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We investigate the role of electron-correlation effects in calculations of the electric-dipole polarizabilities α

of elements belonging to three different groups (12–14) of the periodic table. To understand the propagation
of the electron-correlation effects at different levels of approximations, we employ the relativistic many-body
methods developed, based on first principles, at mean-field Dirac–Fock (DF), third-order many-body perturbation
theory [MBPT(3)], random-phase approximation (RPA), and singly and doubly approximated coupled-cluster
methods at the linearized (LCCSD) and nonlinearized (CCSD) levels. We observe a variance in the trends of
the contributions of the correlation effects in a particular group of elements through the many-body method
used; however, they resemble a similar tendency among the iso-electronic systems. Our CCSD results are within
sub-1% agreement with the experimental values which are further ameliorated by including the contributions
from the important triple excitations (CCSDpT method).
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I. INTRODUCTION

The static electric-dipole polarizability α of an atomic
system is the measure of distortion of the electron cloud
when the system is subjected to a stray electric field. Some
of the notable applications with the accurate knowledge of α

are in studies of new-generation frequency standards, atomic
interactions in optical lattices, and quantum information along
with many applications in the areas of atomic and molecular
physics [1–8]. Various sophisticated experimental techniques
have been used to measure α in different atomic systems
having their own merits and disadvantages [9–15]. Despite
the technological advancements, we have yet to attain high-
precision measurements of α in the ground states of many
atomic systems. In fact, there are also some systems where no
experimental results are yet available. Nevertheless, accurate
evaluation of α can serve as a good test of the potential
of any many-body method and can be used to peruse the
underlying interplay of the electron-correlation effects in their
determination.

A seminal work on the calculations of polarizabilities
of the many-electron systems in the ab initio framework
was first introduced by Dalgarno and his collaborators more
than about five decades ago [16,17]. Since then, variants
of advanced many-body methods have been developed and
applied successfully in the same philosophical stratagem to
meticulously evaluate this atomic property. Examples of few
well-known many-body methods that are often employed
in studies of α are the the random-phase approximation
(RPA), the coupled-cluster method in linear response theory
(CCLRT), the configuration-interaction (CI) method, etc.
[18–25]; however, many of these methods are developed
by using nonrelativistic mechanics. Lim and coworkers
have used the coupled-cluster (CC) methods developed by
using Cartesian coordinates for molecular calculations to
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demonstrate that the relativistic contributions to determine
α values are significant, especially in the heavier atomic
systems [26,27]. In their CC method, the relativistic effects
are accounted for by using a two-component Douglas–Kroll
Hamiltonian.

To encompass both the correlation and relativistic effects
in determining α for closed-shell atomic systems, we have
developed a CC method by considering the Dirac–Coulomb
(DC) Hamiltonian described by the four-component atomic
wave functions in the spherical coordinate system [28,29].
The ground state α of a number of closed-shell systems have
been successfully evaluated by using such a methodology
in the last couple of years [30–32]. Moreover, we have
set up methods that use third-order many-body perturbation
theory [MBPT(3)] and RPA in the relativistic formalism
with the intention of including correlation effects through
first-principles calculations as was employed in Refs. [16,17].
The focus of the present work is to apprehend the role of
the electron-correlation effects by using the above many-body
methods that are restricted at different levels of approximations
and to demonstrate more precise results by carrying out the
large-scale computations involved in some of these methods.
We apply these methods to determine the polarizability of
B+, C+2, Al+, Si+2, Zn, Ga+, Ge+2, Cd, In+, and Sn+2,
which belong to the transition and post-transition metallic
groups of the periodic table. We also explicitly investigate
the contributions arising through the nonlinear mathematical
expressions constituting the higher-order excitations by setting
up intermediate maneuvers to curtail the computational time
at the expense of large memory requirements to achieve more
accurate results.

The rest of the paper is organized as follows: In the
next section, we give briefly the theory of the atomic-dipole
polarizability. In Sec. III, we describe many-body methods
that are employed in the present work. Before the conclusion,
we give our results in Sec. IV and compare them with
the other available calculations and measurements. Unless
stated otherwise, atomic units (au) are used throughout the
paper.
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II. THEORY OF DIPOLE POLARIZABILITY

The leading second-order change in energy of the ground
state in an atomic system due to the application of an external
electric field �E is given by

�E = − 1
2α| �E |2, (1)

where α is known as the dipole polarizability of the state. In
the mathematical expression, we can write

α = −2

〈
�

(0)
0

∣∣D∣∣�(1)
0

〉
〈
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(0)
0
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〉 , (2)

with |�(0)
0 〉 and |�(1)

0 〉 are the unperturbed and first-order
perturbed ground-state wave functions due to the interaction
Hamiltonian �D · �E for the dipole operator D. The arduous
part of calculating α by using the above expression lies in
the evaluation of |�(1)

0 〉 which entails mixing of different
parity states. On the other hand, it is sometimes easy to use a
sum-over-states approach given by
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where I represents summation over all the allowed interme-
diate states |�(0)

I 〉, and E
(0)
0 and E

(0)
I are the energies of the

ground and the corresponding intermediate states, respectively.
The above approach is convenient to use if the electric-dipole
(E1) matrix elements between the ground state and a sufficient
number of intermediate states are known or can be calculated
to reasonable accuracies. However, it is extremely difficult to
determine these matrix elements accurately with confidence
because it requires careful handling of a large number
of configuration-state functions (CSFs). Furthermore, these
contributions are usually estimated by dividing the electronic
configurations into a core and few valence electrons [33,34].
This enables us to estimate different contributions separately
by using varieties of many-body methods. Obviously, this
cannot explain the true behaviors of all the correlation effects
in equal footings. In contrast, the present method considers the
V N potential and treats all the associated correlations among
the electrons in the uniform manner.

The other famous approach for determining α is by using
the finite �E perturbation method in which the second-order
differentiation of the total energy E0 of the ground state needs
to be estimated in the presence of the electric field (finite field
method); i.e.,

α = −
(

∂2E0(| �E |)
∂| �E |∂| �E |

)
| �E |=0

, (4)

which requires numerical calculations for a smaller arbitrary
value of �E . This is a typical procedure of calculating α by
using the molecular methods based on the Cartesian coordinate
systems where the atomic states do not possess definite parity.
In contrast, it is a convoluted procedure of determining α of
the atomic systems in the relativistic formalism if we wish to
describe the method exclusively in the spherical coordinates.

Our methodology to determine α lies in the technique of
calculating |�(1)

0 〉 and to supplant the ideology of obtaining it

as the solution of the inhomogeneous equation(
H − E

(0)
0

)∣∣�(1)
0

〉 = −D
∣∣�(0)

0

〉
(5)

through the matrix mechanism in the four-component relativis-
tic theory described by the spherical polar coordinate system.
By approximating the total wave function of the ground state
as |�0〉 � |�(0)

0 〉 + λ|�(1)
0 〉, we have

α = 〈�0|D|�0〉
〈�0|�0〉 , (6)

where λ denotes the order of perturbation in D which has to
be set as one to determine α.

III. METHODS OF CALCULATIONS

We consider the Dirac–Fock (DF) wave function |�0〉 as
the starting point for the MBPT(3), RPA, and CC methods
employed. In the CC calculations, we consider only the single
and double excitations with the linear-terms approximation
(LCCSD method) and accounting for all the nonlinear terms
(CCSD method). Details on the DF, MBPT(3), LCCSD,
and CCSD methods for the calculation of α are discussed
elaborately in our previous work [30]. Here, we explain the
RPA approach adopted to evaluate α and to ameliorate the
CCSD results by estimating contributions from the important
triples excitations perturbatively (CCSDpT method).

In the RPA method, we perturb the ith single-particle wave
function |φ0

i 〉 of |�0〉 and its energy ε0
i due to the external

operator D as ∣∣φ0
i

〉 → ∣∣φ0
i

〉 + λ
∣∣φ1

i

〉
, (7)

ε0
i → ε0

i + λε1
i , (8)

where |φ1
i 〉 and ε1

i are the first-order corrections to |φ0
i 〉 and ε0

i ,
respectively. Owing to the fact that D is an odd-parity operator,
ε1
i = 0. It can be shown that the equation to solve |φ1

i 〉 is given
by (
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where U 1
DF is defined by
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with Nc representing the number of occupied orbitals present
in the system.

We can write the single-particle perturbed wave function in
terms of the unperturbed single-particle wave functions as∣∣φ1

i

〉 =
∑
j �=i

C
j

i

∣∣φ0
j

〉
, (11)

where the C
j

i s are the expansion coefficients. In the RPA
approach, we write∑

j �=i

Ci
i

(
h0 + UDF − ε0

j

)∣∣φ0
j

〉 = (−D − U 1
DF

)∣∣φ0
i

〉
, (12)
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and solve this equation self-consistently to obtain the C
j

i

coefficients with infinity orders of contributions from the
Coulomb interaction conforming their initial solutions as the
above perturbed DF method.

In the Bloch-wave-operator representation [35], we can
express |�(1)

0 〉 = 

(1)
RPA|�0〉 with the definition of 


(1)
RPA as



(1)
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∞∑
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a

}
, (13)

where the a and p indices represent for the occupied and
unoccupied orbitals, respectively, a → p means replacement
of an occupied orbital a from |�0〉 by a virtual orbital p

which alternatively refers to a singly excited state with respect
to |�0〉 and 
(0,1)

a→p = 〈φ0
p|D|φ0

a〉/(ε0
p − ε0

a ). In the above
formulation, all order contributions are estimated by evaluating
the second term self-consistently. It is obvious from this that
the RPA method picks-up a certain class of singly excited
configurations congregating the core-polarization correlation
effects to all orders.

By using the above RPA wave operator, we evaluate α by

α = 2〈�0|
(0,0)†D

(1)
RPA|�0〉

= 2〈�0|D

(1)
RPA|�0〉. (14)

The impediment of this method is that it encapsulates contribu-
tions to |�(1)

0 〉 from the correlation effects due to the Coulomb
interaction to all orders, but only from the core-polarization
effects through the singly excited configurations. However, it
approximates the bra state |�(0)

0 〉 of Eq. (2) to the mean-field
wave function |�0〉.

The first-order perturbed wave function as in the CC method
is given by ∣∣�(1)

0

〉 = eT (0)
T (1)|�0〉, (15)

where T (0) and T (1) are the excitation operators from the
reference state |�0〉 that take care of contributions from the
Coulomb interactions and Coulomb interactions along with
from the perturbed D operator, respectively. We have given
relevant diagrams and explained computational procedures to
calculate amplitudes of the T (0) operators in Ref. [30] for the
CCSD method. The T (1) amplitudes are solved by using the
equations

〈
�τ

0

∣∣H DC
N T (1)|�0〉 = −〈

�τ
0

∣∣D|�0〉, (16)

where H DC
N is the normal-ordered DC Hamiltonian, O =

(OeT (0)
)con where “con” means only the connected terms and

|�τ
0〉 corresponds to the excited configurations with τ referring

to excitations from |�0〉. For the LCCSD and CCSD methods
(τ = 1,2), the CC operators are denoted by

T (0) = T
(0)

1 + T
(0)

2 and T (1) = T
(1)

1 + T
(1)

2 . (17)

TABLE I. Universal GTO parameters for all the angular-
momentum symmetries in the calculations of DF wave functions
for B+, C+2, Al+, and Si+2.

B+ C+2 Al+ Si+2

η0 0.00525 0.00425 0.00525 0.00425
ζ 2.73 2.67 2.72 2.67

In order to estimate the dominant contributions from the
triple-excited configurations, we define an excitation operator
perturbatively in the CC framework as follows:

T
(0),pert

3 = 1

3!

pqr∑
abc

(
H DC

N T
(0)

2

)pqr

abc

εa + εb + εc − εp − εq − εr

, (18)

and contract it with the D operator to calculate the amplitudes
of the T

(1)
2 perturbed CC operator in a self-consistent procedure

considering it in Eq. (16) as part of D. We refer to this approach
as the CCSDpT method in this work.

IV. RESULTS AND DISCUSSION

We use the Gaussian-type orbitals (GTOs) to calculate the
single-particle DF wave functions by using

∣∣φ0
n,κ (r)

〉 = 1

r

∑
ν

(
CL

n,κNLfν(r)χκ,m

CS
n,−κNS

(
d
dr

+ κ
r

)
fν(r)χ−κ,m

)
, (19)

where n and κ are the principle and angular quantum numbers,
respectively, CL

n,κ and CS
n,κ are the expansion coefficients, NL

and NS are the normalization constants of the respective large
and small components of the wave function, and χn,κ are
the spherical harmonics. Suitable ην are chosen to construct
the GTOs, fν(r) = rle−ηνr

2
, to obtain well-behaved radial

functions of the orbitals by imposing the even-tempering
condition ην = η0ζ

ν−1 for the exponents with two guessed
parameters η0 and ζ . We have taken 35 GTOs for each
angular-momentum symmetry with the η0 and ζ parameters
given in Tables I and II for different atomic systems.

Furthermore, the radial grid points for the numerical
calculations are defined nonuniformly as

ri = r0[eh(i−1) − 1], (20)

where r0 is the starting point inside the nucleus at which
the wave function becomes finite and h is the step size. We
consider the Fermi charge-density distribution ρ(r) to calculate
the nuclear potential for the electrons as

ρnuc (r) = ρ0

1 + e(r−c)/a
, (21)

TABLE II. GTO parameters for the respective angular-
momentum symmetries in the calculations of DF wave functions
for Zn, Ga+, Ge+2, Cd, In+, and Sn+2.

s p d f g

η0 0.007 0.008 0.0018 0.009 0.007
ζ 2.53 2.55 2.66 2.70 2.77
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TABLE III. Comparison of the dipole polarizabilities of the considered systems between the calculations carried out by using the different
many-body methods listed in the first column and experimental results. Contributions from the Breit interactions are estimated by using the
RPA method and are given as δB . Uncertainties in our CCSDpT results are given in parentheses.

Method B+ C+2 Al+ Si+2 Zn
Our work

DF 8.142 3.282 19.514 9.683 37.317
MBPT(3) 9.720 3.804 21.752 10.482 34.421
RPA 11.374 4.503 26.289 12.476 50.846
LCCSD 11.875 4.886 26.118 12.847 38.739
CCSD 10.413 4.213 24.299 11.893 38.701
CCSDpT 10.395 (22) 4.244 (11) 24.26 (5) 11.880 (28) 38.666 (96)
δB 0.002 0.001 0.007 0.003 0.056

Others
CHF 9.448 [36] 3.347 [36]
MP4 24.206 (2.42) [37]
DK,CASPT2 38.4 [38]
CI 9.975 [39] 24.12 [40], 24.405 [39] 11.567 [33], 11.75 [40]
CICP 9.64 (3) [41] 24.14 (12) [42] 11.668 [43] 38.12 [44]
CI+MBPT 9.613 [39] 24.030 [39] 11.502 [33]
CI + all orders 9.624 [39] 24.048 [39] 11.670 (13) [33]
CCSD 39.27 [45]
CCSD(T) 39.2 (8) [46], 38.01 [45], 37.6 [47]
Expt. 24.20 (75) [48]a 11.669 (9) [43], 11.666 (4) [49]b 38.8 (3) [46]

Method Ga+ Ge+2 Cd In+ Sn+2

Our work
DF 17.148 10.085 49.647 25.734 16.445
MBPT(3) 15.796 8.884 35.728 18.374 12.095
RPA 21.780 12.011 63.743 29.570 17.941
LCCSD 19.138 11.520 45.086 25.360 15.978
CCSD 18.455 10.890 45.898 24.246 15.537
CCSDpT 18.441(39) 10.883(16) 45.86(15) 24.11(51) 15.526(41)
δB 0.019 0.006 0.104 0.036 0.019

Others
DK,CASPT2 46.9 [38]
CI 26.27 [39]
CICP 17.95 (34) [34] 44.63 [44]
CI+MBPT 23.83 [39]
CI+all order 24.01 [39]
CCSD 48.09 [45] 24.065 (1.70) [50]
CCSD(T) 46.25 [45], 46.8 [47]
CCSDTQ 24.14 (8) [51]
Expt. 49.65 (1.49) [52]

aEstimated from the measured oscillator strengths.
bObtained by reanalyzing data of Ref. [49].

with the normalization constant ρ0, the half-density radius
c and parameter a is related with the skin thickness of the
nucleus. In our calculations, we have taken a ≈ 0.5234 fm
and c = {[5(0.836A1/3 + 0.570)2 − 7π2a2]/3}1/2 fm for the
atomic mass of the system A. By using these values, we
determine ρ0 as

ρ0 = Z

[
4

3
πc3

(
1 + a2π2

c2
+ 6a3

c3
S3

)]−1

, (22)

where Z is the atomic number and S3 = ∑∞
n=1

(−1)n−1

n3 e−nc/a .
We use 1200 grid points, r0 = 2 × 10−6 au and maximum
radial functions up to 500 au with h = 0.016 au in the
numerical calculations. This defines 258 grid points within the

c value to describe the wave functions smoothly both inside
and outside the atomic nucleus.

Our final results using all the considered methods along
with the available experimental values for Al+, Si+2, Zn, and
Cd and from the other calculations are given in Table III.
We recommend our CCSDpT method results are the more
accurate results compared to other methods employed by us
on the basis of the degree of its capability to include correlation
effects than the other approximated methods. To ascertain
lucidity in the accuracies of the results from our calculations,
we also provide uncertainties associated with our results by
estimating neglected contributions from the finite basis size,
triples excitations, and Breit interactions. These uncertainties
are given in the parentheses alongside the CCSDpT results in
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the above table. The value that is referred to as the experimental
result for Al+ is not directly obtained from the measurement
[48]; rather it is estimated by summing over the experimental
values of the oscillator strengths and has a relatively large un-
certainty compared to some of the reported calculations. There
are two high-precision results reported as the experimental
values for the Si+2 ion [43,49]; however, the value reported in
Ref. [49] is obtained from the analysis of the energy intervals
measurement using the resonant Stark ionization spectroscopy
(RESIS) technique while the other value [43] is reported by
reanalyzing the data of Ref. [49], which is about 0.03% larger
than the former value. The only available experimental result of
the ground state α of Zn is measured using an interferometric
technique by Goebel et al. [46]. Similarly there is also one
measurement of α available for Cd by using a technique of
dispersive Fourier-transform spectroscopy, but the reported
uncertainty in this experimental value is comparatively large
[52]. Nevertheless, when we compare our CCSDpT results
with all these experimental values, they match very well
within their reported error bars except for Cd. There are no
experimental results available for the other considered ions to
compare them against our calculations.

There are also a number of calculations of α available from
many groups that used varieties of many-body approaches
among which some of them are based on either the lower-order
methods or considering the nonrelativistic mechanics. All
these results are listed in Table III along with the information
about their employed methods. We only discuss a few of these
calculations to demonstrate the differences and similarities of
the present method with others. An old calculation of α in
B+ was reported by Epstein et al. [36] based on the coupled
perturbed Hartree–Fock (CHF) method while Cheng et al. had
employed a configuration interaction method considering a
semi-empirical core-polarization potential (CICP) method to
evaluate it more precisely [41]. Later, Safronova et al. used a
combined CI and LCCSD methods (CI + all-order method)
to determine α of B+ ion [39]. However, the CCSDpT result
seems to be larger than all other calculations. Our analysis
suggests that the differences in these results are mainly due to
inclusion of the pair-correlation effects to all orders in our CC
method. For the C+2 ion, we find only one theoretical result
reported by Epstein et al., who use the same CHF method. Our
result for C+2 is also slightly larger then the value reported by
the above calculation. To date, Al+ is the most precise ion
clock in the world [5] for which a couple of high-precision
calculations have been reported on the determination of α of
this ion by attempting to push down the uncertainty in the
blackbody radiation (BBR) shift of the respective ion-clock
transition [39,50,51]. Among them, calculations carried out by
Mihaly et al. is based on the relativistic CC method considering
up to quadrupole excitations and the finite-field approach [51].
However, calculations carried out in this work are based on the
Cartesian coordinate system and minimizing the energies in the
numerical differentiation approach in contrast to the present
CCSDpT method, where the matrix elements of D are evalu-
ated in the spherical coordinate system. Calculations reported
by Yu et al. use the same approach of Ref. [51] but consider
a different set of single-particle orbitals [50]. Safronova et al.
have employed the CI + all-order approach to calculate α for
Al+. There are also other theoretical results that have been

reported based on varieties of many-body methods such as
CCSD, CICP, CI, etc. both in nonrelativistic and relativistic
mechanics [37,40,42]. We find excellent agreement among all
the theoretical results. Some of these methods have also been
employed to calculate α for Si+2 [33,40,42], which are in
perfect agreement with the experimental results. However, our
CCSDpT value is a little larger than the experimental result.
In fact, our estimated contributions from the Breit interaction
using the RPA method, given in Table III as δB , are about
0.02% to 0.03%, in accordance with the findings by Safronova
et al. [33]. We found only one more calculation of α in Ga+
by using the CICP method [34] to compare with our result.
Although values from both calculations are very close, they
do not agree within their reported uncertainties. Calculations
for Cd are reported by many groups, including the latest one
by Roos et al. who used the the Douglas–Kroll–Hess (DKH)
Hamiltonian in their method [38]. Calculations by Ye et al. [44]
are based on the relativistic formalism in the CICP method.
All theoretical results are consistent and show good agreement
with each other, suggesting that the experimental result could
have been overestimated. Therefore, it is important to have
another measurement of the polarizability of Cd to resolve
this ambiguity. Again there has also been an effort made for
the precise determination of α in In+ to estimate the BBR
shift accurately for its proposed atomic clock transition [39].
Our result agrees nicely with this calculation, but our estimated
uncertainty for this result is comparatively big owing to the fact
that contributions from the triples are estimated to be large and
the calculations exhibit a slight convergence problem with the
finite size basis used. As discussed earlier, calculations carried
out in Ref. [39] are based on the CI + all-order method. We
could not find any other calculations of α of the ground states
of the Ge+2 and Sn+2 ions to make comparative analyses with
our results.

To assimilate the underlying roles of the electron-
correlation behavior in the evaluation of α of the ground
states of the considered systems, we systematically present
the calculated values of the dipole polarizabilities in Table III
from the DF, MBPT(3), RPA, LCCSD, and CCSD methods.
So, the differences between the CCSD results and the values
quoted from the CCSDpT method are the contributions from
the partial triple excitations. Obviously, these differences are
small in magnitude, implying that the contributions from the
unaccounted-for higher-order excitations are very small. The
lowest-order DF results are smaller in magnitude in the lighter
systems but their trends revert in the Cd iso-electronic systems
with respect to their corresponding CCSD results. Also, the
MBPT(3) results do not follow a steady trend. In the B+,
C+2, Al+, and Si+2 ions, the correlation effects enhance the α

values in the MBPT(3) method from their DF results while the
MBPT(3) results are smaller than the DF values in the other
systems. It is also found that the electron-correlation trends in
B+ and C+2 are different than its corresponding iso-electronic
neutral Be atom reported by us earlier [30]. For example, the
MBPT(3) result for Be is smaller than its DF result, while
this trend is the other way around for the B+ and C+2 ions.
Similar observations are also noticed in the Mg atom and
among their iso-electronic Al+ and Si+2 ions. As has been
stated earlier, RPA is a nonperturbative method embracing
the core-polarization effects to all orders, but we find that
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the results are overestimated in this method compared to the
CCSD results; more precisely from the experimental values
given in Table III. We understand these differences as the
contributions from the pair-correlation effects that are absent
in the RPA method, but they are accounted for intrinsically
to all orders as the integral part of the CCSD method. The
role of the pair-correlation effects in the determination of α

is verified by examining contributions from the individual
MBPT(3) diagrams. From these results, we find that the
non-RPA contributions are larger than the differences between
the RPA and CCSD results which are reported in Table III.
This demonstrates as big cancellations among the lower-order
and higher-order pair-correlation contributions in the CCSD
method bestowing a modest size of contributions to α, but
they appear to be very significant in the heavier systems to
attribute accuracies in the results. To demonstrate the roles
of the nonlinear terms to procure high-precision α values
in the considered ions, we have also given the results from
the LCCSD method in the above table. Although LCCSD is
an all-order perturbative method, it omits higher-order core-
polarization and pair-correlation effects that crop up through
the nonlinear terms involving T (0)T (0) or higher powers of
T (0). Consequently, this method also overestimates the results
like the RPA method. The LCCSD results in B+ and C+2

are larger than the RPA values, but the LCCSD values are
smaller than the RPA results in the other cases. This clearly
demonstrates intermittent trends of the correlation effects in
the determination of α of the systems belonging to a particular
group of elements in the periodic table to another through a
given many-body method as well as when they are studied by
using the methods with different levels of approximations. To
manifest contributions from the correlation effects through
various many-body methods quantitatively, we portray the
results obtained for α in the considered systems by using
these methods in a histogram, as shown in Fig. 1. This
clearly bespeaks about the lopsided trend in the estimation
of α of the considered systems. Again, we also plot the α

values of the singly and doubly charged ions separately in
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FIG. 1. (Color online) Histogram showing (α − αD)/αD (in per-
cent) with different many-body methods against the considered
atomic systems.
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FIG. 2. (Color online) Trends in the calculations of dipole po-
larizabilities α from the employed many-body methods for the
considered singly charged ions.

Figs. 2 and 3 in order to make a comparative analysis in
the propagation of correlation effects through the employed
methods in these elements that belong to two different groups
of the periodic table. This figure shows that the contributions
from the correlation effects in the singly charged and doubly
charged ions do not exactly follow similar trends.

Finally, we would like to discuss the trends in the correlation
effects coming through various CCSDpT terms. We give
contributions explicitly from the individual CC terms of linear
form and the rest as “Others” in Table IV. Clearly, this table
shows that the first term DT (1) gives the dominant contribution
because it subsumes all the leading-order core-polarization
and pair-correlation effects along with the DF result. The next
dominant contributing term is T

(0)†
2 DT

(1)
1 which incorporates

some contributions from the correlation effects emanated at
the MBPT(2) level and possesses opposite signs from the
DT (1) contributions, causing cancellations between them. It
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FIG. 3. (Color online) Trends in the calculations of dipole po-
larizabilities α from the employed many-body methods for the
considered doubly charged ions.
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TABLE IV. Contributions to α of the ground state of considered
atomic systems from various CCSDpT terms.

System DT
(1)

1 T
(0)†

1 DT
(1)

1 T
(0)†

2 DT
(1)

1 T
(0)†

2 DT
(1)

2 Others
+c.c. +c.c. +c.c. +c.c.

B+ 10.848 −0.194 −1.679 0.774 0.646
C+2 4.392 −0.047 −0.668 0.274 0.29
Al+ 25.855 −0.519 −3.166 1.523 0.567
Si+2 12.589 −0.160 −1.475 0.666 0.260
Zn 43.812 −2.458 −5.286 2.047 0.551
Ga+ 20.223 −0.545 −2.409 0.837 0.335
Ge+2 11.846 −0.198 −1.363 0.476 0.122
Cd 52.963 −3.346 −6.985 2.262 0.962
In+ 27.134 −0.882 −3.647 1.064 0.441
Sn+2 17.249 −0.366 −2.286 0.603 0.326

is also worth mentioning that contributions coming from
the T

(0)†
2 DT

(1)
2 term corresponds to the higher-order per-

turbation and also accounts contributions from the doubly
excited intermediate states. As seen from the table, these
contributions are non-negligible suggesting that they should
also be estimated accurately for accomplishing high-precision
results and the sum-over-states approach may not be able
to augment these contributions suitably in the considered
systems. Contributions from the other nonlinear CC terms
at the final property evaluation level seem to be slender,
although the differences between the LCCSD and CCSD
results emphasize their importance for accurate calculations
of the atomic wave functions in the considered systems.

V. CONCLUSION

We employed a variety of many-body methods to incorpo-
rate the correlation effects at different levels of approximations

to unravel the role of the correlation effects and follow up
their trends to achieve very accurate calculations of the dipole
polarizabilities of three groups of elements in the periodic
table. We find the trends in which the correlation effects behave
with respect to the mean-field level of the calculations are
different in one set of iso-electronic systems to another when
they are studied by using a given many-body method. Also, our
calculations reveal that inclusion of both the core-polarization
and pair-correlation effects to all orders are equally important
for securing high-precision dipole polarizabilities in the
considered systems and the core-polarization effects play
the pivotal role among them. Contributions from the doubly
excited states are found to be non-negligible, implying that a
sum-over-states approach may not be pertinent to carry out
these studies. Our results obtained using the singles, doubles,
and important triples approximation in the coupled-cluster
method agree very well with the available experimental values
in some of the systems except for cadmium and doubly ionized
silicon. In fact none of the reported theoretical results for
cadmium agree with the measurement; however, there seems
to be reasonable agreement among all theoretical results. This
argues for further experimental investigation of the cadmium
result. In a few systems, there are no experimental results
available yet and the precise reported values in the present work
can serve as exemples for their prospective measurements.
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