 a0 or a+

expt = +17+4
−4 a0. Also

the zero-temperature result σ = 4πa2 is shown (dashed gray line).

of the ab initio calculations, we can conclude that a4+87 =
+17+1

−4a0.
In conclusion, we have performed ab initio calculations

of the 4�+ potential for He∗ + Rb, from which we have
obtained the interspecies scattering lengths for all four isotope
combinations of doubly spin-stretched He∗ + Rb systems. We
have determined experimentally the interspecies elastic cross
section for 4He∗ + 87Rb from thermalization measurements.
Our combined theoretical and experimental work provides
tight bounds on the interspecies scattering length, which
prior to this work was completely unknown. In addition,
from our experimental data we obtain an upper limit of the
total interspecies two-body loss rate coefficient of L

upper
2 =

1.5 × 10−12 cm3 s−1, which is three times lower than the
previous reported upper limit for interspecies PI.

The success of the ab initio calculations, being able
to quantitatively predict the scattering length for a system
containing a heavy, many-electron atom, is linked to the small
reduced mass and shallow 4�+ potential of the He∗ + Rb
system. This leads to a small number of bound states, which
reduces the sensitivity of the scattering length to the potential
energy curve. Still, to achieve a 1% accuracy of the ab initio
calculation is a formidable task for a many-electron system.
We expect the same level of accuracy for the 4�+ potentials
of any other combination of He∗ with an alkali-metal atom.

V. OUTLOOK

The newly obtained knowledge on the scattering lengths
is crucial for realizing and exploring quantum degenerate
He∗ + Rb mixtures. For example, the small interspecies
scattering lengths will hamper sympathetic cooling of He∗ by
Rb, and either RF-induced forced evaporation cooling of 4He∗
or sympathetic cooling of 3He∗ with a third species, for which
4He∗ would be an excellent choice [32], is required. Also,
on the basis of the intra- and interspecies scattering lengths

022709-7



S. KNOOP et al. PHYSICAL REVIEW A 90, 022709 (2014)

we expect the dual BEC of 4He∗ + 87Rb to be miscible and
stable [33].

The applicability of the ultracold He∗ + Rb mixture to
universal few-body physics, such as the investigation of the
Efimov trimer spectrum, crucially depends on the availability
and characteristics of interspecies Feshbach resonances. For
this purpose close-coupling calculations that include the 2�+
potential are required. However, ab initio calculations of the
2�+ potential are expected to be less accurate than those
for the 4�+ potential, because the 2�+ potential is much
deeper [34] and supports many more bound states. Experimen-
tally, thermalization measurements in different spin mixtures
might reveal information about the doublet scattering length;
however, because Penning ionization is not suppressed, these
measurements will be limited by a short lifetime. Therefore
we propose to experimentally search for narrow interspecies
Feshbach resonances induced by the spin-spin interaction
for a mixture prepared in the lower doubly spin-stretched
state, which requires a mixture in an optical dipole trap.
The positions of these resonances would reveal the binding
energy of the least-bound doublet level, which would provide
sufficient information about the 2�+ potential.
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APPENDIX A: CCSD(T) CALCULATIONS

1. Extrapolation towards small internuclear distances

Because the CCSD(T) equations are divergent for the
internuclear distances smaller than r = 8a0, for which the
interaction energy is approximately −200 cm−1, we have
to extrapolate our results for r � 8a0 towards smaller r in
order to describe the repulsive wall up to positive interaction
energies. To justify the extrapolation procedure, we have
calculated the Hartree-Fock interaction energy (EHF) and
correlation contribution to the interaction energy obtained
from the coupled-cluster doubles (CCD) method (ECCD) at
distances close to the inner turning point at about r = 7.6a0.
The results are shown in Fig. 10. Both the Hartree-Fock and
correlation contributions behave exponentially [14], which
allows extrapolation to distances at which the interaction
energy becomes positive.
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FIG. 10. (Color online) The contributions of Hartree-Fock (EHF)
(blue circles) and correlation effects to the total interaction energy in
the CCD method (ECCD) (red squares), both showing an exponential
behavior (note the logarithmic scale on the y axis; lines are a guide to
the eye). The two contributions have opposite signs and cancel each
other at the inner turning point of the potential energy curve.

2. Estimate of accuracy CCSD(T) method

To test the error beyond the CCSD(T) method expansion,
we have performed coupled-cluster calculations of the in-
teraction energy with singly, doubly, triply, and quadruply
excited amplitudes (CCSDT and CCSDTQ, respectively) for
r = 9.4a0, using the approach introduced by Kállay [19]. Since
the cost of performing these calculations is many orders of
magnitude higher compared to CCSD(T), we have to restrict
ourselves to an 11 valence electrons effective core potential
(ECP) and a basis set limited to spd orbitals, respectively,
and investigated the difference with respect to the CCSD(T)
interaction energy obtained, within the ECP method.

We have found that the inclusion of the full set of
triple excitations leads to an increase of the well depth
De by approximately 3.7 cm−1 compared to the CCSD(T)
calculations (De = 398.3 and 394.6 cm−1, respectively). By
further reduction of the basis set (to sp orbitals) we have
also found that taking into account quadruple excitations has
the opposite effect: De decreases by 0.3 cm−1 compared
to the CCSDT calculations. Hence, we can expect that the
systematic error due to the incompleteness of the CCSD(T)
method should be limited by the difference between CCSDT
and CCSD(T) well depths, which in recommended basis set
should be proportional to the De ratio in the limited basis sets.
This leads to a systematic error of +4.3 cm−1.

APPENDIX B: DETERMINATION OF THE INTERSPECIES
SCATTERING LENGTH FROM ELASTIC CROSS SECTION

In the zero-temperature limit the elastic cross section σ is
simply related to the s-wave scattering length a via σ = 4πa2.
However, in the temperature range of our measurement, we do
not fulfill this limit. Therefore, we have performed numerical
calculations on the basis of the radial Schrödinger equation to
obtain the connection between a and σ at the experimentally
relevant temperature range. Here we use a simple Lennard-
Jones potential to demonstrate that for this particular purpose
only knowledge of the long-range potential is sufficient, and
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FIG. 11. (Color online) Numerical results of σT for a = ±5a0

(green), ±20a0 (blue), ±50a0 (red), and ±200a0 (black), where the
solid (dashed) lines are representing the positive (negative) values of
a, and a = 0a0 (gray).

the experimental scattering length determination is completely
independent of the ab initio calculations of the short-range
potential. The Lennard-Jones potential is given by Vb(r) =
−(C6/r6)[1 − b/r6], where we can tune the depth of the
potential, and therefore a, by parameter b. Note that the less
accurate C6 coefficient of Zhang et al. [15] gives the same
result as that obtained in this work, showing that a few percent
accuracy is sufficient.

The energy dependent elastic cross section is given by σE =∑∞
l=0 σ l

E , where σ l
E = (4π/k2)(2l + 1) sin δl(k)2, δl is the

l-wave phase shift, k = √
2μrE/�, μr is the reduced mass, and

E is the collision energy. The scattering length is defined by
a = − limk→0 tan δ0(k)/k. The temperature dependent partial
cross section σ l

T is obtained by taking the Boltzmann average
over σ l

E :

σ l
T = 1

(kBT )2

∫ ∞

0
σ l

EEe−E/kBT dE, (B1)

where one has to consider an effective temperature, given
by T = μr (THe∗/mHe∗ + TRb/mRb) ≈ THe∗ . The total temper-
ature dependent cross section is σT = ∑∞

l=0 σ l
T . We find that

σ l
E (and therefore also σT ) is only dependent on b via a, but

different values of b that give the same a, also give the same σ l
E .

This means that our results are independent of the particular
choice of model potential, and that σT is fully determined by
a and C6 (and the reduced mass μr ).

In Fig. 11 we show σT for several values of a, where the
solid (dashed) lines represent the positive (negative) values of
a. Because the p-wave centrifugal barrier height is 3.4 mK, in
most cases σT ≈ σ 0

T for T � 1 mK. However, the contribution
of p-wave collisions, σ 1

T , can still be significant for small
values of |a|, for which σ 0

T itself is very small. Therefore for
all calculations we include p-wave collisions, i.e., σT = σ 0

T +
σ 1

T . In the temperature range of 0.1–1 mK deviations from the
zero-temperature cross sections are significant, especially for
small |a|. In general, for a given |a|, the cross section for a > 0
is larger than a < 0. Finally, we calculate σT as a function of
a for the experimental relevant temperature range, for which
the result is shown in Fig. 9.
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